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Emerging infectious diseases (EID) in humans and animals are proving to be a

serious health concern. This study investigated the prevalence of emerging

or re-emerging human enteric viruses in porcine stools and swabs. Eleven

enteric EID viruses were selected as target viruses for the current study and

ranked based on their impact on public health and food safety: enterovirus

(EV), hepatitis E virus, norovirus GI and GII, sapovirus (SaV), adenovirus (AdV),

astrovirus, rotavirus, hepatitis A virus, aichivirus, and bocavirus. Using real-

time RT-PCR or real-time PCR, EID viruses were detected in 129 (86.0%)

of 150 samples. The most prevalent virus was EV, which was detected

in 68.0% of samples, followed by AdV with a detection rate of 38.0%.

In following sequencing and phylogenetic analyses, 33.0% (58/176) of the

detected viruses were associated with human enteric EID viruses, including

AdV-41, coxsackievirus-A2, echovirus-24, and SaV. Our results show that

porcine stools frequently contain human enteric viruses, and that few porcine

enteric viruses are genetically related to human enteric viruses. These findings

suggest that enteric re-emerging or EID viruses could be zoonoses, and that

continuous monitoring and further studies are needed to ensure an integrated

“One Health” approach that aims to balance and optimize the health of

humans, animals, and ecosystems.

KEYWORDS

enteric virus, emerging virus, phylogenetic analysis, enterovirus, adenovirus,

foodborne virus, pig

Introduction

Emerging infectious diseases (EID) are defined as newly recognized infectious

diseases in a community or existing diseases that rapidly increase in incidence or

expand in geographic range. Many emerging diseases are zoonotic—the disease-causing

organism first incubates in an animal host and then spreads to humans at random (1).
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Zoonotic diseases spread from animals to humans via direct

contact, contaminated food and/or water, or the environment,

and account for about 61% of the infectious organisms affecting

humans (2). Viral pathogens transmitted via the fecal-oral route

are often reported as EID infectious agents. EID viruses can

spread between humans and have pandemic potential, which has

recently led to the COVID-19 pandemic (3).

Worldwide, 3,618 cases of EID have been reported from

2016 to 2018 (4), with 331 cases of infectious diseases recorded

in the United States during the first 6 months of 2019 (4).

The Republic of Korea has noted an increase in EID virus-

related deaths between 1996 and 2015, with the rate increasing

from 16.5 per 100,000 to 44.6 per 100,000 (5). Recently, EID

viruses were identified as the main pathogenic agents in cases of

intestinal infections, viral hepatitis, respiratory tract infections,

and sepsis (5), and enteric EID viruses were the main cause

of disease in such cases. The hepatis A virus (HAV) and the

hepatitis E virus (HEV), for example, are representative EID

viruses that cause viral hepatitis and intestinal infections, and the

HEV and the enterovirus (EV) have become the leading causes

of infections in humans overall. As a zoonotic viral disease,

numbers of HEV infections escalated from 514 in 2005 to 5,617

in 2015 across Europe (6). Similarly, different serotypes of EV are

prevalent at different frequencies in different parts of the world.

For example, since the 1980s, seasonal endemic EV-A71 has

been prevalent in the U.S., causing small sporadic outbreaks (7).

Similarly, EV-A71 continues to cause large epidemics of hand

foot andmouth disease (HFMD) and neurological diseases every

1–3 years in the Asian region since the 1990s (7).

There are various causes underlying the emergence of EID

viruses, including increasing human and livestock densities,

altering patterns of wild-to-domestic animal contact, direct

human-to-wild animal contact, and changes in host species

diversity (8). As a reservoir of viral EID, pigs represent the

major livestock with the most human contact. Various viruses

(e.g., picornaviruses, arboviruses, circoviruses, flaviviruses, and

herpesviruses) can infect both pigs and humans (9). Because

various viruses use pigs as their host, the investigation of the

role of pigs as a potential EID virus reservoir is essential to

understand the circumstances under which these pathogens

emerge and evolve, especially in light of the “One Health”

approach that is needed to control zoonoses. However, although

research on human enteric viruses has extensively covered

waterborne transmission, little information is so far available on

enteric EID virus transmission in animals (10). Therefore, we

focused on the role of pigs as a potential EID virus reservoir in

this study.

The aim of this study was to identify potential enteric EID

viruses by examining detection rates and analyzing the genetic

relationships between the detected viruses in the Republic of

Korea. We selected enteric viruses that are being monitored in

eight countries around the world and identified their prevalence

in pigs, the livestock closest to humans.

Materials and methods

Ethical approval

The study design, animal handling, and experimental

protocols were reviewed and approved by the Institutional

Animal Care and Use Committee (IACUC) of Chung-Ang

University, Republic of Korea (IACUC approval number:

CAU2018-00112). All experiments were conducted in

accordance with the IACUC guidelines and regulations.

Selection of enteric EID viruses

The potential enteric EID viruses were identified from

pathogen lists regulated by the relevant organizations or

institutions of each country and from previous publications.

A total of 20 human and animal health agencies and food

safety administrations were included in our selection process

(Supplementary Table 1). Enteric EID viruses were ranked

based on their priority for and impact on public health

and food safety (Figure 1). The selection of target viruses

is depicted in Supplementary Table 2. Following the decision

process illustrated in Figure 1, eleven target viruses were

selected: norovirus (NoV)-GI, NoV-GII, sapovirus (SaV), HEV,

adenovirus (AdV), aichivirus (AiV), astrovirus (AstV), HAV,

and rotavirus (RotaV) in rank 1; human bocavirus (BoV)

and EV including coxsackievirus (CV), echovirus (EchoV),

and poliovirus in rank 3. No enteric EID was classified as

rank 2.

Sample preparation and nucleic acid
extraction

One hundred nineteen porcine stool samples and 31

porcine rectal swabs were collected from 14 pig farms

located in Gyeonggi-do, Gyeongsang-do, Jeolla-do, and

Chungcheong-do provinces in the Republic of Korea. A

total of 87 piglets and 63 sows were tested for enteric EID

virus prevalence (Table 1). All samples were collected from

healthy pigs and transferred to a laboratory for analysis.

To minimize sampling stress, veterinarians collected pig

stools and rectal swabs from several different pens at each

farm, following the IACUC protocol guidelinesWe used the

BD CultureSwab MaxV collection and transport systems

(Becton, Dickinson and Company, NJ, USA) for rectal swabs

and Norgen Biotek’s Stool Nucleic Acid Collection and

Preservation system (Lubio Science, Zurich, Switzerland) to

collect porcine stools. Each sample was composed of 10%

(v/v) stool suspension in phosphate-buffered saline (PBS;

0.1M, pH 7.4). The suspension was prepared as previously

described (11). Viral RNA and DNA were extracted using
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FIGURE 1

The ranking used to select emerging infectious viruses transmitted through the fecal-oral route.

TABLE 1 Stages and sample types of 150 pigs at a pig farm in the

Republic of Korea.

Region Stage Total

Sample type Sows Piglets

Gyeonggi-do 9 11 20

Stools 9 11 20

Gyeongsang-do 47 47 94

Stools 46 19 65

Swabs 1 28 29

Jeolla-do 2 8 10

Stools 2 8 10

Chungcheong-do 5 21 26

Stools 3 21 24

Swabs 2 0 2

Total 63 87 150

the RNeasy Mini kit (Qiagen, Hilden, Germany) according

to the manufacturer’s instructions. The extracted RNA and

DNA samples were stored at −80◦C until real-time reverse

transcription PCR (RT-qPCR) or real-time PCR (qPCR)

was performed.

RT-qPCR or qPCR for the detection and
titration of enteric EID viruses

The primers and probes used for one-step RT-qPCR and

qPCR are presented in Supplementary Table 3. One-step RT-

qPCR for detecting each RNA virus was performed with the one-

step RT-PCR kit (Qiagen, Hilden, Germany), while qPCR was

performed using the Premix Ex Taq (2X)TM kit (Takara, Shiga,

Japan) to identify the DNA viruses. RT-qPCR and qPCR were

performed on the CFX96TM Real-Time PCR system (Bio-Rad,

CA, USA); the titration of each virus sample was determined

using either RT-qPCR or qPCR. Synthetic RNA and DNA

sequences were used in the assay as standard templates for

titration. Synthetic templates, including quantitative synthetic

DNA of human AdV-41 (ATCC
R©

VR-930DQ, Virginia, US)

and quantitative synthetic RNA of NoV-GII (ATCC
R©

VR-

3235SD, Virginia, US), were used as standard templates for

AdV and NoV, respectively, and IDT-synthetic RNA oligo (IDT,

IA, USA) was used as the standard template for EV, HEV,

and RotaV.

For RT-qPCR- or qPCR-positive samples, nested (RT)-

PCR was performed to obtain amplicons for sequence

analysis. The primers used for nested (RT)-PCR are presented

in Supplementary Table 4. Nested (RT)-PCR was performed

using a one-step RT-PCR kit (Bioneer, Daejeon, Republic of
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Korea). Amplicon size was confirmed on 1.0% agarose gel

electrophoresis and then used for the sequencing analysis.

Sequence analysis and phylogenetic tree

Purification of PCR product was performed using a

nucleospin gel and a PCR Clean-up Mini Kit (Macherey-

Nagel, Düren, Germany). The sequence analysis was performed

with capillary electrophoresis on a SeqStudio Genetic Analyzer

(Thermo Fisher Scientific, MA, USA). Sequence data were

edited using the SeqMan programme (DNASTAR, WI, USA).

The sequences were analyzed by comparison with different

viral genotype sequences using BLAST and the Norovirus

Typing Tool version 2 (https://www.rivm.nl/mpf/typingtool/

norovirus/) (12).

To establish the genetic relationships between the detected

viruses, phylogenetic analyses were carried out using the

nucleotide sequences. During the phylogenetic analysis of the

detected EID viruses, with the MEGA X software (http://

www.megasoftware.net), the RNA-dependent RNA polymerase

(RdRp) gene was targeted for EV, the hexon and fiber genes

for AdV, ORF2 and VP1 overlapping regions for HEV, the

VP1 region for SaV, and the ORF1-ORF2 junction region for

NoV-GII. For the sequencing analysis, a bootstrap consensus

tree inferred from 1,000 replicates was taken to represent

the evolutionary history of the analyzed taxa. Branches

corresponding to partitions reproduced in <50% of the

bootstrap replicates were collapsed (13).

Results

Prevalence of EID viruses detected in
porcine stools and swabs

One hundred twenty-nine (86.0%) of the 150 samples tested

were positive for the presence of at least one EID virus (Table 2).

A total of 85 (56.6%) and 44 (29.3%) of the 129 positive

samples were identified as containing single and multiple

viruses, respectively. In the single virus-containing samples, EV

(including EV-G, CV-A2, and EchoV) and AdV were most

commonly detected, in 61 and 22 of the 85 samples, respectively.

In contrast, 31 of the 44 samples containing multiple viruses

tested positive for both EV-G and AdV.

Table 2 shows that overall, EV was detected in 102 (68.0%) of

the 150 samples, while EV-G was the most prevalent genotype,

detected in 95 (93.1%) of the 102 EV-positive samples. AdV,

HEV, SaV, and NoV-GII were found in 57 (38.0%), eight (5.3%),

five (3.3%), and four (2.7%) out of 150 samples, respectively.

Further, HEV was not identified as a single virus in any sample

but only detected alongside EV-G, CV-A2, AdV, NoV-GII, and

SaV. Moreover, depending on the host tropism characteristics,

33.0% (58/176) of the viruses were determined to be human

enteric viruses, including CV-A2, EchoV, AdV, and SaV-GI;

in contrast, 59.1% (104/176) and 8.0% (14/176) of the viruses

detected in this study were porcine enteric viruses (including

EV-G, porcine AdV-5, and porcine AdV-3) and zoonotic enteric

viruses (including NoV-GII.11, NoV-GII.18, HEV-GIII, and

SaV-GV).

Additionally, the viral loads of EV-G, CV-A2, and EchoV-

24 ranged between 1.3 and 6.8, 2.3 and 5.9, and 3.7 log10

genome copies/mL, respectively. The viral loads of AdV, HEV,

and NoV-GII ranged between 0.1 and 5.1, 0.5 and 3.5, and

0.6 and 3.0 log10 genome copies/mL (average values, 2.4,

1.9, and 1.3 log10 genome copies/mL). In addition, the viral

load of SaV was not determined in this study. Although

82.6% (124/150) porcine samples tested positive for RotaV

on RT-qPCR, nested RT-PCR failed to obtain amplicons

for sequence analysis. NoV-GI, AstV, HAV, BoV, and AiV

were not detected in any of the porcine samples (data

not shown).

Genotype and phylogenetic analysis of
enteric EID viruses detected in porcine
samples

Enterovirus

Amplicons derived from positive samples were further

characterized by sequencing. The phylogenetic analysis of

RdRp region fragments for EV is shown in Figure 2. Six EV

sequences belonged to the EV-A genogroup and clustered with

a reference sequence of NC038306 (CV-A2). The nucleotide

sequence identity is shown in Supplementary Table 5, exhibiting

a nucleotide sequence identity of 98.8–100.0%. On the other

hand, only one EchoV-E24 (MK415773) was identified as

belonging to genogroup EV-B, and it clustered with the

AY302548 reference sequence, demonstrating 100.0% nucleotide

sequence identity. The EV-G genogroup was identified in

five genotypes: EV-G1, EV-G2, EV-G6, EV-G9, and EV-G10.

Moreover, 53 sequences belonged to a large cluster of EV-G9,

which contained reference sequences of LC316821, LC316825,

and LC316824, demonstrating a high percentage of nucleotide

sequence identity, around 84.1–95.1%, with porcine strain

LC316825. Thirteen EV-G2 sequences clustered with porcine

reference sequences (LC316792 and AF363455), while their

nucleotide sequence identity with LC316792 and AF363455 was

86.6–95.1% and 86.6–91.5%, respectively. Twelve EV sequences

clustered with EV-G1 and exhibited 52.4–58.5% nucleotide

sequence identity with the KF985175 reference sequence. The

ten EV-G6 sequences showed 75.6–89.0% nucleotide sequence

identity with the JQ818253 reference sequence, which was not

reported on before the Republic of Korea. The seven sequences

of EV-G matched with EV-G10. The nucleotide identity of
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TABLE 2 Profiles of enteric EID viruses detected in porcine stools and swabs.

Number of positive samples (%)

Stools (n = 119) Rectal swabs

(n = 31)

Total (n = 150)

Detected virus type

None 17 (14.3) 4 (12.9) 21 (14.0)

Single

EV-G 50 (42.0) 5 (16.1) 55 (36.6)

CV-A2 0 (0.0) 5 (16.1) 5 (3.3)

EchoV 1 (0.8) 0 (0.0) 1 (0.7)

AdV 17 (14.3) 5 (16.1) 22 (14.6)

NoV-GII 1 (0.8) 0 (0.0) 1 (0.7)

SaV 1 (0.8) 0 (0.0) 1 (0.7)

Total 70 (58.8) 15 (48.3) 85 (56.6)

Multiple

EV-G+ AdV 21 (17.6) 10 (32.3) 31 (20.6)

EV-G+HEV 4 (3.4) 0 (0.0) 4 (2.6)

EV-G+ SaV 3 (2.5) 0 (0.0) 3 (2.0)

EV-G+ NoV-GII 0 (0.0) 1 (3.2) 1 (0.7)

CV-A2+HEV 0 (0.0) 1 (3.2) 1 (0.7)

EV-G+ NoV-GII+ AdV 1 (0.8) 0 (0.0) 1 (0.7)

HEV+ AdV 1 (0.8) 0 (0.0) 1 (0.7)

HEV+ AdV+ NoV-GII 1 (0.8) 0 (0.0) 1 (0.7)

HEV+ AdV+ SaV 1 (0.8) 0 (0.0) 1 (0.7)

Total 32 (26.9) 12 (38.7) 44 (29.3)

Susceptible host type

Human 39 (22.2) 19 (10.8) 58 (33.0)

Porcine 86 (48.7) 18 (10.2) 104 (59.1)

Zoonotic 12 (6.8) 2 (1.1) 14 (8.0)

Total¶ 137 (77.9) 39 (22.2) 176

¶Susceptible host classification was based on the total number of detected virus (176) including multiple detection.

the clusters of EV-G10 with the KP982873 reference sequence

was 78.0–82.9%.

Adenovirus

The sequences of AdV positive samples were analyzed

for the hexon and fiber genes using a phylogenetic tree as

depicted in Figure 3; the nucleotide sequence identities are

listed in Supplementary Tables 6, 7. For the hexon gene, our

analysis shows that 48, seven, and two AdV sequences clustered

with the human AdV-41, porcine AdV-5, and porcine AdV-

3 genogroups, respectively (Figure 3A). However, the sequence

identity range of the human AdV-41 genogroup with the

AB330122 (human AdV-41 Tak strain) reference sequence was

97.3–99.1%; likewise, the porcine AdV-5 genogroup clustered

with the AC000009 (porcine AdV C strain) reference sequence

and showed 93.8–95.9% nucleotide sequence identity, while

the porcine AdV-3 genogroup showed 81.4–83.2% nucleotide

sequence identity with the KU761583 (porcine AdV-3 strain)

reference sequence. Four sequences of AdV were also analyzed

for fiber genes using a phylogenetic tree (Figure 3B), and we

found that the resulting sequences clustered with human AdV-

41 and exhibited 99.1–99.3% nucleotide sequence identity with

the reference sequence DQ315364 (human AdV-41 Tak strain).

A comparison of the AdV sequences with those obtained for

the hexon gene also confirmed the presence of human AdV-41

strains but not porcine AdV strains.

Hepatitis E virus

Phylogenetic analysis of HEV was based on ORF2 and

VP1 overlapping regions (Figure 4). All investigated HEV
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FIGURE 2

Phylogenetic analysis of the EVs detected in porcine stools and swabs. The EV phylogenetic tree was constructed using the Unweighted Pair

Group Method with Arithmetic Mean (UPGMA) and based on the 191-bp sequence of the RdRp region. The black circles (•), black squares (�),

(Continued)
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FIGURE 2 (Continued)

and black triangle (N) indicate the EV-G, CV- A2, and EchoV-E24 sequences detected in this study, respectively. The white circle (◦) represents

an EV-G (JQ818253/PEV-B-KOR/EV-G6) reference sequence that was reported in the Republic of Korea. The phylogenetic analysis included the

EV genotype: EV-A (two strains), EV-B (three strains), EV-C (one strain), EV- D (two strains), EV-G (16 strains), EV-E (two strains), EV-F (one strain),

and teschovirus (one strain) as reference sequences. Large triangles (△) on the phylogenetic tree represent the compression of a subtree with a

genetic relationship, with the numbers of compressed sequences shown in parentheses. The numbers at the nodes of the tree indicate

bootstrap values and the scale bar indicates nucleotide substitutions per site.

sequences in this study were confirmed to belong to the

GIII genogroup. During the phylogenetic analysis, eight HEV

sequences (MK341089, MK341088, MK341086, MK341081,

MK341087, MK341082, MK341080, and MK341083) clustered

with the porcine HEV reference sequences (FJ426403 and

KR027506). Particularly, the MK341082 sequence showed a

high nucleotide sequence identity of 93.9% with the FJ426403

reference sequence (Supplementary Table 8).

Sapovirus

The phylogenetic analysis of SaV was based on the VP1

region, as depicted in Figure 5, and the nucleotide sequence

identities are listed in Supplementary Table 9. According to our

analysis, three (MK450329, MK450330, and MK450331) and

two (MK361037 and MK36103) sequences of SaV belonged to

the GI and GV genogroups, respectively. Moreover, the SaV-

GI cluster showed 94.1–94.6% nucleotide sequence identity

with the human SaV reference sequences (AY694184 and

KP298674), while the SaV-GV cluster exhibited 77.2–77.5%

nucleotide sequence identity with the porcine SaV reference

sequence (AB521772).

Norovirus GII

Three NoV-GII.11 and one NoV-GII.18 sequence were

confirmed by phylogenetic analysis of the RdRp region, as

shown in Figure 6. According to analysis, the three sequences

(MK355709, MK355707, and MK355706) belonging to the

NoV-GII.11 genotype clustered with a porcine NoV reference

sequence (HQ392821). Their nucleotide sequence identity with

the HQ392821 reference sequence was 88.2–88.6%, and that

with the human NoV reference sequence (KC662537) 72.0–

73.3% (Supplementary Table 10).

Discussion

In this study, eleven enteric EID viruses were chosen based

on their priority for and impact on public health and food safety.

We observed a high prevalence of enteric EID viruses in porcine

samples collected from domestic pig farms in the Republic of

Korea. A total of 176 viruses were detected, including several

viruses that were detected in multiple cases per same porcine

stools and rectal swabs. The positivity rate for EID viruses in

individual porcine stools and rectal swabs was 86.0%. As for

single viruses, EV and AdV were the most commonly detected

viruses in the 150 samples tested. As for multiple detection,

31 of the 44 positive samples were positive for both EV and

AdV. We detected human enteric viruses, CV-A2, EchoV, AdV,

and SaV-GI, and porcine enteric viruses, EV-G, porcine AdV-

5, and porcine AdV-3. Moreover, the zoonotic viruses NoV-

GII.11, NoV-GII.18, HEV-GIII, and SaV-GV were detected

(representing 9.3% of all detected viruses). The porcine enteric

virus detection rate was 69.3% (104/150), with most being EV-

G, while human enteric viruses were detected in 38.7% (58/150)

of samples. To our knowledge, there is no prior report on the

detection of CV-A2, EchoV, AdV-41, and SaV-GI in pigs in the

Republic of Korea.

Detection was often prolonged, due to the ability of the

viruses to survive on environmental surfaces, in foods, and

in water (14). Viruses detected in stools have three possible

sources: direct shedding from infected pigs, contaminated pig

farm environments, and contaminated workers (15). Regarding

the prevalence of enteric EID viruses, porcine stools and rectal

swabs showed detection rates of 85.7% (102/119) and 87.0%

(27/31), possibly indicating direct virus infection of the animals,

although most of the detected viruses were EV and AdV in

both sample types. However, among the detected viruses (EV

and AdV), AdV-41 and CV-A2 are known to infect only

humans. Moreover, enteric viruses were extremely stable on

pork chops when stored at low temperatures (16, 17). The

infectivity of the viruses was not confirmed since they were

only detected via PCR, but the presence of human enteric

viruses in porcine samples indicates the possibility of the virus

spreading to animals, thereby providing a possible cause of

zoonotic infection. In addition, a virus can be transmitted from

an infected pig to humans through direct contact with the

environment or contaminated instruments as well as through

the consumption of contaminated undercooked meat (18).

Our study based on phylogenetic analyses evaluated the

genotypes and sub-genotypes of enteric EID viruses in porcine

stools and swabs. The RdRp genomic region that was analyzed

for EV is a highly conserved genomic region, according to

previous reports (19). During our phylogenetic analysis of

the detected EV, three EV genogroups were identified, which

belonged to EV-A, EV-B, and EV-G. Within these genogroups,

EV-A included six sequences of CV-A2 detected on porcine
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FIGURE 3

Phylogenetic tree of AdV detected in porcine stools and swabs. Sequences detected in this study are represented as black circles (•). (A)

Phylogenetic tree analysis for the AdV hexon gene using the UPGMA method and based on the 171-bp sequence. Here, AdV-41 (three strains),

AdV-40 (one strain), porcine AdV-5 (two strains), and porcine AdV-3 (three strains) were used as reference sequences. Large triangles (�) on the

phylogenetic tree represent the compression of a subtree with a genetic relationship, with the numbers of compressed sequences shown in

parentheses. (B) Phylogenetic tree analysis for AdV (662-bp of the fiber gene) using the maximum likelihood method. Here, AdV-41 (15 strains),

porcine AdV-5 (three strains), and porcine AdV-3 (two strains) were used as reference sequences. The numbers at the nodes of the tree indicate

bootstrap values and the scale bar indicates nucleotide substitutions per site.
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FIGURE 4

Phylogenetic analysis of HEV detected in porcine stools and swabs. The HEV phylogenetic tree was constructed following the UPGMA method

and based on 348-bp sequences of ORF2 and VP1 overlapping region. Sequences detected in this study are represented as black circles (•). The

reference sequences of porcine HEV (FJ426403/swKOR-1) and rabbit HEV (KY496200/KOR-Rb-1) strains detected in the Republic of Korea are

labeled with white circle (◦) and triangle (1), respectively. The phylogenetic analysis included HEV-GI (four strains), HEV-GIII (11 strains), and

HEV-GIV (five strains) as reference sequences. The numbers at the nodes of the tree indicate bootstrap values and the scale bar indicates

nucleotide substitutions per site.

rectal swabs only, with a high nucleotide sequence identity

(98.8–100.0%) with the NC038306 (CV-A2) reference sequence

discovered in the US (20). CV is one of the major public

health problems among children in the Republic of Korea,

with ∼214,642 (0.53%) of 40,461,309 outpatients surveilled

in a study from 2010 to 2013 diagnosed with CV-induced

HFMD (21). In addition, the EV-B genogroups show frequent

recombination within species (22), and one sequence of EchoV-

E24 (MK415773) that was detected in porcine stool clustered

with the AY302548 (EchoV-E24) reference sequence isolated

from humans in the US in 2004 (22). This indicates that the

capsid region of the corresponding EchoV-E24 (MK415773)

sequence also needs to be analyzed for more accurate

genotyping. In the Republic of Korea, no cases of infection

or hospitalization due to EchoV-E24 have been reported, but

one out of 579 HFMD pediatric patients is diagnosed with

an EchoV-E24 infection in China in 2010 (23). Moreover, the

EV-G genogroup consists of three large clusters. Among them,

the largest clade contains 89 sequence groups with EV-G1,

EV-G2, EV-G6, and EV-G9, while the EV-G10 group includes

seven sequence groups. Reports from Japan and Germany have

stated that 51 sequences belong to a large cluster of EV-G9

(24, 25). To date, the EV-G genogroup consists of 17 types of

genotypes from EV-G1 to EV-G17 (25), of which EV-G1, EV-G2,
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FIGURE 5

Phylogenetic analysis of SaV detected in porcine stools and swabs. The SaV phylogenetic tree was constructed following the UPGMA method

and based on 416-bp sequences of the VP1 region. Sequences detected in this study are represented as black circles (•). The white triangle (1)

represents the human SaV strain (KP298674/KOR/G1.1) that was confirmed in the Republic of Korea. The phylogenetic analysis included SaV-GI

(four strains), SaV-GII (two strains), SaV-GIII (one strain), SaV-GIV (two strains), SaV-GV (four strains), and SaV-GXV (one strain) as reference

sequences. The numbers at the nodes of the tree indicate bootstrap values and the scale bar indicates nucleotide substitutions per site.

EV-G6, EV-G9, and EV-G10 were identified in this study. In

the Republic of Korea, EV-G6 (JQ818253) was first reported in

2009, also isolated from porcine stool (26). According to our

findings, 11 sequences of EV-G6 clustered with the JQ818253

strain, exhibiting a 75.6–89.0% nucleotide sequence identity.

The other 84 sequences’ average nucleotide sequence identity

with the JQ818253 strain was 80.9%. This is presumed to be

from a similar era than the ancient JQ818253 strain. For a higher

phylogenetic resolution, the capsid region of VP1 also needs to

be analyzed in future studies.

The sequences positive for AdVwere analyzed for hexon and

fiber genes. The hexon gene is highly conserved (27), making

it the best single region of the AdV genome for genus-specific

detection; other major capsid protein regions were identified to

target the fiber gene that was used for the subgroup determinant

validation. Our phylogenetic analysis of the detected AdV

revealed that the sequences belonged to the human AdV-41,

porcine AdV-5, and porcine AdV-3 genogroups. An additional

analysis of some fiber genes confirmed a higher sequence

identity with the AdV reference sequences, of 99.1–99.3%, as

that reported in Asian countries (28). Porcine AdV infections

were usually asymptomatic, but some cases of mild diarrhea

or mild respiratory signs in porcine have been reported (29);

however, no signs of pig infections were recorded in this study.

In particular, in view of the potential application of porcine AdV

as virus vectors for vaccines and the use of animal AdV as vectors

for gene therapy, the results of this study indicate that attention

should be paid to health and infectious disease management and

vaccine development.

The HEV prevalence rate varies by country, region, and

even farms within a country (30). Our phylogenetic analysis of

all detected HEV sequences belonging to the same genotype,

HEV-GIII, showed a high nucleotide identity (93.9%) with

FJ426403 (swine HEV isolate swKOR-1). Meanwhile, the six

HEV-positive sequences found in this study clustered with sub-

genotype GIIIa containing reference strain FJ426403 (31), while

two other positive sequences (MK341080, MK341083) were

grouped with KR027506, which has been found to infect humans

in France, belonging to the sub-genotype GIIIc (32). However,

HEV-positive sequences belonging to sub-genotype GIIIa were

detected at higher rates than GIIIc, in line with reports that

the HEV-GIIIa sub-genotype is predominantly prevalent in the
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FIGURE 6

Phylogenetic analysis of NoV detected in porcine stools and swabs. The NoV phylogenetic tree was constructed following the UPGMA method

and based on 310-bp sequences of the RdRp region. Sequences detected in this study are labeled with black circles (•). The white triangle (1)

represents the human NoV strain (KC662537/Hu/GII/Hy-718) that was confirmed in the Republic of Korea. As reference sequences, NoV-GII.4

(six strains), GII.3 (one strain), GII.14 (two strains), GII.13 (one strain), GII.11 (one strain), and GI (10 strains) were used. The numbers at the nodes

of the tree indicate bootstrap values and the scale bar indicates nucleotide substitutions per site.

Republic of Korea and Japan while the GIIIc sub-genotype is

predominantly prevalent in Europe (32). Likewise, our study

also confirmed the genetic association of the detected HEV

to infect both humans and porcine HEV. In the Republic of

Korea, the sub-genotype GIIIa detected in cats and oysters was

found to be genetically close to porcine and human HEV (31).

According to Wilhelm et al. (33), HEV sequences identified in

Canadian retail pork livers closely match human strains. It is

widely known that HEV is an emerging zoonotic agent and that

pigs represent an important reservoir (31). Moreover, ingestion

of HEV-contaminated raw or undercooked pig products is the

main source of HEV transmission through food (34). Therefore,

to prevent indigenous human HEV infections in the Republic

of Korea, one should be careful about coming in contact with

infected animals and consuming contaminated meat.

SaV has been detected in humans, pigs, mink, dogs, sea

lions, bats, chimpanzees, and rats (25, 35). The SaV genome

contains two overlapping open reading frames (ORFs): ORF1

and ORF2. ORF1 encodes the non-structural proteins and the

capsid protein, VP1, while ORF2 encodes the minor structural

protein, VP2. Furthermore, SaV is genetically highly diverse

and classified into nineteen genogroups based on the VP1

sequences (35, 36). Among the nineteen SaV genogroups, four

genogroups (GI, GII, GIV, and GV) and eight genogroups (GIII,

GV, GVI, GVII, GVIII, GIX, GX, and GXI) have been found

to be linked to human and pig infections, respectively (36).

However, as far as we are aware, this is the first time that the

SaV-GV genogroup (in two detected sequences, MK361037 and

MK36103) has been detected in porcine stools in the Republic of

Korea. In addition, based on our phylogenetic analysis, the SaV-

GV genogroup was more closely related to porcine SaV than

human SaV. Accordingly, the SaV-GI genogroup clusters with

the KP298674 reference strain isolated from human stools (37).

Overall, detected isolates and reference strains differ between
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porcine and human stool, and it is presumed that there may be

genetic differences, even within the same GI genogroup.

The NoV genus covers viruses that infect a variety of

hosts such as humans, pigs, cattle, and mice, and this broad

range of hosts provides the opportunity for its zoonotic spread

(38). Among the various hosts, asymptomatic infected pigs are

known as natural reservoirs of NoV. Moreover, porcine NoV

is genetically most similar to human NoV. In addition, NoV-

GII.11 and GII.18 genotypes have been reported as sources

of infections in pigs (39). Accordingly, porcine NoV has been

mainly detected in pigs (40). Among the diverse range of human

NoV genotypes in GII, NoV-GII.18 shares the highest amino

acid identity with the human GII.3 (39). Our study results

also show the genetic similarity of NoV-GII.18 (MK355708) to

human NoV-GII.4. Furthermore, in the Republic of Korea, the

NoV-GII.11 was detected in fecal samples from asymptomatic

food handlers (41). According to a phylogenetic analysis, the

MK355709, MK355707, and MK355706 sequences cluster with

the HQ392821 reference sequence isolated from pigs with

diarrhea symptoms in China (40). These results indicate that

porcine NoV has a high potential for zoonotic transmission of

enteric EID.

Several enteric viruses are very similar to human viruses

found in pigs, and some are thought to have zoonotic potential.

In this study, all of the target viruses were detected, which

shows how common they are in Korean pig populations (42–44).

Sequence analyses were conducted to determine how likely these

viruses are to spread to humans. However, only few positive

RT-qPCR samples could be used for conventional RT-PCR and

sequencing, potentially due to the fact that the assays have

different sensitivities and we could therefore not successfully

amplify the samples using conventional RT-PCR. However, it

cannot be ruled out that the primer systems we used were not

able to detect certain viruses. Therefore, RT-PCR systems that

can reliably identify different porcine viruses should be designed

in the future. Our sequence analysis shows that the few viruses

that are typical to pigs are only weakly related to human strains.

Another result of our phylogenetic analysis is that pig and

human strains were grouped together on different branches of

the phylogenetic trees.

The emergence of enteric EID viruses exemplifies the

complex interaction of humans, animals, and the environment

(45). Many viruses have been shown to survive for a long

period in their natural reservoirs (46), and viruses are constantly

spreading from natural hosts to humans and other animals

(47), due to human activities such as modern agriculture

and urbanization (48). Keeping in mind the “One Health”

philosophy, the best strategy to prevent viral zoonosis is to

maintain the natural viral reservoirs separate from human

society. Zoonotic agents have been responsible for the majority

of current human health threats (49). One of the most important

facets of public health is veterinary public health (VPH),

where veterinarians are responsible for safeguarding animal

and human health and wellbeing. Viral pathogenesis studies

for domestic and wild animals, as well as for human diseases,

are coordinated by veterinary virologists working in VPH. This

coordination is essential to our understanding of how viruses

spread and affect individual health and populations over time; it

is also important for preparing for the emergence of new human

diseases. However, veterinarians must be aware of the disease’s

prevalence, risk factors, control strategies, and associated costs

and benefits in order to adequately advise producers on disease

management. Good hygienic practices during slaughtering are

required to reduce the danger of these viruses being introduced

into the food chain. Furthermore, highly exposed individuals,

such as slaughterers and veterinarians, should be made more

aware of the need to prevent direct transmissions.

In further studies, the prevalence and zoonotic potential of

all pig viruses suspected to infect humans should be assessed

using larger samples and including more geographical regions

to precisely evaluate the risk of zoonotic virus transmission.

Furthermore, whole-genome sequence analyses are needed for

a more comprehensive approach, rather than genotyping of

specific genes.

Conclusion

This study documents the molecular detection and diversity

of human enteric EID viruses in porcine stools and swabs

collected from pig farms in the Republic of Korea. Our results

indicate that human enteric viruses detected in pigs and some

porcine enteric viruses are genetically related to human enteric

viruses. In addition, the previously known zoonotic viruses,

such as HEV-GII, NoV-GII, SaV, EV, and AdV, were detected

in porcine samples, indicating the zoonotic potential of porcine

enteric viruses as potential EIDs.
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