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Objectives: The aim of this study was to compare the e�ects of a sustained

inflation alveolar recruiting maneuver (ARM) followed by 5 cmH2O of PEEP

and a stepwise ARM, in dogs undergoing laparoscopic surgery.

Materials and methods: Twenty adult dogs were enrolled in this prospective

randomized clinical study. Dogs were premedicated with methadone

intramuscularly (IM); anesthesia was induced with propofol intravenously (IV)

andmaintainedwith inhaled isoflurane in pure oxygen. The baseline ventilatory

setting (BVS) was as follows: tidal volume of 15 mL/kg, inspiratory pause

of 25%, inspiratory to expiratory ratio of 1:2, and the respiratory rate to

maintain the end-tidal carbon dioxide between 45 and 55 mmHg. 10min

after pneumoperitoneum, randomly, 10 dogs underwent sustained inflation

ARM followed by 5 cmH2O of PEEP (ARMi), while 10 dogs underwent a

stepwise recruitment maneuver followed by the setting of the “best PEEP”

(ARMc). Gas exchange, respiratory systemmechanics, and hemodynamic were

evaluated before the pneumoperitoneum induction (BASE), 10min after the

pneumoperitoneum (PP), 10min after the recruitment (ARM), and 10min after

the pneumoperitoneum resolution (PostPP). Statistical analysis was performed

with the ANOVA test (p < 0.05).

Results: Static compliance decreased in both groups at PP (ARMc = 1.35 ±

0.21; ARMi = 1.16 ± 0.26 mL/cmH2O/kg) compared to BASE (ARMc = 1.78

± 0.60; ARMi = 1.66 ± 0.66 mL/cmH2O/kg) and at ARM (ARMc = 1.71

± 0.41; ARMi = 1.44 ± 0.84 mL/cmH2O/kg) and PostPP (ARMc = 1.75 ±

0.45; ARMi = 1.89 ± 0.59 mL/cmH2O/kg), and it was higher compared to

PP and similar to BASE. The PaO2/FiO2, in both groups, was higher at ARM

(ARMc = 455.11 ± 85.90; ARMi = 505.40 ± 31.70) and PostPP (ARMc = 521.30

± 66.20; ARMi = 450.90 ± 70.60) compared to PP (ARMc = 369.53 ± 49.31;

ARMi = 394.32 ± 37.72).
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Conclusion and clinical relevance: The two ARMs improve lung function in

dogs undergoing laparoscopic surgery similarly. Application of PEEP at the end

of the ARMs prolonged the e�ects of the open-lung strategy.
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laparoscopy, atelectasis, alveolar recruitment, oxygenation, dog

Introduction

Laparoscopic surgery has become a common approach

for abdominal surgical procedures in dogs (1–3). The type

of surgery, the level of intra-abdominal pressure (IAP) to

generate pneumoperitoneum (PP), and its duration may

compromise the cardiovascular and respiratory systems

(4, 5). Changes associated with PP include alterations

in arterial blood pressure (ABP), reductions in cardiac

output (CO) and respiratory system compliance, and

lung compression due to the cranial displacement of the

diaphragmatic dome (6–9). Moreover, the absorption of

carbon dioxide (CO2) during PP can result in hypercarbia

and respiratory acidosis (10, 11). The use of mechanical

ventilation is therefore essential during laparoscopic procedures

(12, 13).

General anesthesia with muscle paralysis, tracheal

intubation, and intermittent positive pressure ventilation

(IPPV) is often used to guarantee the target minute ventilation

during laparoscopy (14, 15). Moreover, several strategies

have been tested aimed at improving respiratory function

and oxygenation, such as the application of positive end-

expiratory pressure (PEEP) (16), which increases the functional

residual capacity (FRC) and stabilizes the alveolar units

(17, 18). The open-lung concept (OLC) refers to a strategy

aimed at opening non-aerated or poorly aerated alveolar

units by increasing the transpulmonary pressure (PL) of the

lungs. This increased PL overcomes the closing pressure

of collapsed alveoli, thus causing their re-expansion (18–

20). The goal is to minimize cyclic forces associated with

repetitive alveolar collapse and re-opening, which has been

associated with suboptimal gas exchange and generation of lung

inflammation (21–23).

Currently, two main types of alveolar recruitment

maneuvers (ARM) have been described to improve lung

mechanics and arterial oxygenation in dogs: the sustained

inflation (or vital capacity) ARM (24–26) and the stepwise

ARM (22, 27). The application of PEEP at the end of the

ARM is critical to stabilize the reopened alveolar units and

to keep them open. With the sustained inflation ARM, the

PEEP level following the ARM is fixed and established by

the operator (24–31). With the stepwise approach, the level

of PEEP is individualized based on the specific respiratory

mechanical properties of patient (best PEEP) (22, 23, 30, 32).

In the last years, several studies have shown that both types

of ARMs are effective in improving respiratory mechanics

and gas exchange in the intraoperative period (22, 23, 31).

However, to the authors’ knowledge, the efficacy of the two

maneuvers has never been compared in dogs undergoing

laparoscopic surgery.

The aim of this study was to evaluate the effects of a

sustained inflation (ARMi) maneuver followed by 5 cmH2O

of PEEP compared to a stepwise (ARMc), in which the best

PEEP was identified as the minimum PEEP level resulting in

the highest static compliance. We hypothesized that ARMc, due

to case-specific optimization of the PEEP level, would be more

effective in improving respiratory system compliance and gas

exchange, limiting the cardiovascular side effects, in anesthetized

dogs, undergoing laparoscopic surgery. To test our hypothesis,

respiratory system mechanics, hemodynamic, and gas exchange

parameters were studied and compared at predetermined times

of the study in dogs undergoing elective laparoscopic gastropexy.

Materials and methods

This prospective, randomized clinical study was approved

by the Ethical Committee for Clinical Study in Animal Patients

of the Department Emergency and Organ Transplantation

of the University of Bari (No. 03/2016). The manuscript is

reported following the CONSORT Statement 2010 for reporting

randomized controlled trials (33).

Patients

Adult, mixed-breed dogs were selected for elective

laparoscopic ovariectomy after obtaining written owner

consent. The inclusion criteria were ASA status I and II, weight

≥10 kg, and age≤10 years. Exclusion criteria were obesity, overt

respiratory or cardiovascular pathologies, relevant bloodwork

abnormalities, pregnancy, or major abdominal pathologies.

Before surgery, all dogs were evaluated clinically based on

physical, hematological, and biochemical examinations. Dogs

were solid fasted for 12 h, and water was available up to 2 h

before surgery.
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Anesthetic and surgical procedure

All subjects were premedicated with 0.3 mg/kg

of methadone (Semfortan; Dechra, Italy; 10 mg/mL)

intramuscularly (IM), and after 15min, a cephalic vein

was catheterized for the intravenous (IV) administration

of drugs and fluids. Perioperative Ringer’s lactate solution

(Fresenius Kabi) was administered at a rate of 5 mL/kg/h

IV using a specific infusion pump (IP-7700; AMP, Seoul,

Korea). After 3min of flow-by preoxygenation (8–10 L/min),

anesthesia was induced with 5 mg/kg of propofol IV (Propofol;

Fresenius Kabi, Isola della Scala, Italy), and thereafter, dogs

were connected to the anesthetic machine (Datex Ohmeda

Excel 210) using a rebreathing circuit. In all cases, isoflurane

was used to maintain general anesthesia (EtIso = 1.2–1.3%),

and IPPV, using volume-controlled mode (Servo-i; Maquet,

Rastatt, Germany), was delivered. The Servo-i ventilator was

connected to the driving gas port of the pneumatic circuit

of the anesthetic machine, to use the advanced controls of

the ICU ventilators to drive the bellow of the circuit, for the

purposed of the study. All the spirometry data were regulated

and recorded at the level of the tracheal tube of the patient

using an external monitor. A schematic representation of

the setting is provided as additional online supplement. The

baseline ventilatory setting was standardized for all subjects

and consisted of a tidal volume (VT) of 15 mL/kg, inspiratory

to expiratory ratio (I:E) of 1:2, FiO2 >0.8, inspiratory pause of

25% of inspiratory time, and PEEP of 0 cmH2O. The respiratory

rate (RR; breath/minute) was modified to maintain an end-tidal

carbon dioxide (EtCO2) between 45 and 55 mmHg. Dogs were

positioned in dorsal recumbency, and the metatarsal artery

was catheterized to obtain main hemodynamic data (PRAM,

Most Care
R©
, Vytech, Padua, Italy) and to collect the arterial

blood samples. During the procedure, the main respiratory

parameters were recorded using a multiparametric monitor

(Datex Ohmeda S/5 Anesthesia Monitor, Ohmeda, Soma

Technology, Bloomfield, CT, USA). Respiratory monitoring

included RR (breaths/minute), TV (mL), minute volume (MV;

mL/kg/minute), EtCO2 (mmHg), FiO2 (%), peak (Ppeak;

cmH2O), and plateau (Pplat; cmH2O) airway pressures, and

static compliance (Cstat, mL/cmH2O/kg). Cardiovascular

monitoring included heart rate (HR; beats/minute), direct

systolic (SAP; mmHg), diastolic (DAP; mmHg) and mean

arterial pressure (MAP; mmHg), stroke volume (SV; mL),

cardiac output (CO; L/min), and pulse pressure variation (PPV;

%). During the procedure, if the SAP <80–90 mmHg, MAP

<60–70 mmHg, and DAP <40 mmHg, an IV crystalloid bolus

(5–10 ml/kg) was administered in 15min based on the severity

of hypotension and the specific characteristics of the case. If

hypotension persisted, dopamine was given (10 mcg/kg/min

IV). The peripheral capillary oxygen hemoglobin saturation

(SpO2; %) was recorded using the Masimo Set Pulse CO-

Oximeter
R©

Radical-7 Pulse Oximeter (Masimo Corporation,

Ivine, CA, USA). End-tidal concentration of isoflurane (EtIso,

%) and temperature (T R©C) were also recorded.

After connection to ventilator, an initial dose of 0.4 mg/kg

rocuronium was administered intravenously (Rocuronio Kabi,

10 mg/mL, Fresenius Kabi Italia S.r.l.). Neuromuscular function

was evaluated by placing stimulating electrodes on the peroneal

nerve and monitoring the train of four tests (TOF-Watch;

Organon, Ireland). The PP was created insufflating CO2 in the

abdominal cavity using a Veress needle with a CO2 insufflator

(Endoflator; Karl Storz, Germany) until reaching an IAP of

8–10 mmHg. At the end of surgery, PP was gradually reduced,

and the abdominal wall was sutured. Timing of surgery (skin

incision, induction and discontinuation of PP, and last skin

suture) was recorded in all subjects. During the recovery

time, a TOF score ≥0.9 (34) was considered adequate for the

extubation considering always an SpO2 ≥ 95% and continuing

to monitor main physiological parameters (34). If the TOF

activity was <0.9, 0.02 mg/kg of neostigmine (Intrastigmine;

Torrino Medica, Italy) was administered in combination with

0.02 mg/kg of atropine (Atropina Solfato; Monico S.p.A., Italy)

EV (34). Heating and oxygen support (face mask) and fluid

therapy were provided until the dogs were fully awake with

a rectal temperature above 37.5 ◦C, MAP ≥70 mmHg, and a

SpO2 at room air (FiO2 0.21) ≥95 %. Additional analgesia with

10 µg/kg of buprenorphine (Buprenodale; Dechra, Italy; 0.3

mg/mL) was administered IM based on the clinical condition of

the dogs, assessed by the anesthetist in charge.

Study protocol

Ten min after induction of PP, dogs were randomly (simple

random allocation sequence generated with the chit method)

divided into two groups (35): the ARMi group and the ARMc

group. In the ARMi group, a sustained inflation ARM was

performed. The ventilator was set to the CPAP mode, where a

pressure of 40 cmH2O was set and maintained for 20 s (24).

At the end of the maneuver, the baseline ventilatory settings

were restored, adding 5 cmH2O of PEEP and keeping it for

the rest of the surgical procedure (31). In the ARMc group,

a stepwise ARM was performed. The protocol for performing

the ARMc was as follows: (1) Baseline: The initial ventilatory

settings included RR 6 breaths/min, I:E ratio 1:1, TV 15 mL/kg,

and PEEP 0 cmH2O. (2) Incremental phase: PEEP was applied

in steps of 5, 10, 15, and 20 cmH2O every five breaths, until a

Pplat of 40 cmH2O was reached. This last step was maintained

for 6 breaths (60 s). (3) Decremental phase and titration of best

PEEP: PEEP was stepwise reduced by 2 cmH2O every minute,

until returning to the initial baseline setting (36). This phase

included the identification of the optimal level of PEEP needed

to prevent alveolar collapse (considered best PEEP). At each

step, Cstat, Ppeak, and Pplat were monitored (Datex Ohmeda S/5

Anesthesia Monitor, Ohmeda, Soma Technology, Bloomfield,
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CT, USA). The best PEEP was identified as the minimum PEEP

level resulting in the highest Cstat. (4) Second incremental phase:

an incremental phase was repeated as previously described, and

thereafter, the baseline ventilatory settings were resumed, setting

PEEP to the value of best PEEP (22, 36).

Gas exchange, respiratory system mechanics, and

hemodynamic status were evaluated in four time points during

the procedure: BASE (at baseline, before the pneumoperitoneum

induction), PP (10min after the creation of the PP), ARM

(10min after the recruitment), and PostPP (10min after

pneumoperitoneum resolution).

Respiratory system mechanics

In each dog, gas flow was measured with a calibrated heated

pneumotachograph (Fleisch 125 No. 2; Fleisch, Switzerland)

connected to a calibrated differential pressure transducer (Diff-

Cap; Special Instruments GmbH, Germany) placed between the

endotracheal tube and the Y-piece of the rebreathing circuit.

Volume was obtained by numerical integration of the flow signal

(37). Values of Ppeak and Pplat were measured proximally to

the endotracheal tube with the pressure transducer. For further

data analysis, the values of the above variables were displayed

and collected on a personal computer through a data conversion

card. The Cstat of the respiratory system was calculated and

indexed based on body weight as follows:

CstatInd(mL/cmH2O/kg) = (TV/[Pplat − PEEP])/body weight

Driving pressure (DP) was calculated as follows:

DP(cmH2O) = Pplat − PEEP

Gas exchange assessment

An arterial blood sample (1mL) was collected at each time

of the study, and it was immediately analyzed. The pH, PaO2,

and PaCO2 were measured and corrected based on the specific

body temperature at the time of sample collection. The SaO2 was

calculated by the analyzer. The PaO2:FiO2 ratio was calculated

as a descriptive index of pulmonary arterial oxygenation. In

addition, the Fshunt index was calculated as described by Araos

et al. (38):

Fshunt(%) = (Cc′O2 − CaO2)/(Cc
′O2 − CaO2

+3.5mL/dL)×100

The difference between the PaCO2 and the EtCO2

(Pa-EtCO2; mmHg) was also calculated (39).

Hemodynamic evaluation

In all dogs, a metatarsal artery was catheterized and

connected to the PRAM monitor using a Baxter Truwave

PX-600F transducer (Baxter-Edwards, Irvine, CA, USA) and an

extension line filled with saline solution. The transducer was

leveled at the level of the right atrial and then zeroed. The

accuracy of the signal was verified by a square wave test before

starting the data collection (40). The cardiovascular parameters

included in the monitoring have been SAP, MAP, DAP, SV,

and CO (41, 42). The data obtained were recorded and stored

automatically every 3 s on a personal computer. Data related to

SV and CO were indexed by the body surface area (BSA, m2) of

the dogs. BSA was calculated following a specific body weight

(BW) to body surface (BSA) conversion table (British Small

Animal Veterinary Association,Website© 2021BSAVATM, UK).

Data analysis

Accepting an alpha risk of 0.05 and a beta risk of 0.2

in a one-sided test, 10 subjects were necessary in first group

and 10 in the second to recognize as statistically significant a

difference greater than or equal to 0.5 units for the respiratory

system static compliance. The common standard deviation is

assumed to be 0.43. It has been anticipated a drop-out rate of 5%.

Data were analyzed using the MedCalc 14.0 software (MedCalc,

Mariakerke, Belgium). Normal distribution was tested using

the Shapiro–Wilk test. All data were normally distributed

and therefore were reported as mean ± standard deviation

(SD). Statistical analysis was performed using the two-way

ANOVA test (time x treatment) for repeated measurements. If

significant, Tukey’s test was applied for post-hoc comparison

between the data obtained within the same group and

between the two groups. A value of p < 0.05 was considered

statistically significant.

Results

A total of 28 dogs were enrolled in the study; however,

eight subjects were excluded because they met the exclusion

criteria (n = 3 obesity; n = 2 respiratory diseases; n = 1 age;

n = 2 cardiac murmur). The procedure was completed without

complications in 20 dogs. There were no differences between the

two groups in body weight (ARMc= 20.8± 4.7 kg; ARMi= 21.3

± 7.2 kg), age (ARMc = 3.7 ± 1.1 years; ARMi = 3.5 ± 1.2

years), duration of PP (ARMc= 49.3± 6.3min; ARMi= 46.8±

8.3min), and surgery (ARMc= 56.8± 5.3min; ARMi= 55.4±

9.2 min).

Respiratory system mechanics

The main respiratory parameters are described in Table 1.

No differences were found in RR, VT, and PEEP. Indexed

Cst (CstatInd) was significantly reduced after the induction of

PP (PP time) in both groups (p < 0.05). However, in ARMc
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FIGURE 1

Graphical representation of the mean ± standard deviation

values of CstatInd in 20 dogs mechanically ventilated, undergoing

laparoscopic surgery. Ten dogs (ARMc) received a “stepwise”

ARM, and the other (ARMi) received a “sustained inflation” ARM

followed by 5 cmH2O of PEEP. The parameters were evaluated

10min before (BASE) and after the induction of PP (PP), 10min

after the maneuvers (ARM), and 10min after the discontinuation

of PP (Post-PP). #p < 0.05 between the two groups at the same

study time. ap < 0.05 in the same group compared with BASE;
bp < 0.05 compared with PP; cp < 0.05 compared with ARM; dp

< 0.05 compared with Post-PP.

group, CstatInd increased immediately after the recruitment

maneuver, while, in ARMi group, the CstatInd increased more

slowly than the ARMc group, reaching significantly higher

values than PP time only after the discontinuation of the PP

(Figure 1, Tables). The DP in both groups was significantly lower

at PostPP (ARMc = 8.28 ± 1.47 cmH2O; ARMi = 6.5 ± 1.24

cmH2O) compared to PP time (ARMc =10.24 ± 1.65 cmH2O;

ARMi= 9.21± 1.87 cmH2O). No differences were found in DP

between the two groups of the study (Table 1).

Gas exchange parameters

Gas exchange parameters are reported in Table 2. There

were no differences in EtCO2 and PaCO2 between the two

groups. In both groups, both variables were significantly higher

at PP and ARM time compared to BASE and PostPP. The

Pa-EtCO2, in both groups, was increased significantly at PP

compared to the other phases. Instead, at ARM and PostPP, it

was significantly lower compared to PP time (Table 2). In both

groups, PaO2/FiO2 at PP time was similar to BASE. At ARM and

PostPP, it was significantly higher than BASE and PP (Figure 2).

The Fshunt showed differences between the two groups at time

PP and ARM. In ARMc group, it was increased significantly at

PP time compared to BASE, but at PostPP, it was lower than the

other phases of the study. In ARMi group, Fshunt at PP was

similar to BASE. Instead, at PostPP, it has reached significantly

lower values than BASE and PP (Table 2).

Hemodynamic parameters

Hemodynamic data at each study time are reported in

Table 3. Heart rate showed no differences between the two

groups. In ARMc group, HR was higher at PP (89 ± 20.53

b/min) and ARM (86 ± 15.97 b/min) compared to BASE

(70± 14.25 b/min). The MAP showed no differences between

the two groups but in both, at PP (ARMc = 113.81± 23.6

mmHg; ARMi = 105.52 ± 9.65 mmHg) and ARM (ARMc

=91.14 ± 16.25 mmHg; ARMi =92.77 ± 17.56 mmHg), it was

higher than BASE (ARMc= 65.85± 3.93 mmHg; ARMi= 76.22

± 6.10 mmHg) and PostPP (ARMc = 75.71 ± 13.84 mmHg;

70.60 ± 2.88 mmHg). Mean values of SVI were lower in the

ARMi group as compared to the ARMc group at all times

of the study. There were no differences in cardiac index (CI)

between groups.

Discussion

The results of this study demonstrated the efficacy of

two ARM strategies for the treatment of the respiratory

changes induced by laparoscopy in dogs. Our results can

be summarized as follows: both ARMs used in this study

showed that an “open-lung” strategy (OLs) improves respiratory

function after the induction of pneumoperitoneum. Moreover,

applying PEEP at the end of the ARM can prolong the beneficial

effects of the OLs until the end of the surgical procedure

and the discontinuation of PP. Based on our data, both

strategies showed benefits in terms of improving compliance

and oxygenation.

Induction of PP usually results in airway pressure increase

and a reduction in respiratory system compliance at a given TV

(14, 43, 44). In this study, induction of PP resulted in significant

increases in Ppeak and Pplat with consequential reductions in

Cstat in both groups. Both ARMs allowed to bring Cstat back

to values compared with BASE. In addition, the improvement

of these parameters persisted even after the discontinuation

of the PP, suggesting that the benefits of both maneuvers are

maintained over time.

In accordance with what was mentioned, PaO2: FiO2 and

Fshunt were not directly affected by PP induction in our

study. Several references have shown that PP causes an increase

in atelectasis but is not necessarily related to an increase in

shunt or a reduction in arterial oxygenation (8, 39, 45). This

apparent paradox has not yet been explained; however, even

from our data, in the ARMc group, we did not detect a direct

relationship between Fshunt and oxygenation compared to

the development of pulmonary atelectasis. Previously, it has

been shown that with increasing IAP, the degree of pulmonary

shunt may decrease and arterial oxygen tension may not be

affected and, in some cases, increase (8, 47). Mechanisms
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TABLE 1 Mean ± SD of the respiratory parameters evaluated in 20 dogs mechanical ventilated, undergoing laparoscopic surgery.

Parameter Group BASE PP ARM Post-PP

RR (breath/min) ARMc

ARMi

12.32± 4.51

11.41± 3.22

14.51± 4

15± 2.21

13± 1.24

12.40± 3.61

11.12± 3.22

12.11± 2.41

TV/KG (mL/kg) ARMc

ARMi

14.49± 4.13

13.20± 2.26

13.96± 2.29

14.73± 1.85

14.31± 5.54

13.84± 3.37

14.52± 4.26

13.93± 2.31

CstatInd(mL/cmH2O/kg) ARMc

ARMi

1.78± 0.60

1.66± 0.66

1.35± 0.21acd

1.16± 0.26 ad

1.71± 0.41#

1.44± 0.84 d

1.75± 0.45

1.89± 0.59

Ppeak(cmH2O) ARMc

ARMi

11.04± 1.44

10.41± 1.82

12.64± 1.5

11.41± 2.87

15.34± 3.44ab

15.91± 3.54 ab

14.42± 3.71a

14.21± 1.47 ab

Pplat(cmH2O) ARMc

ARMi

10.71± 1.51

9.70± 1.82

11.53± 1.47

10.61± 1.87

14.82± 3.52ab

14.52± 3.62 ab

14.01± 3.61a

13± 1.24 ab

PEEP (cmH2O) ARMc

ARMi

0

0

0

0

5.7± 3.06

5.2± 0.6

5.72± 3.04

5

DP (cmH2O) ARMc

ARMi

8.74± 1.42

7± 1.82

10.24± 1.65

9.21± 1.87 ad

9.12± 1.43

10.52± 3.62 ad

8.28± 1.47b

6.5± 1.24

Ten dogs (ARMc) received a “stepwise” ARM, and the other (ARMi) received a “sustained inflation” ARM. The parameters were evaluated 10min before (BASE) and after (PP) the

induction of PP, 10min after the maneuvers (ARM), and 10min after the discontinuation of PP (Post-PP). #p < 0.05 between the two groups at the same study time. ap < 0.05 in the same

group compared with BASE; bp < 0.05 compared with PP; cp < 0.05 compared with ARM; dp < 0.05 compared with Post-PP.

postulated behind an increase in PaO2 from elevated IAP

during PP could be hypoxic pulmonary vasoconstriction, cranial

diaphragm displacement with redistribution of pulmonary

blood flow, and patient volume status (8, 45). Recently, the Pa-

EtCO2 has been identified as a more reliable index of overall

V/Q mismatch than the PaO2:FiO2 ratio (37) during PP. Pa-

EtCO2 can increase due to both an increase in PaCO2 and a

decrease in EtCO2. PaCO2 may increase when venous blood

passes through perfused but atelectatic alveoli and no blood-

alveolus exchange occurs. The reduction in EtCO2, on the

contrary, usually occurs when non-perfused or poorly perfused

alveoli are ventilated (39). In this study, in both groups, Pa-

EtCO2 increased 10min after PP induction and subsequently

decreased to similar values to baseline after ARM in both

groups. Probably, after PP, the increase in PaCO2 was not

followed by a corresponding increase in EtCO2 inducing a

significantly higher Pa-EtCO2 during PP compared to BASE.

This finding appears to be indicative of the development

of pulmonary atelectasis (perfused but unventilated alveoli).

Furthermore, the significant reduction in Pa-EtCo2 in the ARM

and PostPP phases, associated with the significant improvement

in compliance, indicates the effectiveness of the two ARMs in the

“open-lung” strategy.

Oxygenation and compliance did not change after the

discontinuation of the PP. This result may relate to the

stabilizing effect of PEEP which prolonged the results of the

ARMs up to the end of the procedure. Indeed, it has been widely

shown that PEEP alone is not able to give a complete alveolar

recruitment, but it has a specific stabilizing role in keeping the

alveoli open at the end of an ARM (48). In human medicine,

a standardized PEEP level has not been identified but, usually,

the “best PEEP” is titrated or set on the basis of the ventilatory

needs of each patient (20, 24, 25, 28). The minimum level of

PEEP to be used during laparoscopy in dogs has not yet been

established. In the previous study, Di Bella et al. showed the

effectiveness of applying a fixed PEEP of 5 cmH2O at the end

of a sustained inflation recruitment maneuver (31). The data

collected in our study, specifically in ARMi group, confirmed

the results obtained in the previous work. The average value

of best PEEP identified in the ARMc protocol was 5.7 ± 3.06

cmH2O. This data suggest that, probably, in dogs undergoing

laparoscopic surgery, a PEEP between 5 and 6 cmH2O, after the

recruitmentmaneuver, could be enough to keep anOL condition

for the rest of the surgical procedure. These results, however,

should be limited to the respiratory settings and timing used in

this study.

After induction of the pneumoperitoneum, in agreement

with the literature, we found a significant increase in MAP

in both groups, which could be explained by mechanical

compression of the abdominal aorta, absorption of CO2 with

transient hypercapnia, and activation of renin–angiotensin–

aldosterone axis with the production of neurohumoral

factors, such as vasopressin (11, 12, 46). For this reason,

an euvolemic preoperative volume status is important to

minimize any cardiovascular depression associated with the

pneumoperitoneum (7, 42, 50). Compression of the inferior

vena cava reduces preload and is associated with the increase

in afterload, which can lead to a decrease in CO, particularly

in hypovolemic patients (46, 49). Several studies have shown

that dogs with normal cardiovascular function can tolerate
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TABLE 2 Mean ± SD of the gas exchange parameters evaluated in 20 dogs mechanically ventilated, undergoing laparoscopic surgery.

Parameter Group BASE PP ARM Post-PP

pH ARMc

ARMi

7.31± 0.05

7.26± 0.03

7.21± 0.02

7.18± 0.05

7.22± 0.06

7.19± 0.05

7.26± 0.11

7.21± 0.06

EtCO2 (mmHg) ARMc

ARMi

38.71± 2.92

40± 4.21

45± 5.60ad

46± 8.81 ad

46.42± 7.51ad

48± 5.50 ad

42.42± 8.91

45± 9.51

PaCO2 (mmHg) ARMc

ARMi

45.22± 6.67

45.81± 5.49

53.33± 3.74ad

55.31± 10.96 ad

50.31± 9.44ad

54.11± 8.74 ad

46.83± 15.52

51.14± 7.78

PaO2/FiO2 (mmHg) ARMc

ARMi

431.22± 55.11

359.81± 67.22

369.53± 49.31

394.32± 37.72

455.11± 85.90b#

505.40± 31.70 abd

521.30± 66.20#abc

450.90± 70.60 abc

Pa-EtCO2 (mmHg) ARMc

ARMi

7.51± 3.51#

5.62± 2.12

8.31± 4,44#a

9.81± 4.41 a

4.01± 2.61#abc

6.21± 4.22 ab

4.34± 2.21#ab

6.11± 4.12 ab

SaO2 (%) ARMc

ARMi

99± 0.57

99± 0.31

97.81± 1.06

98.72

97.71± 1.49

99± 0.42

99± 1.15

100

Fshunt (%) ARMc

ARMi

7.71± 2.82

7.92± 2.40

12.12± 3.96#ad

6.61± 2.84

9.42± 5.65#d

5.31± 2.22 a

5.11± 3.79

4.82± 3.70 ab

Ten dogs (ARMc) received a “stepwise” ARM, and the other (ARMi) received a “sustained inflation” ARM. The parameters were evaluated 10min before (BASE) and after (PP) the

induction of PP, 10min after the maneuvers (ARM), and 10min after the discontinuation of PP (PostPP). #p < 0.05 between the two groups at the same study time. ap < 0.05 in the same

group compared with BASE; bp < 0.05 compared with PP; cp < 0.05 compared with ARM; dp < 0.05 compared with Post-PP.

FIGURE 2

Graphical representation of the mean ± standard deviation

values of PaO2/FiO2 in 20 dogs mechanically ventilated,

undergoing laparoscopic surgery. Ten dogs (ARMc) received a

“stepwise” ARM, and the other (ARMi) received a “sustained

inflation” ARM followed by 5 cmH2O of PEEP. The parameters

were evaluated 10min before (BASE) and after (PP) the induction

of PP, 10min after the maneuvers (ARM), and 10min after the

discontinuation of PP (Post-PP). #p < 0.05 between the two

groups at the same study time. ap < 0.05 in the same group

compared with BASE; bp < 0.05 compared with PP; cp < 0.05

compared with ARM; dp < 0.05 compared with Post-PP.

these variations of preload and afterload during laparoscopic

surgery (42).

In our study, we found no significant reductions in CO,

which increased slightly after PP, conversely. Moreover, based

on the evaluation of pulse pressure variation (PPV), cardiac

index, and stroke volume index, all dogs in the study were

hemodynamically stable prior to the start of surgery and the

IAP was kept between 8 and 10 mmHg (42). Studies in animal

models have shown that, when the IAP is <15 mmHg, an initial

increase in venous return due to compression of the splanchnic

compartment and a temporary increase in CO can be observed,

reducing the hemodynamic impact (49, 51).

An ARM may cause several cardiovascular side effects

in humans and pigs (52–56). Both ARMc and ARMi reduce

cardiac output (CO) and arterial pressure. Hemodynamic

changes consist primarily of a fall in cardiac output and

left ventricular preload, along with an increase in heart rate

and cardiac contractility (57). A transient reduction in CO

during ARMc has been demonstrated in dogs (22). An ARMi

may lead to a >40% reduction in cardiovascular performance

(56). In this study, no significant hemodynamic changes were

detected during both recruitment maneuvers. The authors

hypothesize that the absence of significant cardiovascular

alterations may be associated with the slow and gradual

increase and decrease in IAP, maintained at a maximum

of 10 mmHg. Furthermore, all patients were assessed as

hemodynamically stable prior to the start of the procedure.

As demonstrated in the previous studies, this aspect could

influence patients’ response to pneumoperitoneum (42). Data

related to SVI show that this parameter was lower in the

ARMi group at all time points of the study, despite a

similar CI. We do not have a specific explanation for this

condition, but we can assume that it was not related to the

ARM procedure.

Comparing ARMi to ARMc, we observed in both groups

an improvement of lung function after the two ARMs. At

the same time, we did not detect significant hemodynamic
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TABLE 3 Mean ± SD of the hemodynamic parameters evaluated in 20 dogs mechanically ventilated, undergoing laparoscopic surgery.

Parameter Group BASE PP ARM Post-PP

HR (b/min) ARMc

ARMi

70± 14.25

81.11± 17.85

89.52± 20.53a

90.6± 12,67

86± 15.97a

91± 14.77

84.84± 14.22

90.41± 9.71

MAP (mmHg) ARMc

ARMi

65.85± 3.93

76.22± 6.10

113.81± 23.6ad

105.52± 9.65 ad

91.14± 16.25ad

92.77± 17.56 ad

75.71± 13.84

70.60± 2.88

SVI (L/m2) ARMc

ARMi

65± 41#

40.63± 16.13

65.62± 33.14#

47.19± 19.65

58± 24.25#

45.11± 16.24

62.51± 23.47#

34.96± 3.35

CI (L/min/m2) ARMc

ARMi

3.95± 2.06

3.37± 1.76

5.47± 2.19

4.19± 1.66

4.95± 1.99

4.02± 1.37

5.26± 1.94

3.99± 0.35

Ten dogs (ARMc) received a “stepwise” ARM, and the other (ARMi) received a “sustained inflation” ARM. The parameters were evaluated 10min before (BASE) and after (PP) the

induction of PP, 10min after the maneuvers (ARM), and 10min after the discontinuation of PP (Post-PP). #p < 0.05 between the two groups at the same study time. ap < 0.05 in the same

group compared with BASE; bp < 0.05 compared with PP; cp < 0.05 compared with ARM; dp < 0.05 compared with Post-PP.

changes. Several factors should influence the choice of the

most suitable ARM (36, 58–60). Specifically analyzing the

two techniques, the ARMi is easier to perform and does

not require advanced equipment. On the contrary, it foresees

a sudden increase in intrathoracic pressures and a greater

risk of hyperinflating normalized alveolar units. Differently,

the stepwise maneuver let us to “titrate” the best peep to

be applied subjectively to each patient. Moreover, the slow

and gradual insufflation allows us to obtain a more gentle

and homogeneous distribution of the flow to all atelectasis

units reducing the risk of lung damage. However, it must

be considered that in the previous studies showed that even

the stepwise maneuver performed in the dog, while increasing

respiratory compliance, can cause a slight alveolar over-

distension of the non-dependent regions of the lung (61, 62).

Moreover, another disadvantage is that this maneuver requires

constant assessment of the compliance of the respiratory

system, and the execution mode is certainly longer and

more complex.

This study has several limitations. Despite the sample size

calculation, data could be further increased and confirmed

using a larger and less standardized population and in

different surgical procedures. All dogs in the study were

healthy, and different effects could be expected in more

complex cases associated with respiratory and/or cardiovascular

dysfunction. In this study, the effects of the OLSs have been

evaluated at 10 min after the recruitment and additional

studies are required to clarify the duration of the OLSs for

a longer period. Similarly, it would be also interesting to

evaluate the effects on the respiratory function during the

postoperative period. The use of FiO2s >0.8% after recruitment

maneuvers may have masked their real effect on oxygenation.

Still, these findings are valid for animals of this weight,

because in animals below 10 kg of body weight, this may

no longer be true due to the different compliance of the

rib cage.

Conclusion

In conclusion, both the sustained inflation and stepwise

alveolar recruitment maneuver improve similarly the

lung function in dogs undergoing laparoscopic surgery,

reducing the respiratory side effects of PP. In addition,

the application of a PEEP at the end of the ARM allows

to keep the alveolar units open and functional until the

end of the procedure. The application of one of the

two maneuvers should be based on the equipment and

monitoring available also considering the skills of the

anesthesiologist and the impact of the procedure on the

individual case management.
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