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Ruminal microbiota and metabolites play crucial roles in animal health and productivity.

Exploring the dynamic changes and interactions between microbial community

composition and metabolites is important for understanding ruminal nutrition and

metabolism. Tibetan sheep (Ovis aries) are an important livestock resource on the

Qinghai-Tibetan Plateau (QTP), and the effects of various dietary protein levels on ruminal

microbiota and metabolites are still unknown. The aim of this study was to investigate

the response of ruminal microbiota and metabolites to different levels of dietary protein

in Tibetan sheep. Three diets with different protein levels (low protein 10.1%, medium

protein 12.1%, and high protein 14.1%) were fed to Tibetan sheep. 16S rRNA gene

sequencing and gas chromatography coupled with time-of-flight mass spectrometry

(GC-TOF-MS) were used to study the profile changes in each group of ruminal microbes

andmetabolites, as well as the potential interaction between them. The rumenmicrobiota

in all groups was dominated by the phyla Bacteroidetes and Firmicutes regardless of

the dietary protein level. At the genus level, Prevotella_1, Rikenellaceae_RC9_gut_group

and Prevotellaceae_UCG-001 were dominant. Under the same forage-to-concentrate

ratio condition, the difference in the dietary protein levels had no significant impact

on the bacterial alpha diversity index and relative abundance of the major phyla and

genera in Tibetan sheep. Rumen metabolomics analysis revealed that dietary protein

levels altered the concentrations of ruminal amino acids, carbohydrates and organic

acids, and significantly affected tryptophan metabolism (p< 0.05). Correlation analysis of

the microbiota and metabolites revealed positive and negative regulatory mechanisms.

Overall, this study provides detailed information on rumen microorganisms and ruminal

metabolites under different levels of dietary protein, which could be helpful in subsequent

research for regulating animal nutrition and metabolism through nutritional interventions.
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INTRODUCTION

Tibetan sheep are the most economically important domestic
animals on the Qinghai-Tibetan Plateau (QTP), providing native
Tibetan herders with meat, wool and milk (1). On the QTP,
Tibetan sheep adapt well to plateau environments and poor
feeding conditions, and they mainly search for forage in the
alpine meadow (2, 3). Nonetheless, the QTP environment is
extremely harsh, with heavy snowfalls during the long cool-
season from November to May, with average temperatures
ranging from −5 to −15◦C. Climate conditions and fluctuations
directly affect forage yield and quality (particularly crude
protein content), and herbage biomass and nutritional status are
insufficient to meet the daily nutritional requirements of grazing
animals (4–6). A previous study showed that Tibetan sheep
suffered serious live-weight loss (−20.54%) under traditional
pastoral herding, resulting in severe economic loss during the
cold season (7). In addition to growth performance and economic
benefits, cold season grazing also reduces growth hormone levels
and damages the immune defense system of Tibetan sheep (8).
Therefore, scientific management and rearing are particularly
important in Tibetan sheep production.

The rumen is the primary organ system for nutrient
digestion and absorption in ruminants, and it contains
abundant microbiota and metabolites. Rumen microorganisms
play an important role in the fermentation of plant fibers
and polysaccharides (9, 10). Previous studies have shown
that rumen microbial community structure and function are
influenced by different factors, such as host breed, sex, diet and
external environment (11–13). As one of the most important
factors, dietary nutrition can change the relative abundance
of dominant bacterial groups (e.g., Bacteroidetes, Firmicutes,
Proteobacteria) and metabolic functions (e.g., carbohydrate,
amino acid, and energy metabolism) (14–16). Metabolomics is
a newly emerging field, following the application of genomics
and transcriptomics based on detection techniques and includes
nuclear magnetic resonance (NMR), gas chromatography-
mass spectrometry (GC-MS), and liquid chromatography-mass
spectrometry (LC-MS) (17). Metabolite profiles include a huge
array of organic endogenous metabolites that play a vital role in
nutrient regulation in animals. Previous studies have reported
that ruminal lipids, amino acids and carbohydrates change
significantly by changing the dietary forage-to-concentrate ratio
(18, 19).

Dietary protein level is considered an essential factor that
affects the growth, development and health conditions of
animals (20, 21). Proteins fed to ruminants are degraded by
microbes into peptide-bound amino acids and free amino
acids for microbial protein synthesis (22). However, the
effect of dietary protein levels on the ruminal microbiota and
metabolites of Tibetan sheep and the interaction between
ruminal microbiota and metabolites remain unclear.
Recent rapid developments and applications in multi-
omics technology have been devoted to gaining a better
understanding of the ruminal ecosystem, especially the
relationships among the microbiota, metabolites and host
(23, 24).

In the current study, we hypothesize that dietary protein levels
would influence rumenmicroorganisms and ruminal metabolites
in Tibetan sheep. 16S rRNA sequencing and GC-TOF-MS were
used to determine the effects of three different dietary protein
levels on the profiles of the ruminalmicrobiota andmetabolites in
Tibetan sheep. Furthermore, the potential relationships between
the ruminal microbiota and metabolites were explored.

MATERIALS AND METHODS

Ethics Statement
The animal experiments in this study were approved by the
Experimental Animal Use Ethics Committee of the Northwest
Institute of Plateau Biology, Chinese Academy of Sciences
(Approval No. NWIPB20160302).

Experimental Design and Sample
Collection
A detailed description of the experimental design has been
previously provided (25). The experiment was conducted at
the Haibei Demonstration Zone of Plateau Modern Ecological
Husbandry Science and Technology in Qinghai Province (China)

(36◦55
′

N, 100◦57
′

E, altitude at 3,100m). A total of eighteen 1-
yr-old healthy castrated Tibetan sheep with similar initial body
weight (BW: 31.71 ± 0.72 kg) were randomly assigned to three
different dietary treatment groups, with each group containing
6 sheep. All those sheep were bred in the same demonstration
zone and under the same feeding management practices before
the experiment. The protein levels of the three different diets
were low protein 10.1% (LP), medium protein 12.1% (MP) and
high protein 14.1% (HP). Diets were designed according to the
National Research Council guidelines (26) (Table 1). The sheep
were fed with the mixed diet twice daily at 08:00 and 17:00. The
experiment was lasted 105 days after 15 days of adaptation to
the experimental diets and all sheep were provided with water ad
libitum. At the end of the experiment, rumen fluid samples were
collected before the morning feeding using an oral stomach tube
and placed in frozen tubes to avoid contamination. The samples
were immediately frozen in liquid nitrogen, and stored at−80◦C
for microbiome and metabolome analysis.

Microbiome Composition Analysis
Total genomic DNA was extracted from the rumen fluid samples
using the bacterial genomic DNA extraction kit from TIANamp
(TIANGEN, Beijing, China). The 16S rRNA gene targeting the
V3-V4 region was amplified from the total genomic DNA and
sequenced using the Illumina NovaSeq 6000 platform. After
sequencing, the raw sequences were analyzed using USEARCH
10.0 and scripts written by Liu et al. (27). The quality of
the paired-end Illumina reads was checked using FastQC
v.0.11.5 (28) and processed using USEARCH. Unique reads were
denoised into ASVs using unoise3 in USEARCH (29). A feature
table was generated using VSEARCH (30). The SILVA v123 (31)
database was used to classify the taxonomy of the representative
sequences, and the plastids and non-bacteria were removed.
Alpha diversity indices, including richness and the Shannon
index, were calculated. For beta diversity, variations in microbial
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TABLE 1 | Ingredients and nutrient levels of the experimental diets with three

different protein levels (on a dry matter basis).

Item Diet

LP MP HP

Ingredients, g/kg

Oat hay 500 500 500

Corn grain 210 165 120

Wheat grain 135 120 105

Wheat bran 70 75 80

Soybean meal 35 55 75

Rapeseed meal 25 60 95

NaCl 5 5 5

CaHPO4·2H2O 3 3 3

Bentonite 5 5 5

CaCo3 4.5 4.5 4.5

NaHCO3 2.5 2.5 2.5

Premix a 5 5 5

Nutrient levels b

CP (%) 10.1 12.1 14.1

ME (MJ/kg) 10.1 10.1 10.1

EE (%) 2.7 2.8 2.9

NDF (%) 37.5 38.5 39.5

ADF (%) 19.1 20.1 21.1

Ca (%) 0.6 0.7 0.7

P (%) 0.4 0.5 0.5

aPremix provided per kg of feed: Vitamin A, 50,000 IU; Vitamin D3, 12,500 IU; Vitamin E,

1,000 IU; Cu, 250mg; Fe, 12,000mg; Zn, 1,000mg; Mn, 1,000mg and Se, 7.5 mg.
bME, metabolizable energy = total digestible nutrients×0.04409×0.82, according to the

National Research Council; CP, crude protein; EE, ether extract; NDF, neutral detergent

fiber; ADF, acid detergent fiber.

composition among the three different groups were investigated
using constrained PCoA (CPCoA).

Metabolomics Data Analysis
Rumen fluid samples were centrifuged at 4 ◦C for 5min at
10,000 rpm and transferred into a 1.5ml tube, and pre-cold
methanol with 10µl internal standard 2-Chloro-L-phenylalanine
was added. After centrifugation, 200 µl of supernatant was
transferred to a fresh tube. Fifty microliters of each sample
were removed and combined to prepare a quality control
sample. After evaporation in a vacuum concentrator, 30 µl of
methoxyamination hydrochloride was added and derivatized
with 40 µl of BSTFA reagent at 70 ◦C for 1.5 h. All samples were
then analyzed by GC-TOF-MS. The GC-TOF-MS analysis was
performed using an Agilent 7890 GC-TOF-MS. The system used
a DB-5MS capillary column (30 m×250 µm×0.25µm). Chroma
TOF (V 4.3x, LECO) and the LECO-Fiehn Rtx5 database were
used for the raw data analysis, including peak extraction, baseline
adjustment, deconvolution, alignment and integration. Finally,
peaks detected in less than half of the quality control samples or
RSD > 30% in the quality control samples were removed.

The resulting data were imported into software SIMCA
14.1 software (Umetrics, Umea, Sweden) for orthogonal

projections to latent structures-discriminant analysis (OPLS-
DA). Differential metabolites were identified by combining
the VIP values obtained from the OPLS-DA analysis and t-
test (VIP > 1.5 and p < 0.05). Differential metabolites were
identified and validated using the Human Metabolome Database
(HMDB; https://hmdb.ca/) and Kyoto Encyclopedia of Genes
and Genomes (KEGG; https://www.kegg.jp/). The data analysis
tool MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/) was
used to view the metabolic pathway distribution and enrichment
of the differential metabolites.

Correlations Between Microbial
Communities and Rumen Metabolites
Rumen metabolites with VIP > 1.5, p < 0.05, and the
top 10 microbial genera were used for interactive analysis.
Spearman’s rank correlations and p-value were calculated using
the GenesCloud tool, a website for microbial analysis (http://
www.genescloud.cn).

RESULTS

Sequencing and Diversity Estimates of
Rumen Microbiomes
Totally 2,144,910 raw reads were obtained for the bacterial 16S
rRNA genes from 18 rumen fluid samples using the sequencing
procedure. After quality control, 2,046,323 high-quality reads
were obtained (average of 85,263 reads per sample). A total of
3,921 ASVs were produced based on the results. The statistics
of the bacterial alpha diversity indices (richness and Shannon
index) for each sample were calculated, and the results are
shown in Figures 1A,B. Richness and Shannon values were not
significant among the three groups (p > 0.05). The result of beta
diversity based on the CPCoA showed that the rumenmicrobiota
of Tibetan sheep clustered three distinct parts, and these three
groups were largely separated from each other with 15.1% of the
variance (p= 0.0001) (Figure 1C).

Bacterial Community Compositions
At the taxonomic level, 16 bacterial phyla, 26 classes, 37 orders, 56
families, and 163 genera were detected in the rumen microbiota
of Tibetan sheep. At the phylum level (Figure 2A), Bacteroidetes
(54.37–59.58%), Firmicutes (21.68–26.10%), Proteobacteria
(8.81–18.46%), Actinobacteria (0.27–4.78%), Tenericutes
(0.23–0.36%), Spirochaete (0.07–0.15%), Saccharibacteria
(0.06–0.10%) and Candidate_division_SR1 (0.02–0.35%) were
the dominant bacteria. Among these phyla, Bacteroidetes
and Firmicutes had the highest relative abundances in
all three groups. However, no significant between-group
differences in relative abundance were detected at the
phylum level. At the genus level (Figure 2B), Prevotella_1
(21.10–32.38%), Rikenellaceae_RC9_gut_group (4.94–7.52%),
Prevotellaceae_UCG-001 (2.18–2.47%), Prevotellaceae_UCG-003
(1.28–2.61%) and Christensenellaceae_R-7_group (1.45–2.45%)
were the dominant bacteria. In addition, the relative abundance
of these dominant bacterial genera was also not significantly
affected by dietary protein levels (p > 0.05).
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FIGURE 1 | Bacterial diversity of rumen fluid samples among three different groups. (A) Richness index; (B) Shannon index; (C) CPCoA plot based on ASVs.

Identification and Quantification of
GC-TOF-MS Metabolites in the Rumen
In total, 411 valid peaks were identified in 18 rumen fluid
samples. After rigorous quality control and identification,
189 metabolites, including organic acids and derivatives,
organoheterocyclic compounds, organic oxygen compounds,
benzenoids, organic oxygen compounds, lipids, lipid-
like molecules and benzenoids, were obtained from the
metabolomics library of the three groups, which shared the same
metabolite categories.

For further analysis, OPLS-DA was conducted to characterize
the differences in rumen metabolic profiles between the different
groups. The parameters for the assessment of the OPLS-DA
model in differentiating the three groups is represented by
validation plots (Figure 3). The corresponding R2Y values of the
OPLS-DA model for LP vs. HP, MP vs. HP and LP vs. MP were
0.954, 0.98 and 0.835, respectively. This indicates that this model
can be used to identify differences between the groups. OPLS-
DA results also showed that these groups had distinctly different
metabolite compositions.

Rumen Metabolomic Profiles
Based on the statistical analysis results and the VIP values
obtained from OPLS-DA, 17 metabolites (p < 0.05, and VIP >

1.5) were found to be significantly different in the comparisons
of HP vs. LP, MP vs. LP, and HP vs. MP. Among these, three
metabolites were classified into benzenoids (super class level; the
same as below); four were classified into lipids and lipid-like
molecules; three were classified into organic acids and derivatives;
three were classified into organic oxygen compounds; three
were classified into oganioheterocyclic compounds; and one was
classified into homogeneous non-metal compounds.

With an increase in dietary protein level, 17 metabolites
showed an increase (Figure 4; Supplementary Table 1).
Compared with the LP group, three metabolites (beta-Alanine,
Hydroxypropanedioic acid and 5-Hydroxyindoleacetic acid)
in the HP group increased significantly (VIP > 1.5, p <

0.05). Compared with the MP group, six metabolites (D-
Mannose, Allose, Phenylethylamine, Indan-1-ol, D-Maltose
and Maltulose) in the HP group increased significantly
(VIP > 1.5, p < 0.05). Compared with the LP group, eight
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FIGURE 2 | Microbial composition of rumen fluid samples at the (A) phylum and (B) genus level.

metabolites (Pyrrole-2-carboxylic acid, Indoleacetic acid, 3-
Hydroxypalmitic acid, 2,2-Dimethylsuccinic acid, Maleamate,
3-Hydroxynorvaline, Hydroxylamine and 4-Methylcatechol) in
the MP group increased significantly (VIP > 1.5, p < 0.05).

Metabolic Pathways of Differential
Metabolites
Differential metabolites in rumen fluid samples from the three
groups were analyzed using MetaboAnalyst 5.0 software to
reveal their association with metabolic pathways (Figure 5).
According to KEGG pathway identification, seven pathways
(tryptophan metabolism, phenylalanine metabolism, starch and
sucrose metabolism, pantothenate and CoA biosynthesis, beta-
alanine metabolism, propanoate metabolism and pyrimidine

metabolism) were identified. Tryptophan metabolism was the
most altered metabolic pathway among the three groups (p
< 0.05).

Relationship Between the Ruminal
Microbiome and Metabolome
Based on the results of Spearman correlation coefficients
and p values, and clear positive and negative correlations
were detected between the main ruminal microbiota
and differential metabolites (Figure 6). For example,
Rikenellaceae_RC9_gut_group was positively associated
with 5-Hydroxyindoleacetic acid, D-Mannose, Pyrrole-
2-carboxylic acid, Maleamate, 3-Hydroxynorvaline and
Hydroxylamine (p < 0.05). Ruminococcus_2 was positively
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FIGURE 3 | OPLS-DA of ruminal metabolites between different groups.

correlated with Allose and Maltulose levels (p < 0.05).
Christensenellaceae_R-7_group was positively correlated with
beta-Alanine, Hydroxypropanedioic acid and Indoleacetic acid
(p < 0.05). Ruminococcaceae_UCG-014 was positively correlated
with beta-Alanine and Hydroxypropanedioic acid levels (p
< 0.05). Ruminococcaceae_NK4A214_group was positively
correlated with Hydroxypropanedioic acid, D-Mannose and
Phenylethylamine (p < 0.05) while Quinella was negatively
associated with beta-Alanine levels (p < 0.05).

DISCUSSION

Rumen bacterial communities and metabolites play important
roles in the growth, development and organismal health
of ruminants (32, 33). The objective of this study was to
investigate the effects of different dietary protein levels with
the same metabolizable energy level on ruminal microbiota and
metabolites in Tibetan sheep using 16S rRNA sequencing and

GC-TOF-MS and to detect the potential relationships between
ruminal bacteria and metabolites.

In this study, the dietary protein levels did not have a
significant influence on alpha diversity (based on the richness
and Shannon index) or the relative abundance of the main
bacterial phyla and genera. A previous study showed that
under the same forage-to-concentrate ratio, the alteration of
dietary energy level had no significant influence on the alpha
diversity and bacterial community structure in Holstein heifers
(34). This finding is consistent with research that shows that
changing one nutrient content of the diet (e.g., protein or energy)
under the same food ingredients was not sufficient to cause a
strong fluctuation in the ruminal microbiota. Several studies
(18, 35–37) showed that the dietary forage-to-concentrate
ratio under the same food ingredients was the most critical
environmental factors shaping rumen microbial structures
and composition. In our study, Bacteroidetes, Firmicutes, and
Proteobacteria were the predominant bacterial phyla in the
rumen of Tibetan sheep, and their relative abundances did not
show significant impact among the three groups. Bacteroidetes
and Firmicutes play a critical role in microbial ecology and
are involved in the decomposition of fibrous and non-fibrous
diets (38, 39). The phylum Proteobacteria is the largest phylum
of bacteria, including many pathogenic bacteria, such as
Escherichia coli, Salmonella, Vibrio cholerae and Helicobacter
pylori. Although the relative abundance of Proteobacteria is
much lower compared to the Bacteroidetes and Firmicutes,
it still plays an important role in rumen metabolism, such
as biofilm formation and digestion of soluble carbohydrates
(40). Besides, Bacteroidetes and Proteobacteria are the two
major N-metabolizing microbial communities (41). Liu et al.
(42) demonstrated that Tibetan sheep fed high-concentrate
(45–60%) diets significantly increased the relative abundance of
Bacteroidetes and reduced the Proteobacteria to adapt to a diet
containingmore non-fibrous carbohydrates and polysaccharides.
At the genus level, the dominant genera (e.g., Prevotella_1,
Rikenellaceae_RC9_gut_group, Prevotellaceae_UCG-001,
Prevotellaceae_UCG-003 and Christensenellaceae_R-7_group)
were also not influenced by dietary protein levels. Prevotella has
been found predominant in the rumen of sheep and can enhance
the capacity to utilize starch and non-cellulosic polysaccharides
and promote the production of total volatile fatty acids (VFA)
(43, 44). Moreover, Prevotella can ferment proteins and attain a
N balance status in the gut (45). Rikenellaceae_RC9_gut_group,
which is the main gene of Rikenellaceae, plays an important
role in the fermentation of carbohydrates and crude protein
(46, 47). Fan et al. (8) also revealed that Tibetan sheep could
enhance forage degradation and fermentation by increasing
the relative abundance of Bacteroidetes, Prevotella_1, and
Prevotellaceae_UCG-003 during the summer season compared
with the winter season. Christensenellaceae are belonged to
Firmicutes, which widespread in the intestines and mucous
membranes of humans and animals and are important for
host health due to several enzymes (48). Overall, Bacteroidetes,
Firmicutes and Prevotella were the most dominant bacterial
taxa in the rumen of Tibetan sheep, corroborating the results of
previous studies on goats (49), cows (50), beef cattle (51) and yaks
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FIGURE 4 | Heatmap of differential metabolites in rumen fluid samples between different groups.

(52), indicating that these bacteria play a major role in immunity,
health, and the ecological function of the gastrointestinal tract
in ruminants. In the present study, Tibetan sheep had a strong
capacity to digest protein in the feed and optimize dietary amino
acid utilization with the assistance of ruminal microorganisms.

Our study showed that the ruminal metabolite composition
was significantly different among the three treatment groups
based on OPLS-DA analysis, suggesting that the dietary nutrient
content is likely to alter the rumen metabolomic profiles of
Tibetan sheep. These results were comparable with previous
study of Liu et al. (53), who found that feed type could
significantly change the metabolites and functional pathway of
yaks. In the present study, 17 metabolic biomarkers showed
significant differences between the different groups, including
benzenoids, lipids and lipid-like molecules, organic acids and
derivatives, organic oxygen compounds, organoheterocyclic
compounds and homogeneous non-metal compounds. Notably,
all 17 metabolites showed a clear increasing trend with increasing
dietary protein levels. Among these metabolites, beta-Alanine
and Phenylethylamine are important amino acids for animals and
enriched in sheep with the higher dietary protein. Beta-Alanine
is a non-essential amino acid that is synthesized in the liver
tissue and is presumed to be an intermediate required for the
synthesis of acrylamide and acetonitrile (54, 55). Previous studies
have confirmed that beta-Alanine can improve the digestibility
of soluble starch and readily fermentable carbohydrates and
induce the transition from VFAs to carbohydrates (53, 56).
Phenylethylamine is an essential amino acid for animals and

FIGURE 5 | KEGG pathways based on the differential metabolites identified in

different groups.

can synthesize neurotransmitters and hormones, and participates
in glucose metabolism and fat metabolism (57). In addition to
these amino acids, several carbohydrates, such as D-Mannose,
Allose and D-Maltose, were also enriched in the higher dietary

Frontiers in Veterinary Science | www.frontiersin.org 7 June 2022 | Volume 9 | Article 922817

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Wang et al. Sheep Rumen Bacteria and Metabolome

FIGURE 6 | Heatmap of Spearman correlations between main genera and differential metabolites. *p < 0.05.

protein groups. The main function of these carbohydrates is
to provide energy for animal growth and development (58).
For example, D-Mannose is an important monosaccharide for
protein glycosylation in mammals and thought to promote
immunity and boost energy metabolism in organisms (59,
60). KEGG analysis revealed that tryptophan metabolism was
the most altered metabolic pathway among the three groups.
Tryptophan metabolism is a multi-pathway and complex process
that occurs in the host and its intestinal symbiotic microbiota.
Several metabolites generated by the tryptophan pathway have
various effects on immune function, including tryptophan
metabolism in animals (61). It was found that intestinal
microorganisms such as bacteria, fungi and protozoa could
contribute to the formation of key tryptophan metabolites, such
as anabolic D-Tryptophan in the microbial community, small
peptides synthesized by fungi, indoles and their derivatives (62).
The same tryptophan metabolites produced by animal intestinal
bacteria are indole derivatives, such as indoleacetic acid (IAA),
indole sulfuric acid (ISA), indole-3-acetaldehyde (IAAId) and
tryptamine (63). In addition, tryptophanmetabolites of intestinal
microbes could affect host physiological health by stimulating
target gene expression, modulating the mucosal immune system,
and targeting specific receptors. In our study, the content of
indoleacetic acid showed higher concentration in the rumen of
Tibetan sheep fed the higher dietary protein level. Based on
the above results, we speculate that higher dietary protein may
regulate nutrient absorption and growth performance through
the composition and function of ruminal metabolites.

Metabolomics is used to study the small-molecule metabolites
changes in animals produced by the external disturbance and
can reflect the state of physical function more accurately.
Compared to microorganisms, the metabolome can reflect the
most intuitive physiological state of the animal. Therefore, the
rumen metabolomic profiles were more sensitive to different
dietary protein levels than bacterial community compositions
in the present study. Additionally, an association was found

between the structure of the rumen microbiota and metabolic
profiles. These results were consistent with those in donkeys (64),
yaks (65), Holstein heifers (18), mice (66) and humans (67),
revealing a close relationship between microbiota, metabolites
and organismal health. Our study also found significant
positive correlations between the dominant bacterial groups
and differential metabolites using Spearman correlation analysis.
Our previous study demonstrated that higher dietary protein
levels could improve growth performance, carcass performance
and meat quality (25). Based on these findings, it is speculated
that rumen bacterial groups may promote nutrient absorption
capability by positively regulating the concentration of amino
acids (e.g., beta-Alanine, Phenylethylamine), carbohydrates
(e.g., D-Mannose, Allose, D-Maltose, Maltulose) and organic
acids (e.g., Hydroxypropanedioic acid, Indoleacetic acid, and
Maleamate), and promote the nutrient absorption and growth
performance of Tibetan sheep.

CONCLUSIONS

In summary, we applied multi-omics analysis combined
with microbiome and metabolomics analyses to investigate
the effects of dietary protein levels on ruminal microbial
communities and metabolites in Tibetan sheep. Under the same
forage-to-concentrate ratio condition, the difference in dietary
protein levels had no significant impact on rumen bacterial
groups. Meanwhile, with increasing dietary protein levels, the
concentrations of metabolites related to nutrient absorption
significantly increased. In addition, the dominant microbiota
was associated with different metabolites, indicating a close link
between microbes and metabolites. Taking the above points
into consideration, the higher protein levels (12.1 and 14.1%)
were recommended as the appropriate dietary protein level
in Tibetan sheep during the cold season. This study allowed
us to gain a better understanding of ruminal microbial and
metabolic functions and can lead to improvements in the
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protein level requirements within Tibetan sheep diets and
nutritional regulation.
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