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Wooden breast (WB) is a widely prevalent myopathy in broiler chickens. However, the

role of the gut microbiota in this myopathy remains largely unknown, in particular the

regulatory effect of gut microbiota in the modulation of muscle metabolism. Totally, 300

1-day-old Arbor Acres broilers were raised until 49 days and euthanized, and the breast

filets were classified as normal (NORM), mild (MILD), or severe wooden breast (SEV).

Birds with WB comprised 27.02% of the individuals. Severe WB filets had a greater L∗

value, a∗ value, and dripping loss but a lower pH (P < 0.05). WB filets had abundant

myofiber fragmentation, with a lower average myofiber caliber and more fibers with a

diameter of <20µm (P < 0.05). The diversity of the intestinal microflora was decreased

in birds with severe WB, with decreases in Chao 1, and observed species indices. At

the phylum level, birds with severe WB had a lower Firmicutes/Bacteroidetes ratio (P

= 0.098) and a decreased abundance of Verrucomicrobia (P < 0.05). At the species

level, gut microbiota were positively correlated with 131 digesta metabolites in pathways

of glutamine and glutamate metabolism and arginine biosynthesis but were negatively

correlated with 30 metabolites in the pathway of tyrosine metabolism. In plasma, WB

induced five differentially expressed metabolites (DEMs), including anserine and choline,

which were related to the severity of the WB lesion. The microbial-derived metabolites,

including guanidoacetic acid, antiarol, and (2E)-decenoyl-ACP, which entered into plasma

were related to meat quality traits and myofiber traits. In summary, WB filets differed in

gut microbiota, digesta, and plasma metabolites. Gut microbiota respond to the wooden

breast myopathy by driving dynamic changes in digesta metabolites that eventually enter

the plasma.
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INTRODUCTION

Wooden breast (WB) is a breast myopathy that has recently
begun to occur in the pectoral muscles of broiler chickens at
slaughter age. Wooden breast-affected filets are characterized by
a dull appearance and tough texture (1). It has been reported that
birds with wooden breast were even up to 79% (2), which implies
chicken breast filets with low quality has become one of the major
problems nowadays, and it has been estimated to cause annual
economic losses up to one billion dollars worldwide (3). Several
investigations have demonstrated potential factors involved in
the pathogenesis of thismyopathy (4), including excessive growth
rate, oxidative stress (5), ischemia with resultant local hypoxia
(6), and lipid and glucose metabolism (7, 8).

Many studies have investigated the host–microbiota
interactions concerning metabolism, signaling, and immune-
inflammatory axes that physiologically connect the gut, liver,
muscle, and brain (9). Furthermore, studies have confirmed
that gut microbial populations are important for the growth,
mass, and function of skeletal muscles using germ-free mice,
gnotobiotic mice, and fecal microbiota transplants as models
(10–12). The diversity and stability of gut microbiota are
intimately linked to mass, strength, and movement capability of
muscle in mammals (13). Balanced gut microbiota are involved
in the production and secretion of short-chain fatty acids
(SCFAs) (14), vitamins (15), bile acids (16), and amino acids, and
their metabolites are involved in a series of myopathies, such as
sarcopenia (17), myasthenia gravis, and other neuromuscular
dysfunctions (18). However, gut microbiota and its relationship
with animal health and productivity in commercial broiler
chickens have been difficult to establish due to the high
variability between flocks. Many factors like environment,
nutrition, and host factors influence a multitude of commensal
and pathogenic microbes surrounding birds during their growth
cycle in the farms. But the literature provides some evidence
about WB and cecal gut microbiota in birds. Maharjan reported
that unclassified Lactobacillus had a relatively higher abundance
in a WB myopathy group, whereas Lactobacillus acidipiscis was
identified in non-myopathic birds (19). Zhang et al. (20) reported
that Selenomonas bovis and Bacteroides plebeius were the two
microbes with the highest abundance in the cecum of WB birds,
and the microbiota of WB birds had reduced glycolysis and
urea cycles but an increased tricarboxylic acid (TCA) cycle.
These studies have reported differences in the gut microbiota
composition in birds with WB. Therefore, the gut microbiota
may affect the progression of WB myopathy. However, relatively
little is known about the contribution of the gut microbiota to
WB myopathy, and the mechanism underlying the effects of gut
microbiota remains to be elucidated.

In this study, we sought to demonstrate the differences in gut
microbiota and their metabolites between three states—a normal
state, mild WB, and severe WB—to reveal the differences in gut
microbial metabolites that contribute to the plasma metabolome
and affect the skeletal muscle. Therefore, we investigated the
meat quality, histomorphological differences, and myofiber
characteristics in WB filets and then analyzed the differences in
gut microbiota. Finally, differential abundances between the cecal

microbial metabolites and plasma metabolites associated with
various degrees of WB severity in broilers were identified.

MATERIALS AND METHODS

Ethical Statement
The study was conducted in accordance with the Regulations
of the Experimental Animal Administration, approved by the
Committee on the Ethics of Animal Experiments of Hunan
Agriculture University (GBT2018).

Animal Management and Sampling
Totally, 300 1-day-old Arbor Acres (AA) broiler chicks were
raised at a chicken house at the Hunan Agricultural University
Poultry Research Farm. All birds were kept to 30 cages randomly,
with 10 birds per block. Water and feed were provided ad libitum
to all birds, with 23/1-h light/dark cycle throughout the whole
study. All birds were fed with corn–soybean-based feed, in two
feeding phases: starter to grower diets (days 0–21) and finishing
diets (days 22–49). The diet was formulated in accordance with
NRC nutrition recommendations (NRC, 1994) and raised under
standard protocols for AA broilers. The chickens were subjected
to a routine vaccination program. All birds selected for sampling
and analysis were healthy. On day 49, before killing, blood was
collected in a 10-ml fresh tube with EDTA from the wing vein
to get plasma. Then the birds were all euthanized and evaluated
using the WB myopathy scoring system based on the area of
palpable firmness, reported by Sihvo et al. (21). For short, we
manually palpated and classified 300 chicken filets into three
kinds of breast filets based on the texture and firmness: normal
breast (NORM), mild wooden breast (MILD), and severe wooden
breast (SEV). There was no toughness or hardness area in
normal pectoralis major filets (NORM); the mild wooden breast
pectoralis major filets (MILD) had toughness <50% of total
pectoralis major filets, in the cranial aspect mainly; the severe
wooden breast pectoralis major filets (SEV) had toughness more
than 50% of total pectoralis major filets in both cranial and caudal
aspects of filets and exhibited diffuse pallor and multifocal and
visible sclerotized protrusion. The cecal contents were collected,
immediately frozen in liquid nitrogen, and stored at −80◦C for
16S rRNA sequencing analysis and metabolomics subsequently.
For 16S sequencing and metabolomics, 20 samples each for
NORM, MILD, and SEV groups.

Meat Quality Analysis
The meat color (L, a∗, and b∗ values) was measured by a
portable chromameter (CR 400, Minolta, Osaka, Japan) from
three random readings at 45min postmortem, following the
manufacturer’s manual. The average pH value of each breast
filet meat sample was measured via a digital pH meter (Testo
205, Testo AG, Germany) at 45min postmortem, in which
three points were randomly measured, and an average value
was obtained. The shear force value (N) was calculated as the
maximum force recorded during shearing, by Texture Analyzer
TA.TXplus (Stable Micro Systems, Surrey, England). Drip loss
was expressed as a percentage of the weight loss over initial
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meat sample weight after storage at 4◦C for 24 h. Press loss was
measured as described by Prieto et al. (22).

Histology
All pectoralis muscle (breast muscle) samples for histology were
obtained as described by Wang et al. (23). In brief, breast
muscle filets were dissected perpendicular to the muscle fiber
direction and tied tightly to wooden applicator sticks to avoid
contraction. The samples were fixed in 10% neutral formalin
and stored. After 24 h of formalin immersion, the samples were
dehydrated through an alcohol gradient and embedded in a
paraffin block. Subsequently, the paraffin blocks of filets were
sectioned at 5µm and stained with hematoxylin and eosin
(H&E). A light microscope fitted with a digital camera was used
to take photographs of the myofibers in 100×.

Themyofiber diameter andmyofiber cross-sectional area were
measured from three photomicrographs as previously described
(23, 24). At least 40measurements were taken in eachmicrograph
using ImageJ software (ImageJ Fiji, https://imagej.net/Fiji). Two
categories of myofiber calibers were counted: fiber width<20µm
and fiber width >70 µm.

Estimation of Antioxidant Enzyme
Activities and Oxidative Damage
Biomarkers
The total antioxidant capacity (T-AOC), total superoxide
dismutase (T-SOD), malondialdehyde (MDA), catalase (CAT),
and glutathione peroxidase (GSH-Px) were assessed by using kits
fromNanjing Jiancheng Bioengineering Institute, Jiangsu, China.
All procedures were conducted according to the manufacturers’
instructions. The concentration of 8-hydroxy-2

′
-deoxyguanosine

(8-OHdG) and glutathione (GSH) were determined with an
ELISA kit (Ameko, Shanghai, China).

Microbial Community DNA Isolated and
16S rRNA Sequencing Analysis
In chickens, cecal microbiota is responsible for the plethora of
microbes and metabolites in the chicken intestine, which could
protect the gut microbiota to an extent. The total microbial DNA
was extracted from cecal digesta by using the CTAB method
(25). Later, the concentration, quality, and integrity of DNA were
determined. Then the total DNA was diluted to 1 ng/µl using
sterile water prior to PCR amplification. To amplify the microbial
16S rRNA genes, PCR was performed using DR PCR mastermix
(Pyrobest DNA Polymerase. TaKaRa. DR500A) with a pair of
universal forward and reverse primer sets for 16S V3-V4 regions
(26). The forward sequence was 5

′
-TCGTCGGCAGCGTCAGAT

GTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3
′
; the

reverse primer sequence was 5
′
-TCTCGTGGGCTCGGAGATG

TGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3
′
.

After purification of PCR amplicons, libraries for microbial
16S rRNA gene sequences were constructed, and sequencing
was performed using the Illumina NovaSeq6000 platform.
Raw sequence data were filtered and denoised, and low-quality
regions of sequences were trimmed and removed. The QIIME2
(v2019.4) platform was used to generate the amplicon sequence

variant (ASV) feature table, and rarefaction curves and alpha
diversity and beta diversity analyses was carried out. For
taxonomic classification, the Greengenes database (version 13.8,
http://greengenes.secondgenome.com/) was selected and aligned
(27, 28). Principle coordinate analysis (PCoA) was performed
using the Bray–Curtis dissimilarity metric.

LC-MS Untargeted Metabolomics
The metabolome of cecal digesta or plasma (n = 20 for each
group) from birds with different severities of WB was analyzed
via the untargeted LC-MS-based metabolomics approach. Cecal
digesta were homogenized withmethanol and centrifuged at 4◦C,
12,000 rpm for 10min. Then the supernatant was transferred,
dried in vacuum, and dissolved with 200 µl 2-chlorobenzyl
acetonitrile solution, and the supernatant was filtered through a
0.22-µm membrane to obtain the prepared samples for LC-MS.
Quality control (QC) samples were prepared by mixing 20 µl
aliquots from each sample to monitor deviations of the analytical
results from these pool mixtures.

Metabolic profiling was performed using LC-MS.
Chromatographic separation was accomplished in a Thermo
Vanquish system equipped with an ACQUITY UPLCR R©

HSST3 column. The ESI-MSn experiments were carried out on
the Thermo Exactive mass spectrometer. Dynamic exclusion
was implemented to remove unnecessary information in
MS/MS spectra.

Raw data files were converted to an mzXML format by
ProteoWizard (v3.0.8789) (29), and the XCMS package in R
(v3.3.2) was used to identify the peaks, peak filtration, and
peak alignment with the following parameter: bw = 2, ppm
= 15, peakwidth = c (5, 30), mzwid = 0.015, mzdiff =

0.01, and method=centWave. After that, the matrix of the
mass-to-charge ratio (m/z), retention time (rt), and intensity
was exported, and data from positive and negative ion modes
were analyzed separately. The metabolites were confirmed on
the basis of their exact molecular weights, and the possible
empirical formulae of themetabolites were speculated (molecular
weight error <30 ppm). Then metabolites were annotated by
m/z and MS/MS fragmentation matches, and one compound
was annotated by m/z and RT match. All statistical analyses
downstream were performed using MetaboAnalyst 4.0 web
tool (https://www.metaboanalyst.ca/MetaboAnalyst/faces/home.
xhtml), as described by Gururaj (30). Metabolic pathway
enrichment analysis of these identified metabolic biomarkers was
carried out by MetaboAnalyst 4.0, based on KEGG, with the
MetPA function, and tested through a hypergeometric test for
determining significance. The same methodology was followed
for plasma samples. To investigate the metabolite that could
be influenced by gut microbe, the Pearson correlation between
the abundance of gut microbe and digesta metabolites was
calculated. Pearson correlations were also determined between
studied parameters of microbial metabolites and meat quality
traits, like myofiber characteristics.

Statistical Analysis
Statistical analyses were carried out by Prism V9.0.0 (https://
www.graphpad.com/scientific-software/prism/). Comparisons
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FIGURE 1 | Appearance, incidence, and meat quality of WB. (A) Appearance of normal, mild, and severe WB filets. (B) Body weight of birds with or without WB. (C)

Incidence of WB. (D) Meat quality of WB filets, L value, lightness, a* value, redness, b* value, and yellowness. “*” means P-value < 0.05; “**” means P-value < 0.01.

between groups were performed using one-way analysis of
variance (one-way ANOVA). Differences between two groups
were tested by independent samples t-tests. Data are expressed
as mean ± SE. A P-value < 0.05 was considered statistically
significant. The graph was plotted using Prism.

RESULTS

Appearance, Meat Quality, and Antioxidant
Capacity of Wooden Breast
The representative appearance of WB filets is shown in
Figure 1A. The severity of WB was less profoundly affected by
body weight, among which birds with mild WB had higher body
weight than normal birds (Figure 1B). In terms of the incidence
of WB, birds with WB comprised 27.02% (a total of 248 birds,
mild WB, 19.76%, and severe WB, 7.26%; Figure 1C). The severe
WB filets had higher L∗ values (light values) than both mild and
normal filets (P < 0.01, Figure 1D). Both severe and mild WB
filets had higher a∗ values (redness values) than normal filets (P
< 0.05), but no significant difference was observed between mild
and severe WB filets (P > 0.05). The pH (45min) of severe WB
filets was significantly decreased compared to normal filets (P <

0.01). Both severe and mild WB filets had higher drip loss than
normal filets (P < 0.05), but there was no difference between the
two groups (P > 0.05). The severeWB filets had lower shear force
than normal filets (P < 0.05). There was no significant difference
in the b∗ value (yellowness values) or pressing loss among the
three groups (P > 0.05). The severe WB filets exhibited an

increased content of GSH andMDA and higher T-SOD and CAT
(Table 1, P < 0.05).

Histopathologic Studies and Myofiber
Parameters in Wooden Breast Myopathic
Birds
Figure 2A presents representative photomicrographs showing
the morphological structure of WB filets. The fiber atrophy and
infiltration of inflammatory cells are indicated by the arrowhead.
Birds with WB showed a discernible decrease in the myofiber
caliber compared with normal birds (Figures 2B,C). In detail,
the myofiber numbers per unit in SEV filets were greater than
those in the NORM and MILD filets, with abundant myofiber
fragmentation (P < 0.01). By contrast, the mean myofiber area
and average myofiber width in SEV filets were lower than those in
the NORM and MILD filets (P < 0.001). The percentage of fibers
with a diameter <20µm increased significantly with increasing
WB lesion severity (P < 0.001), while the percentage of fibers
with a diameter>70µmdecreased significantly in both mild and
severe WB filets (P < 0.01). In severe WB filets, only 29.34% of
the myofibers had a diameter >70µm. In NORM filets, this ratio
reached as high as 79.13%, a value that was much higher than that
in MILD and SEVWB filets.

Composition and Diversity of Cecal
Microbiota in Wooden Breast Birds
Alpha diversity analysis indicated that birds with severe WB had
lower microbial community richness and diversity than normal
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TABLE 1 | Effect of wooden breast severity on antioxidant traits in pectoralis

major filets1.

Traits NORM MILD SEV SEM P-value

Muscle

T-AOC, U/mgprot 0.511 0.477 0.668 0.034 0.120

T-SOD, U/mgprot 140.0b 178.5b 290.2a 16.7 <0.001

CAT, U/mgprot 12.5b 18.0ab 21.9a 1.44 0.006

GSH-PX, µM/mgprot 130.7 133.4 177.7 9.61 0.092

GSH, µg/mgprot 40.8b 50.0b 67.5a 3.06 0.001

8-OHdG, ng/mgprot 10.19 11.66 10.54 0.31 0.130

MDA, nM/mgprot 2.06c 2.63b 3.33a 0.11 <0.001

Serum

T-AOC, U/ml 7.61a 5.91ab 4.28b 0.452 0.013

T-SOD, U/ml 129.9b 148.4ab 160.3a 4.8 0.029

CAT, U/ml 12.87 12.06 12.19 0.32 0.548

GSH-PX, µM/L 707.8a 693.7a 515.8b 27.5 0.007

GSH, µg/ml 146.4 142.2 142.3 1.82 0.591

8-OHdG, ng/ml 16.41 18.95 21.93 1.13 0.138

MDA, nM/L 3.25 3.52 2.54 0.21 0.159

a−bValues within a row without a common letter are significantly different (P < 0.05),

Duncan test.
1NORM, normal filets; MILD, mild wooden breast filets; SEV, severe wooden breast filets,

n = 60.

birds without WB myopathy, with a lower Chao 1 index and
fewer observed microbial species than normal birds and birds
with mild WB (P < 0.05, Figure 3A). However, comparison
between birds with and without WB lesions demonstrated no
significant differences in Shannon or Simpson indices (P > 0.05).
The beta diversity of gut microbiota showed clear differences
between birds in NORM, MILD, and SEV groups (Figure 3B).
Areas of NORM colocalized with areas of MILD, as shown under
red and green staining, but SEV was isolated (blue, Figure 3B).

Microbial profiles of samples were analyzed at the phylum
level, and the Firmicutes/Bacteroidetes ratio was decreased
significantly in birds withmildWB (P< 0.05, Figures 3C,D, left).
There was also a downward trend in the Firmicutes/Bacteroidetes
ratio in birds with severe WB compared to normal birds (P
= 0.098). In addition, the abundance of Verrucomicrobia also
decreased in birds with mild WB (P < 0.05, Figure 3D, right).
TheWB severity-dependent composition of the gut microbiota at
the species level is shown in Figure 3E. For example, the MILD
group had a significantly higher abundance of Faecalibacterium
prausnitzii than the other two groups (P < 0.01); the relative
abundance of Lactobacillus agilis in birds with severe WB was
higher than that in the NORM and MILD groups (P < 0.05);
Enterococcus cecorumwas enriched in the MILD group, while the
abundance of Subdoligranulum variabile in the MILD group was
lower than that in NORM and SEV (P < 0.05). The abundance
of Clostridium spiroforme in both MILD and SEV groups was
higher than that in NORM (P < 0.05); the abundance of
Streptococcus alactolyticus in the SEV group showed a decreased
trend compared to the NORM group (P = 0.078), and the
abundance of Lactobacillus zeae decreased significantly with the
severity of WB lesions (Figure 3F).

Cecal Microbiota-Related Cecal
Metabolites
The metabolites in the gut microbiota exhibited a stepwise
progression, and segregation occurred from normal to severe
WB (sPLS-DA analysis, Figures 4A,B). Those digestametabolites
were enriched significantly in the GO pathways of valine,
leucine, and isoleucine biosynthesis; arginine biosynthesis;
phenylalanine, tyrosine, and tryptophan biosynthesis; glutamine
and glutamate metabolism; and phenylalanine metabolism (P <

0.05, Figure 4C).
First, we assume that digesta metabolites correlated with

cecal microbiota. The correlation between the abundance of
bacteria in species of the top 25 digesta metabolites was
visualized using volcano plots (Figure 4D). A total of 131
metabolites were positively correlated with the gut microbiota
mentioned earlier, and 30 metabolites were negatively correlated
with the same groups (Figure 4E, Supplementary Table S3).
In the GO functional annotation, the gut microbiota were
positively correlated with the pathways of glutamine and
glutamate metabolism (with metabolites of L-glutamic acid)
and arginine biosynthesis but negatively correlated with the
pathway of tyrosine metabolism (Figure 4F). Correlations
between microbial populations and metabolites were identified
(Figure 4G); these included L. agilis and 5-methoxyindoleacetate
(r = 0.7476, P < 0.001), F. prausnitzii and gluconic acid (r
= 0.7146, P < 0.001), F. prausnitzii and pyridoxamine (r =

0.7085, P< 0.001), L. zeae and L-homophenylalanine (r= 0.7045,
P < 0.001), F. prausnitzii and 5-hydroxyindoleacetic acid (r
= −0.4575, P < 0.001), and F. prausnitzii and 2,3-dinor-8-iso
prostaglandin F2α (r =−0.4143, P < 0.001).

Plasma Metabolite Alternations by Cecal
Metabolites in Wooden Breast Birds
There was a distinct composition of both gut microbial-related
cecal metabolites and serum metabolites in normal birds
compared with the severe WB birds, with mild WB birds being
intermediate between the two (Figures 5A,B), coincident with
the results of digesta metabolites. The numbers of differential
metabolites between normal birds and mild and severe WB
are presented in Figure 5C. In birds with severe and mild
WB, phenylalanine metabolism; valine, leucine, and isoleucine
biosynthesis; aminoacyl-tRNA biosynthesis; and arginine and
proline metabolism were altered. In comparison between normal
birds and birds with mild WB, the pathways involved valine,
leucine, and isoleucine biosynthesis; glutamine and glutamate
metabolism; arginine biosynthesis; beta-alanine metabolism;
and vitamin B6 metabolism (Figure 5D). Metabolites in the
plasma demonstrated upregulation in birds with normal
to mild to severe WB and, thus, could be defined as being
differentially expressed metabolites (DEMs) correlated with the
severity of the WB lesion, including anserine, 1-methylhistidine,
2-oxoarginine, γ-glutamyl β-aminopropiononitrile, and
choline (Figures 5E,F). Conversely, the WB-suppressing
DEMs included L-leucine, hexadecanedioate, 8-shogaol, 3,4-
dihydroxyphenylglycol, and L-asparagine; four metabolites
were correlated both with gut microbiota in the digesta
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FIGURE 2 | Histopathologic studies and myofiber parameters in WB filets. (A) Breast filet muscle tissue sections were stained with H&E and examined under a

microscope. Left, normal filets; middle, mild WB; right, severe WB. (B) Histogram of muscle fiber diameters. (C) Muscle fiber characteristic. “***” means P-value <

0.001; “****” means P-value < 0.0001.

(Figure 4E) and WB inducing or suppressing in plasma
(Figure 5E). These could be identified as gut microbiota
correlated with inducing or suppressing DEMs in plasma
(Figure 5G). The microbial-related metabolites guanidoacetic
acid, antiarol, and (2E)-decenoyl-ACP were significantly related
to meat quality traits and myofiber traits (Figure 5H). The
metabolite 3-methyladenine was only significantly positively
correlated with L traits. Only antiarol was positively correlated
with the enzyme of total superoxide dismutase (T-SOD) in
breast muscles.

DISCUSSION

Wooden breast filets lead to decreased consumer preference,
thereby posing a significant challenge to breeders and causing
economic losses in the broiler industry. Normally, selection for
the accelerated growth rate and high breast yield in broiler
chickens has been regarded as association with an increase in
myopathies (31). In the present study, birds with mild WB had a
higher body weight gain than normal birds with the same feeding
conditions. But the body weight did not increase with the severity
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FIGURE 3 | Composition and diversity of cecal microbiota in birds with WB. (A) Alpha diversity index analysis. (B) PCoA of composition of gut microbiota between

birds with or without WB. (C) Composition of gut microbiota at the phylum level. (D) Difference in the relative abundance of microbes between birds with or without

WB in the phylum level. (E) Heat map of microbiota on the abundance of top 25 between birds with or without WB in the species level. (F) Details of WB altered

bacteria in the species level. “*” means P-value < 0.05; “**” means P-value < 0.01.

of the lesion of WB, which indicates the severity of WB may not
markedly affected by body weight. The meat quality of WB as
measured was consistent with that of a previous study (32, 33).
A higher L value, a∗ value, and drip loss, as well as lower pH
postmortem, were observed in the WB filets. A high lightness
value is considered to be an indicator of the paleness of breast
meat (34) and also indicates a higher amount of exudate, causing
light scattering from the meat surface (35). Identification of color
is an easy way to determine the pH of meat: very dark meat will
have a high pH, whereas light meat will have a low pH (36). It has
been reported that the pH and color of pectoralis major muscles
of broilers with severe WB are similar to pale, soft, exudative
(PSE) meat (37) and are characterized by low pH, a pale and
exudative appearance, and a soft texture (38). Normally, when
the concentrations of glucose and lactate in the meat are lower,

there is a lower postmortem pH than normal meat (39). This
explains the decreased tendency of pH postmortem in severeWB
meat compared to normal meat. The WB filets also presented
a poor water-holding capacity, with higher drip loss. Normally,
the juiciness of the chicken breast, including tenderness and
water-holding capacity, is among the most important attributes
of meat quality as they substantially affect consumer satisfaction
(40). In conclusion, our results indicate that severe wooden
breast results in poor meat quality, affecting the consumers’
assessment. Meat quality has a close relationship with muscle
antioxidant status. One of oxidative stress parameters, MDA,
increased in WB meat, which indicates a lipid metabolism
perturbation (41), but the enzymes of antioxidant still work
to remove oxygen free radicals, reduce lipid peroxidation, and
protect myocytes.
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FIGURE 4 | Results of digesta metabolomics. (A) sPLS-DA analysis of positive ions. (B) sPLS-DA analysis of negative ions. (C) GO pathway annotation in digesta

metabolites. (D) Correlation between bacteria and digesta metabolites; red points, positively correlated; blue, negatively correlated; gray, not significantly correlated.

(E) Numbers of digesta metabolites correlated with microbiota. (F) GO pathway annotation for bacteria-related metabolites. (G) Correlation between altered bacteria

and differential metabolites in digesta.

Recently, morphological changes have been demonstrated in
wooden breast filets (33, 42). Previous results concerning such
changes were similar to our observations in the present study;
these changes included visible cytoplasmic vacuolation, atrophy,
degenerative sarcolemma, and infiltration of inflammatory cells.
Generally, the total number of myofibers remains unchanged
after birth (43). Rather than adding myofibers, muscles grow
longitudinally through the accretion of myoblasts, resulting in
an increasing pool of myonuclei, which regulate the addition of
sarcomeric units and skeletal muscle growth (44, 45). Intense
selection for growth performance in broilers causes an excessive
rate of breast muscle growth (46), which may favor more
vulnerable myofibers. After the occurrence of myofiber injury,
monocytes invade and remove necrotic cells and cellular debris
(47). These results were consistent with those of H&E staining in
the present study as abundant mononuclear cell infiltrates were
observed. In the normal physiological status, the fragmentation
of myofibers can result from full myofiber replacement or local

damage and repair (48), but in severe WB, the fragmented
myofibers occupied the vast majority, indicating that loss of
repair capacity may contribute to these events. In addition,
the subtle balance of removing and repairing in muscles was
perturbed; this could explain the accumulation of damaged
myofibers. Skeletal muscle fibers as factors for meat quality (49).
Hence, fragmented myofibers in severe WB was responsible for a
bad water-holding capacity and other alternation in meat quality.

Gut microbiota play a fundamental role in maintaining
normal intestinal function and regulating host metabolism
(50). Previous work has shown that bacterial communities can
be associated with this musculoskeletal disorders. Maharjan
reported that WB results in apparent changes in the microbial
flora (19). Zhang et al. (20) reported that S. bovis and B. plebeius
were the two microbes with the highest abundance in the cecum
of WB birds, and the microbiota of WB birds had reduced
glycolysis and urea cycles but increased tricarboxylic acid (TCA)
cycle. Here, we demonstrated a variety of contrasts between birds
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FIGURE 5 | Results of plasma metabolomics and correlation analysis with digesta metabolomics. (A) sPLS-DA analysis of positive ions. (B) sPLS-DA analysis of

negative ions. (C) Bar graphs for the number of differential expressed metabolites. (D) GO pathway annotation for differential expressed metabolites between normal

and mild WB; between severe and mild WB. (E) Coordinate plot for log2 (fold change value) for metabolites between mild WB and normal in X-axis; for metabolites

between severe and mild WB in Y-axis. (F) Details of intensity of WB-inducing DEMs in plasma. (G) Venn diagram of metabolites between bacteria correlated DEMs in

digesta and WB-inducing or -suppressing DEMs in plasma. (H) Correlation of bacteria correlated DEMs with WB characteristics of antioxidant properties, meat quality,

and myofiber characteristics. *P < 0.05; **P < 0.01;***P < 0.001. ns, not significant.

with mild WB and severe WB and evaluated those distinctions.
The Chao 1 biodiversity indices and observed species reflect the
α-diversity of gut microbiota, which both decreased in birds with
WB. The Firmicutes/Bacteroidetes ratio was decreased in birds
withWB, a pattern which is often regarded as a marker of obesity
(51), and an increased or decreased Firmicutes/Bacteroidetes
ratio is an important feature of dysbiosis (52). In the colitis
model, it was also an important reflection of balance between gut
microbiota and intestinal mucosal (53). At the species level, C.
spiroforme, an opportunistic pathogen found in rabbits, which
produces a binary toxin and similar to the iota toxin (54),
increased significantly in birds with WB, while the L. zeae, a
probiotic reported by Lambo (55), was decreased in birds with
severe WB, as well as S. alactolyticus. The S. alactolyticus was
also reported to be present in high relative abundance in healthy
birds but decreased in infected birds with lesions, in line with a

previously report (56). Taken together, the gutmicrobiota of birds
withWBmyopathy were presented, and it may be involved in the
development of WB.

The gut microbiome metabolites drive dynamic changes in
digesta and enter the circulation (57). By sPLS-DA analysis, a
similar chronic progressive course was observed in both digesta
metabolomics and plasma metabolomics from normal breast to
mild WB to severe WB. Therefore, we hypothesized that WB was
interrelated with the gut microbiome composition and plasma
metabolites. In other words, microbial metabolites affected the
apparent concentrations of those metabolites in plasma through
cecal metabolites. Valine, leucine, and isoleucine are branched
chain amino acids (BCAAs), and skeletal muscles, as the initial
site of BCAA catabolism, is accompanied by the release of alanine
and glutamine into the bloodstream (58). In vitro, arginine plays
a vital role in skeletal muscle fiber-type transformation from fast

Frontiers in Veterinary Science | www.frontiersin.org 9 June 2022 | Volume 9 | Article 922516

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Kang et al. Multi-Omic Analysis of Wooden Breast

twitch to slow twitch via the Sirt1/AMPK pathway (59). Arginine
was also reported to stimulate muscle protein synthesis by
inducing the phosphorylation of mTOR in skeletal muscles (60).
It could be speculated thatmicrobial-derived arginine replenishes
endogenous arginine synthesis. In addition, phenylalanine,
tyrosine, and tryptophan biosynthesis in the myosin regulatory
light chain controls non-muscle myosin II assembly and function
(61); the glutamate metabolism pathway, which is essential to
maintain skeletal muscle metabolism, was significantly altered
with an altered metabolite, L-glutamic acid. Taken together,
the results of GO annotation indicated that microbial-related
digesta metabolites participated in diverse muscle activities.
The Pearson correlation analysis indicated associations between
microbes and metabolites, leading to a deeper understanding
of how gut microbes modulate the components of digesta
metabolites. The results were in line with the expectation that
there is a substantial amount of association between digesta
and gut microbes. Gut microbiota were positively correlated
with glutamine and the glutamate metabolism and arginine
biosynthesis pathways, mainly involving L-glutamic acid and
pyrrolidonecarboxylic acid. The glutamine association with
thyroid hormones regulates muscle weight and fiber diameter
in resting and atrophic conditions and results in protection
from muscle loss during atrophy (62). Furthermore, the gut
microbiota is negatively related to tyrosine metabolism, where
phosphorylation of tyrosine is regulated by AMPK and controls
metabolism in human skeletal muscles (63). Many gut microbes
coupled with digesta metabolites showed strong and significant
correlations. Metabolite 5-hydroxyindoleacetic acid is a product
of the kynurenine pathway of tryptophan metabolism (64), and
it can be used as a biomarker for depression, hepatomegaly,
bronchospasm, and cardiac disease (65). Lactobacillus agilis was
negatively correlated with 5-methoxyindoleacetate. These results
indicate that the gut microbiota participated in indoleacetic acid
metabolism, which guided cross-talk between the methoxyindole
and kynurenine pathways of tryptophan metabolism. Gluconic
acid can reach the large intestine to stimulate lactic acid bacteria
(66); this was negatively correlated with F. prausnitzii. In
conclusion, the gut microbiota modulated changes in glutamine,
arginine, and tyrosine metabolism. In addition, the finding
that gut microbes were negatively related to the numbers of
metabolites indicated that lack of some critical microbial-related
metabolites may eventually contribute to severe WB.

In plasma, the number of DEMs presented a gradient
from normal to mild to severe WB, implying a progressive
deterioration in birds. Among the DEMs, the valine, leucine,
and isoleucine biosynthesis pathway was associated with the
WB disease progression. BCAA supplementation is often
regarded as an efficient nutritional strategy to alleviate skeletal
muscle damage (67), and upregulated anabolism of BCAAs
also increases the mitochondrial content in cells of skeletal
muscles and adipocytes (68). Phenylalanine metabolism was
upregulated in severe WB compared to mild WB, similar
to a report claiming that myotrophic lateral sclerosis and
Duchenne muscular dystrophy (DMD) in vivo displayed similar
symptoms (69), in which these protein changes may represent
the relative loss of the long α-helical structures within muscle
proteins (70). These results confirmed that the muscle damage

in severe WB was still in the process of the myofiber
remodeling stage.

In the present study, five plasma metabolites were employed
as biomarkers closely tracking the severity of WB. Anserine,
a functional dipeptide containing methylhistidine and beta-
alanine, is normally present in the brain and skeletal muscles
of birds and mammals (71). Anserine increased with the
severity of WB. Pectoralis muscle dystrophy was associated
with a significantly lower content of anserine in birds (72).
The metabolite 1-methylhistidine can potentially serve as a
marker for muscle protein turnover and reflect skeletal muscle
degeneration and oxidative stress (73, 74). Choline, an essential
nutrient for skeletal muscle, is a precursor of Ach, and ion
replacement of K+ with choline+ results in potent inhibition
of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase in the
sarcoplasmic/endoplasmic reticulum of skeletal muscles (75).
In addition, 2-oxoarginine is an intermediate of the urea cycle
(76), and this metabolite had a higher content in birds with
WB. Considering these results, it is evident that WB myopathy
deteriorated the capacity for muscle contraction.

According to the Pearson correlation analysis, bacteria-related
metabolites participated in the alternation of meat quality and
myofiber traits. The metabolite 3-methyladenine can act as an
autophagy inhibitor in type 2 diabetes-induced skeletal muscle
atrophy (77). Guanidoacetic acid was significantly related to
meat quality traits and myofiber traits. The beneficial effect of
guanidoacetic acid in meat quality has previously been described
and validated. Guanidoacetic acid isolated from gut microbial
sources has been confirmed to alleviate the symptoms ofWB (78).
Therefore, such a drop in gut microbial-related guanidoacetic
acid may explain its deficiency in plasma, resulting in negative
outcomes for the myofiber area and diameter.

In conclusion, the present study examined the appearance,
incidence, meat quality, histopathologic changes, and myofiber
parameters in birds with and without wooden breast myopathy.
Accordingly, we confirmed that gut microbiota responded to
the wooden breast myopathy by driving dynamic changes in
the digesta of the plasma involving glutamine and glutamate
metabolism and arginine biosynthesis. Our analysis yielded
insights into the role of the gut microbiota in birds with mild and
severeWB, thereby revealing several potential biomarkers for the
WBmyopathy diagnosis and treatment. However, there are a few
limitations to the current study. Future work could investigate
this point about the effects of gut microbial-related metabolites
on meat quality and incidence of WB.
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