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Pigs are cost-e�ective industrial animals because they produce a large number

of o�spring and have shorter rebreeding intervals compared with other

animals, such as non-human primates. The reproductive physiology of pigs

has been studied over the past several decades. However, there is not enough

research on the e�ects of the neurotrophic factors on the ovarian physiology

and development in pigs. As the ovary is a highly innervated organ, various

neurotrophic factors during ovarian development can promote the growth of

nerve fibers and improve the development of ovarian cells. Thus, investigating

the role of neurotrophic factors on ovarian development, and the relationship

between neurotrophic factors and porcine female reproduction is worth

studying. In this review, we focused on the physiological roles of various

neurotrophic factors in porcine ovaries and summarized the current status

of the studies related to the relationship between neurotrophic factors and

porcine ovarian development.
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Introduction

Neurotrophic factors, which are growth factors, play a crucial role in the regulation

of neural survival, development, and function in both the central and peripheral nervous

systems (1–3). They belong to one of the three main families: neurotrophins, glial cell

line-derived neurotrophic factor (GDNF), or ciliary neurotrophic factor (CNTF) (4).

Among these neurotrophic factors, the mammalian neurotrophin family consists of

four members: nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF),

neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4) (5). All neurotrophin families can

bind to both the p75 receptor (p75NTR; pan-neurotrophin receptor) with low affinity and

specific tropomyosin-related kinases (Trks; including TrkA, TrkB, and TrkC) with high

affinity (6). GDNF, another neurotrophic factor, promotes the survival of dopaminergic
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neurons in the midbrain during embryonic development (7).

CNTF can facilitate the survival and differentiation of ciliary

ganglion neurons during embryonic development (8). These

neurotrophic factors are not only closely related to the nervous

system development (9–11), but they also affect the ovarian

development (12, 13).

During ovarian development, sympathetic and sensory

nerve fibers can reach most of the intraovarian tissues, including

the follicles and interstitial tissues (14). As the ovary is a highly

innervated organ, various neurotrophic factors during ovarian

development can promote the growth of nerve fibers (15) and

improve the development of ovarian cells, including theca,

granulosa, cumulus, and oocytes (13, 16). The innervation of

the ovaries is very important during folliculogenesis, especially

in rodents, because the ovarian nerves first reach the gonads

and then begin follicular assembly (17). Ovarian follicles are

composed of oocytes and granulosa cell layers that surround

them (18). Theca cells surround the basal lamina layers of

the follicles (19) and are endocrine cells that exist only in the

ovary, playing an important role in the follicular development.

Ovarian folliculogenesis proceeds through the following steps:

follicle assembly, primordial follicle activation, follicular growth,

steroidogenesis, oocyte maturation, ovulation, and corpus

luteum formation (20, 21). Since it is a highly regulated

developmental process resulting in the growth, survival, and

differentiation of oocytes and ovarian follicular cells (22),

investigating the role of neurotrophic factors on follicular

development and their association with mammalian female

reproduction is essential.

Advances in reproductive biology have facilitated the

development of assisted reproductive technologies, such as in

vitro maturation (IVM), in vitro fertilization (IVF), and animal

cloning by somatic cell nuclear transfer (SCNT). In particular,

IVM is a creative technology that can supply high-quality

oocytes in vitro and can be applied to biotechnology fields,

such as conservation of endangered species, in vitro human-

assisted reproduction, and transgenic animal production. Pigs

are known as the most suitable animal for xenotransplantation

and human disease modeling because their organ structure,

size, and physiological characteristics are similar to those of

humans (23). Thus, to successfully produce transgenic pigs, it is

essential to establish both IVM and in vitro culture systems that

can obtain high-quality oocytes and zygotes. Although assisted

reproductive technologies for livestock are gradually developing,

the efficiency of in vitro embryo production in pigs is still

lower than that of natural breeding (24). In order to overcome

such low efficiency of in vitro embryo production, numerous

Abbreviations: BDNF, brain-derived neurotrophic factor; CNTF, ciliary

neurotrophic factor; EGF, epidermal growth factor; GDNF, glial cell line-

derived neurotrophic factor; IVM, in vitro maturation; NT, neurotrophin;

IVF, in vitro fertilization; SCNT, somatic cell nuclear transfer; Trks,

tropomyosin-related kinases.

studies have been continuously performed to improve the

developmental capacity of in vitro produced porcine embryos

(25–27). Several factors are involved in the success of in vitro

embryo production, one of which is the influence of intraovarian

factors. In particular, there are various types of proteins, growth

factors, and cytokines that exist in the porcine follicular fluid;

however, their identity and functions are not well-known.

Therefore, investigating the effects of various growth factors on

porcine follicular development and in vitro embryo production

systems could further accelerate the development of efficient

transgenic pig production techniques, and the development

of xenogeneic organs for human regenerative medicine and

therapeutic applications (28). In this review, we noted the

potential influence of neurotrophic factors in follicular growth,

oocyte maturation, and embryonic developmental capacity

in pigs.

Pigs also have the specific advantage of being cost-effective

industrial animals because they produce a large number of

offspring and have shorter rebreeding intervals than non-

human primates (29). They are also a valuable model for

understanding the process of follicular development since they

are polytocous animals. The porcine estrous cycle is 18–24

days, of which the follicular phase comprises 5–7 days, and the

luteal phase comprises 13–15 days (30). The porcine follicular

dynamics compared with those of rodents have not yet been fully

elucidated, and the follicular development, particularly during

the estrous cycle, remains unclear (31). Nevertheless, many

researchers have extensively studied the porcine estrous cycle

and follicular development since they ovulate 15–30 oocytes at

a time and give birth to multiple offspring (31–34). In addition,

porcine ovaries are readily available from slaughterhouses,

facilitating basic investigations of ovarian function (35). Their

high offspring productivity helps to explore the knowledge about

how to ovulate a large numbers of oocytes and to understand

follicular development and female reproductive physiology.

The reproductive physiology of pigs has been studied

over the past several decades (36); however, research on the

effects of neurotrophic factors on the ovarian physiology and

development in pigs is insufficient. Especially, the combination

of these intra-ovarian neurotrophic factors play an important

role in normal mammalian ovarian development. Therefore, the

present review summarizes the physiological roles of various

neurotrophic factors in porcine ovaries.

The neurotrophin system in the
porcine ovary

NGF and its roles in ovarian and follicular
development

NGF is the first and well-characterized member of the

neurotrophin family (37). It binds to TrkA with high affinity. In
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general, NGF plays a vital role in the survival and maintenance

of the sympathetic and sensory neurons (38). Numerous

studies have demonstrated that NGF is also required for

follicular growth following primordial follicle activation (39–

41). NGF regulates the follicular assembly and development,

and steroidogenesis in a cell culture model using human

tissues (42, 43). In addition, NGF may participate in the

pathogenesis of polycystic ovary syndrome (44, 45) and ovarian

cancer (46) as shown by studies in rodents and humans. In

particular, activation of the NGF/TrkA signaling pathway in

human epithelial ovarian cancer cells can promote themetastasis

of epithelial ovarian cancer by upregulating the expression

of the vascular endothelial growth factor (46). Therefore, it

is necessary to investigate the role of NGF in mammalian

ovarian development.

Several studies have speculated that the interaction

between NGF and its receptors can regulate porcine ovarian

folliculogenesis, including the proliferation of follicular cells

and stimulation of ovulation (47–49). Previous studies have

investigated NGF and its receptors, TrkA and p75NTR, in

porcine ovaries (48, 49). During porcine follicular development,

the distribution of NGF and its receptor proteins in ovarian

cells varies in each follicular stage (49). In the primordial and

primary follicles, NGF and its receptors are not expressed in

oocytes. However, with gradual development from primary

follicles to secondary and tertiary follicles, this pattern changes,

and both TrkA and its receptors are expressed in oocytes and

follicular cells. Unlike in oocytes, NGF and its receptor proteins

have been detected in follicular cells, which are present during

all follicle maturation stages. NGF and TrkA proteins are the

most highly expressed in the thecal and granulosa cells of large

follicles among tertiary follicles (also known as antral follicles),

which are classified as small, medium, and large. In contrast,

the p75NTR protein is highly expressed in all the tertiary

follicular cells (48, 49). Interestingly, NGF and its receptors

are also expressed in the steroidogenic cells of the corpus

luteum (49).

Another study reported the effect of NGF supplementation

during IVM on the porcine oocytes (47), showing that

treatment with 1 ng/mL NGF for 30 hours during IVM

significantly increased the rate of nuclear maturation. Therefore,

the oocytes that matured in the presence or absence of 1

ng/mL NGF were used to investigate the subsequent embryonic

development following IVF; however, NGF did not contribute

to the improvement in embryo developmental competence. The

mechanism underlying the effects of NGF on oocyte maturation

and subsequent embryonic development has not been identified.

Thus, previous studies suggested that the interaction of NGF

and its receptors is involved in porcine follicular growth,

steroid hormone production, ovulation, and corpus luteum

formation, which are similar to their roles in rodents and

humans (6, 40).

BDNF and NT-4 and –their roles in
ovarian and follicular development

BDNF promotes the survival and differentiation of several

neurons, such as sensory and dopaminergic neurons (50).

It was originally purified from pig brains in 1982 (51).

BDNF is expressed not only in neurons, but also in

all the other cells in the body, including immune cells

(such as T cells, B cells, and monocytes), endothelial cells,

and ovarian cells (52, 53). BDNF binds to TrkB with

high affinity, and its interaction can activate angiogenesis,

apoptosis, and cell survival pathways (54, 55). It also

contributes to follicular development, and oocyte maturation

in the mammalian ovary (53, 56–59). Paredes et al. (59)

demonstrated that BDNF/NT-4 signaling pathway via TrkB

is essential for oocyte survival during preantral follicular

development by confirming oocyte death and loss of follicular

organization in the ovaries of TrkB-null mice. Previous studies

demonstrated that BDNF enhances in vitro oocyte maturation

in humans (60), mice (61, 62), and cattle (63, 64). Furthermore,

preimplantation embryonic development studies in cattle (57,

65) and mice (53, 66) have revealed that BDNF is present in the

trophectoderm cells of the blastocyst, and BDNF supports early

embryonic development.

Several studies have demonstrated BDNF to play a crucial

role in supporting oocyte maturation (60, 62, 63, 67). In a

human study, BDNF accelerated both nuclear and cytoplasmic

maturation and enhanced the developmental potential following

subsequent embryonic development (68). BDNF has been

identified in human follicular fluid (69), and it is expressed

in the granulosa cells and oocytes of the pre-antral follicles

(70), and also granulosa cells and cumulus cells of the antral

follicles (61, 71). In a bovine study, both BDNF and p75

mRNAs and proteins were present in the cumulus cells and

oocytes, but the mRNAs of the full-length and truncated

TrkB isoforms were detected only in the cumulus cells (65).

While BDNF may have a positive effect on early ovarian

follicular development, only a few studies have been reported

in pigs.

BDNF promotes nuclear and cytoplasmic maturation of

porcine oocytes and improves the developmental competence

of embryos following IVF and SCNT (72). According to

an aforementioned study (72), BDNF, truncated isoforms

of TrkB (trTrkB), and p75NTR mRNA transcripts were

detected in both the porcine follicular cells and metaphase

I oocytes. However, full-length TrkB mRNA transcripts

were not observed in the metaphase I oocytes, but only

in the follicular cells (granulosa and cumulus cells). The

study also reported that treatment with a combination of

BDNF and epidermal growth factor (EGF) during IVM

improved the rate of blastocyst formation in embryos following

IVF and SCNT, suggesting a synergistic effect between
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BDNF (30 ng/mL) and EGF (10 ng/mL) during subsequent

embryonic development.

Another study also demonstrated that both mRNA

transcripts and proteins of BDNF and TrkB were expressed in

porcine granulosa cells and oocytes (73). In particular, Li et al.

(73) reported that micro-RNA-205 (miRNA-205) was found

to mediate BDNF-treated IVM oocytes through the regulation

of PTX3 (cumulus expansion-related gene), its putative target

gene. Their study demonstrated that 50 ng/mL BDNF treatment

during porcine IVM significantly (p < 0.05) improved nuclear

maturation and significantly (p < 0.05) increased PTX3 gene

expression in cumulus-oocyte complexes (COCs). In addition,

it was demonstrated that BDNF upregulates PTX3 in COCs by

inhibiting the expression of miRNA-205 in the granulosa cells,

and that the upregulated PTX3 level enhances the cumulus

cell expansion. Thus, previous studies demonstrated that

the BDNF/TrkB signaling pathway is required to enhance

the nuclear and cytoplasmic maturation of oocytes and

improve the developmental potency of embryos in pigs

(72, 73).

NT-4 (also referred to as NT-4/5 or NT-5) was originally

identified in Xenopus oocytes (74). Both BDNF and NT-4

bind to the same specific receptor, TrkB. NT-4 is an essential

factor for follicular assembly in humans and rodents (15,

70, 75–78). In human studies, both the NT-4 mRNA and

protein were expressed in oocytes and pre-granulosa cells

in the pre-antral follicles (77), and NT-4 supplementation

enhanced follicular assembly in vitro (78). A recent study

demonstrated that 100 ng/mL of NT-4 promotes the in vitro

growth of pre-antral follicles in mice (79). NT-4 (10 ng/mL) also

promotes meiotic progression and first polar extrusion in mouse

oocytes (80).

Unlike BDNF, only one study has reported the functional

role of NT-4 in porcine ovaries. According to Kim et al.

(81), the mRNA transcripts of NT-4, full-length TrkB, trTrkB,

and p75NTR were detected in the granulosa cells, cumulus

cells, and immature and mature oocytes in porcine antral

follicles. At the protein level, NT-4 was mainly detected

in the theca and granulosa cells, whereas p75NTR was

generally expressed in all the follicular cells. The total TrkB

protein was mainly expressed in the theca, granulosa, and

oocytes, whereas the phospho-TrkB protein was predominantly

expressed in the granulosa, cumulus, and oocytes. Therefore,

NT-4-related signaling pathways may act on the growth of

antral follicles by confirming the presence of NT-4 and

receptors in porcine antral follicular cells. In addition, the

addition of 10 ng/mL NT-4 and 10 ng/mL EGF to the

IVM medium affects the EGF receptor signaling pathway

to enhance porcine nuclear and cytoplasmic maturation of

oocytes and the developmental potential of parthenogenesis-

derived embryos. This finding suggests that NT-4 plays an

important role in follicular development and oocyte maturation

in porcine ovaries.

NT-3 and its roles in ovarian and follicular
development

NT-3 is known as the third neurotrophic factor of the

neurotrophin family (82, 83). It binds strongly to a specific

receptor, TrkC, but can also interact with TrkA and TrkB with

very low affinity (84). Several studies over the past decades

have shown that NT-3 does not only contribute to the survival,

differentiation, and growth of existing neurons but also it

facilitates the growth and differentiation of new neurons and

synapses (85, 86). NT-3 and TrkC interactions may enhance

the survival of sympathetic neurons (87); however, only few

studies have reported the effects of these interactions on ovarian

development.

In a rat study, NT-3 protein was detected in the granulosa

cells and oocytes of primordial and primary follicles in neonatal

ovaries (postnatal 4-day-old rat ovaries), whereas in adult

ovaries, it was detected in all types of ovarian cells derived

from larger developing follicles (88). In both neonatal and adult

rat ovaries, the TrkC protein was expressed in the theca cells

of pre-antral and antral follicles, as well as in the oocytes of

all the developing follicles (88). This study demonstrated that

NT-3 can promote early follicular development, which involves

the transition from primordial to primary follicles, in rats. In

contrast with a study in rats, both NT-3 and TrkC proteins have

been identified in the oocytes and granulosa cells of human pre-

antral ovaries from fetuses, girls, and women (89). According

to Seifer et al. (69) the NT-3 protein is localized in the theca

cells and oocytes of human antral follicles. The TrkC protein

has been detected in oocytes (71) and granulosa cells (71, 90) of

human antral follicles. In hamsters, when ovaries were cultured

with 100 ng/mL NT-3 in vitro, estradiol secretion was stimulated

(91). In cows, the proliferation of theca cells was promoted when

100 ng/mL NT-3 was added to the cell culture medium (92).

These data suggest that NT-3 may be involved in steroidogenesis

in antral follicles (91, 92). However, the correlation between NT-

3 and ovarian development in pigs has not yet been elucidated.

The GDNF system in the porcine
ovary

GDNF and its roles in ovarian and
follicular development

GDNF was first discovered in 1993 as a growth factor

involved in the survival of dopaminergic neurons in the

embryonic midbrain (7). The GDNF family is composed of

four members: GDNF, neurturin, artemin, and persephin (93).

Among these GDNF families, GDNF is a well-known growth

factor. GDNF has two isoforms (a full-length isoform and a

short isoform), and it interacts with two receptors: the GDNF

family receptor-α1 (GFR-α1), and the tyrosine kinase receptor
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FIGURE 1

Schematic drawing of the neurotrophic factors involved in porcine ovarian and follicular development. Neurotrophic factors regulate porcine

ovarian folliculogenesis, which involves follicle assembly, primordial follicle activation, follicular growth, steroidogenesis, oocyte maturation,

ovulation, and corpus luteum formation. ND, no data.

for rearrangement during transfection (RET) (94). GDNF first

binds to the GFR-α1 receptor, and the GDNF-GFR-α1 complex

interacts with RET. Numerous studies have shown that GDNF

has positive effects such as promoting oocyte maturation (61,

95–99) and enhancing embryonic development (95–97, 100–

102).

GDNF has also been detected in porcine follicular fluid

(95). Treatment with GDNF alone or in combination with

other growth factors enhances the porcine oocyte maturation

and developmental potential in vitro (95, 98, 99, 101).

Linher et al. (95), for the first time in pigs, reported that

GDNF enhances the cytoplasmic maturation and developmental

potential of porcine oocytes. According to an aforementioned

study (95), mRNA transcripts of GDNF, GFR-α1, and RET

were detected in the cumulus cells and oocytes in the

porcine antral follicles. Both GDNF and GFR-α1 proteins

were also expressed in the cumulus cells and oocytes in the

antral follicles. In particular, they also confirmed the presence

of GDNF protein in the porcine follicular fluid extracted

from each small (1–3mm diameter) and medium (4–6mm

diameter) follicles via western blotting, and confirmed that

there was no significant difference in the expression level.

Their study demonstrated that GDNF is involved in porcine

follicular development, and oocyte maturation by confirming

the presence of GDNF in the cumulus cells, oocytes and

follicular fluid.

Toms et al. (99) provided the initial information on

global transcriptomic changes in porcine oocytes following

antral follicular growth from small (1–3mm diameter) to

medium (4–6mmdiameter) when GDNF (50 ng/mL) was added

during IVM. These authors suggested that GDNF promoted

the developmental capacity of porcine oocytes as the antral

follicles grew. Other studies have reported the synergistic

effects of GDNF and EGF during IVM (98, 101). The results

of the aforementioned two studies (98, 101) suggest that

supplementation of the IVM medium with a combination

of optimal concentrations of GDNF (50 ng/mL) and EGF

(50 ng/mL) improves nuclear and cytoplasmic maturation of

porcine oocytes and subsequent developmental competence

following IVF. Based on several previous studies, GDNF

improves follicular growth and oocyte maturation, as well as the

developmental competence of immature oocytes in pigs.

The CNTF system in the porcine
ovary

CNTF and its roles in ovarian and
follicular development

The neurotrophic factor, CNTF, is a member of the

interleukin-6 (IL-6) type cytokines, including IL-6, leukemia
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TABLE 1 The identification of various neurotrophic factors and their receptors in the porcine ovary.

Ligands or

receptors

Detection methods Localization Expression References

NGF IF (49), WB (49) Primordial follicles (49)

- Oocytes –

Primary follicles

- Oocytes –

- Follicular cells +

Secondary follicles

- Oocytes +

- Follicular cells +

Tertiary follicles

- Oocytes +

- Granulosa cells* +

- Theca cells +

Corpus luteus + (49)

Follicular fluid ND –

TrkA IHC (48), IF (49), WB (49) Primordial follicles (48, 49)

- Oocytes –

Primary follicles

- Oocytes –

- Follicular cells +

Secondary follicles

- Oocytes +

- Follicular cells +

Tertiary follicles

- Oocytes +

- Granulosa cells* +

- Theca cells +

Corpus luteus +

p75NTR IHC (48, 81), IF (49, 72), WB

(49), RT-PCR (72, 81)

Primordial follicles (49)

- Oocytes –

Primary follicles (48, 49)

- Oocytes –

- Follicular cells +

Secondary follicles (48, 49)

- Oocytes +

- Follicular cells +

Tertiary follicles (48, 49, 81); excluding

theca cells (72)- Oocytes +

- Granulosa cells* +

- Theca cells +

Corpus luteus + (49)

BDNF RT-PCR (72),

IF (72)

Primordial follicles

- Oocytes ND –

Primary follicles –

- Oocytes ND

- Follicular cells ND

(Continued)
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TABLE 1 Continued

Ligands or

receptors

Detection methods Localization Expression References

Secondary follicles –

- Oocytes ND

- Follicular cells ND

Tertiary follicles (72)

- Oocytes +

- Granulosa cells* +

- Theca cells ND

Corpus luteus ND –

Follicular fluid ND –

NT-4 RT-PCR (81), IHC (81) Primordial follicles –

- Oocytes ND

Primary follicles –

- Oocytes ND

- Follicular cells ND

Secondary follicles –

- Oocytes ND

- Follicular cells ND

Tertiary follicles (81)

- Oocytes +

- Granulosa cells* +

- Theca cells +

Corpus luteus ND –

Follicular fluid ND –

TrkB RT-PCR (72, 81), IF (72, 81),

IHC (81)

Primordial follicles –

- Oocytes ND

Primary follicles –

- Oocytes ND

- Follicular cells ND

Secondary follicles –

- Oocytes ND

- Follicular cells ND

Tertiary follicles excluding theca cells

(72); (81)

- Oocytes +

- Granulosa cells* +

- Theca cells +

Corpus luteus ND –

GDNF qRT-PCR (95),

IHC (95), WB (95)

Primordial follicles –

- Oocytes ND

Primary follicles –

- Oocytes ND

- Follicular cells ND

Secondary follicles –

- Oocytes ND

- Follicular cells ND

Tertiary follicles (95)

(Continued)
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TABLE 1 Continued

Ligands or

receptors

Detection methods Localization Expression References

- Oocytes +

- Granulosa cells* +

- Theca cells ND

Corpus luteus ND –

Follicular fluid + (95)

RET qRT-PCR (95) Primordial follicles –

- Oocytes ND

Primary follicles –

- Oocytes ND

- Follicular cells ND

Secondary follicles –

- Oocytes ND

- Follicular cells ND

Tertiary follicles (95)

- Oocytes +

- Granulosa cells* +

- Theca cells ND

Corpus luteus ND –

Follicular fluid ND –

GFR-α1 qRT-PCR (95),

WB (95)

Primordial follicles –

- Oocytes ND

Primary follicles –

- Oocytes ND

- Follicular cells ND

Secondary follicles –

- Oocytes ND

- Follicular cells ND

Tertiary follicles (95)

- Oocytes +

- Granulosa cells* +

- Theca cells ND

Corpus luteus ND –

Follicular fluid ND –

*Granulosa cells collectively refer to mural granulosa and cumulus cells.

IF, immunofluorescence; WB, Western blot; IHC, immunohistochemistry; RT-PCR, reverse transcription polymerase chain reaction; qRT-PCR, quantitative RT-PCR; ND, no data.

inhibitory factor, and oncostatin M (103). It was originally

discovered in chick ciliary ganglia (104). However, unlike

other neurotrophic factors (NGF, BDNF, NT-3, NT-4, and

GDNF), CNTF is primarily expressed only in glial cells and is

essentially different from classical target-derived neurotrophic

factors (105–107). In particular, CNTF is known as a pleiotropic

and neuroprotective factor secreted in the brains of patients with

neurodegenerative diseases, such as Huntington’s disease (108,

109); however, its effect on normal embryonic development is

still uncertain. Only one study has reported on the relationship

between IL-6 type cytokines, such as CNTF and human female

germ cell development (110); no significant change in the

levels of expression of leukemia inhibitory factor and CNTF

was observed in human fetal ovaries during the gestational

stage. Nevertheless, the expression levels of glycoprotein-130

and leukemia inhibitory factor receptors, which are receptors

commonly shared by IL-6 type cytokines, significantly increased

during the gestational stage, indicating that the IL-6 type

cytokines play an important role in human fetal ovarian

development. However, due to the pleiotropic characteristics

of CNTF, its role in mammalian reproductive physiology and

neurology remains unclear.
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Conclusion and future aspects

During mammalian embryogenesis, various neurotrophic

factors are associated with the differentiation of cells into

specific tissues and organs. These neurotrophic factors and

their receptors are known to affect ovarian development

because they are present in the mammalian ovary. As shown

in Figure 1 and Table 1, the role of neurotrophic factors

in the porcine ovary is implicated in different events of

early reproduction. However, there are still many unresolved

questions about the physiological roles of neurotrophic factors

in the porcine female reproductive system. Most of the existing

studies have focused and analyzed on follicular growth, oocyte

maturation, and early embryonic development; hence, the effects

of intraovarian neurotrophic factors on follicular assembly,

primordial follicle activation, hormone secretion, ovulation,

and luteinization have not yet been studied. In addition,

excess or deficiency of neurotrophic factors in the mammalian

ovary in the development of reproductive disorders, such as

polycystic ovary syndrome or infertility, is another matter

to be discussed and should be further explained by future

studies.
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