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Microbiology, College of Veterinary Medicine, Michael Okpara University of Agriculture, Umudike,
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Canine parvovirus (CPV) and feline panleukopenia virus (FPV), now included in

the unique speciesCarnivore protoparvovirus 1 (CPPV1), have been circulating

in dogs and cats for several decades and are considered the causes of clinically

important diseases, especially in young animals. While genetic evidence of the

circulation of parvoviruses in Egyptian domestic carnivores has been provided

since 2016, to date, all available data are based on partial fragments of the

VP2 gene. This study reports the molecular characterization of CPPV strains

from Egypt based on the full VP2 gene. Overall, 196 blood samples were

collected fromdogs and cats presented at veterinary clinics for routinemedical

assessment in 2019 in Egypt. DNA extracts were screened and characterized

by real-time PCR. Positive samples were amplified by conventional PCR and

then were sequenced. Nucleotide and amino acid changes in the sequences

were investigated and phylogeny was inferred. Carnivore protoparvovirus DNA

was detected in 18 out of 96 dogs (18.8%) and 7 of 100 cats (7%). Phylogenetic

analyses based on the full VP2 gene revealed that 9 sequenced strains clustered

with di�erent CPV clades (5 with 2c, 2 with 2a, 1 with 2b, and 1 with 2)

and 1 strain with the FPV clade. All three CPV variants were detected in

dog and cat populations with a predominance of CPV-2c strains (7 of 18,

38.9%) in dog samples, thus mirroring the circulation of this variant in African,

European, and Asian countries. Deduced amino acid sequence alignment

revealed the presence of the previously unreported unique mutations S542L,

H543Q, Q549H, and N557T in the Egyptian CPV-2c strains.
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Introduction

Canine parvovirus (CPV) and feline panleukopenia virus

(FPV) [species Carnivore protoparvovirus 1 (CPPV 1), genus

Protoparvovirus, family Parvoviridae] have been circulating

globally in domestic dog and cat populations for several decades

(1, 2). These viruses are highly pathogenic in their hosts,

especially in young puppies and kittens, causing a severe enteric

disease and requiring systematic vaccination for its prevention

(3). Parvoviruses are small (diameter of 25 nm), non-enveloped

viruses infecting vertebrates and insects. The virion consists of

a spherical capsid, which is composed by three proteins (VP1,

VP2, and VP3), with VP2 forming two-thirds of the capsid and

being responsible for host range and immune response (4). The

genome is a positive-sense, single-stranded DNA (4.5–5.5 kb),

with complex hairpin-like structures at the 5
′
and 3

′
ends. The

coding region of the genome contains two major expression

cassettes, with open reading frames (ORFs) on the left-hand

side giving rise to non-structural (NS) proteins (ORF1), whereas

mRNA populations responsible for translating structural protein

(viral proteins; VPs) are transcribed from the right-hand cassette

(ORF2) (1, 2, 5).

Feline panleukopenia virus has been known since 1928 (6, 7)

and is genetically and antigenically similar to CPV (8). CPV

was first identified in the late 1970s when severe hemorrhagic

gastroenteritis and myocarditis were reported in puppies (9).

The virus was initially designated CPV-2 to distinguish it from

the genetically unrelated CPV type 1 (currently known as

Carnivore bocaparvovirus 1), but nowadays, CPV-2 generally

refers to the original strain (3). It is speculated that CPV-2 has

evolved from FPV after crossing the species barriers by acquiring

a few amino acid mutations in the VP2 protein (10, 11). Shortly

after its emergence, CPV-2 started evolving, thereby generating

three antigenic variants, namely, CPV-2a, 2b, and 2c, which

spread and substituted the original strain (12–16). CPV has

shown a higher mutation rate than FPV, with the capsid protein

gene mutating faster than the NS regions of the genome (17, 18).

Consequently, the hypervariable VP2 protein remains the focus

in CPV characterization. The numerous mutations reported

over the years are postulated to provide advantages to the virus

in the form of antigenic variation, capsid stability, and improved

receptor-binding capacity, thus extending the host range and

increasing the pathogenicity of new variants of the virus (13, 15,
19). The ability of these viruses to infect several wild carnivores

further complicates their control as spillover infections occur

from these animals to domestic pets and vice versa (20–22). CPV
has also been shown to have gained the ability to infect domestic

cats (23), highlighting the need for constant surveillance of these

carnivores alongside the canine species.

The first report on CPV in Egypt dates back to 1982 (24).

Since then, all three variants of the virus have been reported

along with FPV (25–28). However, the presence of these viruses

was assessed by serological tools or by molecular amplification

of short fragments of the VP2 gene, providing limited genetic

information on the circulation of CPPVs in Egypt. In the present

paper, we report the characterization of CPPV strains from

Egyptian domestic carnivores on the basis of the analysis of the

full VP2 gene.

Materials and methods

Sample collection

A total of 196 blood samples previously collected from dogs

(n = 96) and cats (n = 100) presented at the veterinary clinics

for bacteriological surveillance from August to September 2019

were included in this study.

Samples were briefly stored at −20◦C at the collection

points and subsequently transported under a cold chain to

the Infectious Diseases Unit of the Department of Veterinary

Medicine, University of Bari for analysis. The samples were

obtained from Cairo (n = 125) and Giza (n = 71), Egypt

(Figure 1), and general information regarding the animals

were collected.

DNA extraction and screening for CPPV
DNA

Viral DNA was extracted from the samples using the

IndiSpin Pathogen Kit (Indical Bioscience GmbH, Leipzig,

Germany), following the instructions of the manufacturer, and

stored at−80◦C until use. Quantification of extracted DNA was

performed with the Fluorometric Qubit dsDNAHigh Sensitivity

Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA). The

quality of the extracted DNA was compared by measuring

the concentration and purity using a UV Spectrophotometer

(NanoDropTM 1000, Thermo Fisher Scientific). Testing of

samples was done in three steps, the first of which involved the

screening for the presence of CPV/FPV DNA using a real-time

PCR (qPCR) assay based on TaqMan technology (29). This was

followed by the characterization of positive samples by minor

groove binder (MGB) probe-based qPCR assays to differentiate

CPV types 2a/2b and 2b/2c and to discriminate between CPV

and FPV (30) (Supplementary Table 1). Real-time PCR assays

were performed using iTaqTM Universal Probes Supermix (Bio-

Rad Laboratories SRL, Segrate, Italy). To evaluate the sensitivity

of qPCR assays, 10-fold serial plasmid dilutions (108-100 DNA

copy numbers per µl) containing the VP2 portion targeted

by qPCR assays were used as templates. The repeatability was

determined using four different DNA concentrations of CPPV

tested. Concentrations of the DNA standard 102, 103, 105,

and 107 DNA copy numbers per µl were tested and analyzed

by qPCR. A total of 10 samples per reaction were tested
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FIGURE 1

Shape files of study locations were obtained from the ArcGIS online map tools and imported for visualization into ArcGIS version 10.8.1

Redlands, CA: Environmental Systems Research Institute, Inc., 2020.

to estimate the intra- and inter-assay coefficients. For intra-

assay variability, each dilution was analyzed in triplicate. To

evaluate the inter-assay precision of the assay, each dilution

was analyzed in different runs performed by two different

laboratory technicians on different days. The coefficient of

variation (CV) was determined following the formula: CV= [SD

(Ct-value)/overall mean (Ct-value)]× 100.

Variable categorization and analyses

Data collated regarding clinical signs, age, and sampling

location were sorted and inputted into Microsoft Excel

(Microsoft Corporation, Redmond, WA, USA). Further, data

were exported into SPSS (version 22; IBM Corp., Armonk,

NY, USA), where descriptive and inferential statistical analyses

were conducted. Age, clinical signs, and sampling location were

categorized with corresponding cell values assigned in a “2× 2”

contingencymatrix and the association between CPPV positivity

and categorized variables was assessed by the chi-square test. p

< 0.05 was considered statistically significant.

Mapping

Shape files of study locations were obtained from the ArcGIS

online map tools and imported for visualization into ArcGIS

version 10.8.1 Redlands, CA: Environmental Systems Research

Institute, Inc., 2020 (Figure 1).

VP2 gene amplification and sequencing

VP2 gene was amplified in two overlapping fragments

from samples that tested positive by qPCR, using primer sets

previously described (17, 31) (Supplementary Table 1). Each 50
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µl PCR reaction contained 5 µl of DNA extract, TaKaRa LA

Taq TM Kit (Takara Bio Europe S.A.S. Saint-Germain-en-Laye,

France), consisting of 24.5 µl of PCR grade water, 5 µl of

10× buffer, 5 µl of MgCl2 (25mM), 1 µl of forward and

reverse primers (50µM), 8 µl of deoxynucleotide triphosphates

(dNTPs) (2.5mM), and 0.5 µl of Takara La Taq polymerase (5

U/µl). Initial denaturation was set at 94◦C for 2min, followed

by 40 cycles of denaturation at 94◦C for 1min, 30 s annealing

at 59◦C for 1min and extension at 68◦C for 2min, and a final

extension at 68◦C for 10min. A DNA extract of an FPV vaccine

(Vanguard R© Feline RCP, Zoetis) and nuclease-free water were

included as positive control and blank, respectively. The PCR

products were electrophoresed in a 1.5% agarose gel at 80V

for 40min and the amplification bands were visualized on a

Gel DocTM EZ (Bio-Rad Laboratories SRL, Segrate, Italy), using

Image LabTM software.

Sequencing and sequence analysis

Purification of PCR products was performed by QIAquick

PCR Purification Kit (Qiagen GmbH, Hilden, Germany),

followed by nucleotide (nt) sequencing in both directions by

the Sanger method using BigDye 3.1 Ready Reaction Mix

(Applied Biosystems), according to the instructions of the

manufacturer. Generated reads were edited, and contigs were

assembled using Geneious Prime version 2021.1 (Biomatters,

Auckland, New Zealand). Related sequences were explored

using web-based tools Basic Local Alignment Search Tool

(BLAST; https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=

BlastSearch) and FAST-All (FASTA; https://www.ebi.ac.uk/

Tools/sss/fasta/nucleotide.html). The obtained sequences were

aligned with reference CPPV sequences retrieved from the

GenBank database by the multiple alignment using fast Fourier

transform (MAFFT) algorithm (32).

Sequence submission

Nucleotide sequences of strains EGY/2019/39-122,

EGY/2019/39-134, EGY/2019/39-161, EGY/2019/39-167,

EGY/2019/39-168, EGY/2019/39-178, EGY/2019/39-200,

EGY/2019/39-517, EGY/2019/39-549, and EGY/2019/39-566

used for phylogeny were deposited in the GenBank under the

accession nos. OM937907, OM937916.

Phylogenetic analysis

The most appropriate model of evolution for phylogenetic

analysis on the full VP2 gene of CPPV strains was evaluated

using a jModelTest software (http://evomics.org/resources/

software/molecular-evolution-software/modeltest/). The

identified program settings for all partitions, under the Bayesian

Information Criteria, included 5-character states (general time-

reversible model), a proportion of invariant sites, and a discrete

gamma distribution (6 categories) of rate variation across sites.

TABLE 1 Inferential statistics testing the association between socio-demographics, clinical signs, and disease outcome in the sampled dogs and

cats.

PCR

Animal species Agent Variable Category Positive N (%) Negative N (%) df p-value

Dog CPV Location Cairo 1 (5.6) 24 (30.8) 1 0.021

Giza 17 (94.4) 54 (69.2)

Total 18 (100.0) 78 (100.0)

Clinical signs Anemia 2 (11.1) 32 (41.0) 2 0.03

Fever 12 (66.7) 28 (35.9)

Low weight 4 (22.2) 18 (23.1)

Total 18 (100.0) 78 (100.0)

Age ≤6 months 17 (94.4) 75 (96.2) 1 0.571

>6 months 1 (5.6) 3 (3.8)

Total 18 (100.0) 78 (100.0)

Cat FPV/CPV Clinical signs Anemia 2 (28.6) 11 (11.8) 2 0.381

Fever 4 (57.1) 73 (78.5)

Low weight 1 (14.3) 9 (9.7)

Total 7 (100.0) 93 (100.0)

Age ≤6 months 7 (100.0) 90 (96.8) 1 0.803

>6 months 0 (0.0) 3 (3.2)

Total 7 (100.0) 100 (100.0)
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TABLE 2 Summary table of nucleotide and amino acid substitutions in the VP2 region of carnivore protoparvoviruses (canine parvovirus 2, CPV-2

and feline panleukopenia virus, FPV) detected in blood samples of dogs and cats in Egypt as compared to reference strains used for the phylogeny

(Figure 2).

aa position 13 219 297 386 418 426 440 542 543 549 557

Nucleotide position (37–39) (655–

657)

(889–

891)

(1,156–

1,158)

(1,252–

1,254)

(1,276–

1,278)

(1,318–

1,320)

(1,624–

1,626)

(1,629–

1,320)

(1,645–

1,647)

(1,669–

1,671)

CPV-2/EGY/2019/dog/39-122-OM937907 P

(CCT)

V

(GTA)

S

(TCT)

K

(AAA)

T

(ACT)

N

(AAT)

T

(ACA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

CPV-2a/EGY/2019/cat/39-549-OM937915 P

(CCT)

I

(ATA)

A

(GCT)

Q

(CAA)

I

(ATT)

N

(AAT)

A

(GCA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

CPV-2a/EGY/2019/dog/39-200-OM937913 S

(TCT)

I

(ATA)

A

(GCT)

Q

(CAA)

I

(ATT)

N

(AAT)

A

(GCA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

CPV-2b/EGY/2019/cat/39-517-OM937914 P

(CCT)

I

(ATA)

A

(GCT)

Q

(CAA)

I

(ATT)

D

(GAT)

A

(GCA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

CPV-2c/ EGY/2019/dog/39-134-OM937908 P

(CCT)

I

(ATA)

A

(GCT)

Q

(CAA)

I

(ATT)

E

(GAA)

T

(ACA)

L

(CTC)

H

(CAT)

Q

(CAA)

N

(AAC)

CPV-2c/EGY/2019/dog/39-168-OM937911 P

(CCT)

I

(ATA)

A

(GCT)

Q

(CAA)

I

(ATT)

E

(GAA)

T

(ACA)

S

(TCT)

Q

(CAA)

Q

(CAA)

N

(AAC)

CPV-2c/EGY/2019/dog/39-161-OM937909 P

(CCT)

I

(ATA)

A

(GCT)

Q

(CAA)

I

(ATT)

E

(GAA)

T

(ACA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

CPV-2c/EGY/2019/dog/39-167-OM937910 P

(CCT)

I

(ATA)

A

(GCT)

Q

(CAA)

I

(ATT)

E

(GAA)

T

(ACA)

S

(TCT)

H

(CAT)

H

(CAC)

T

(ACC)

CPV-2c/EGY/2019/dog/39-178-OM937912 P

(CCT)

I

(ATA)

A

(GCT)

Q

(CAA)

I

(ATT)

E

(GAA)

T

(ACA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

FPV/EGY/2019/cat/39-566- OM937916 P

(CCT)

I

(ATA)

S

(TCT)

Q

(CAA)

I

(ATT)

N

(AAT)

T

(ACA)

S

(TCT)

H

(TAC)

Q

(CAA)

N

(AAC)

CPV-2/CHN/2019/dog/CC-33-MN810900 P

(CCT)

V

(GTA)

S

(TCT)

K

(AAA)

T

(ACT)

N

(AAT)

T

(ACA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

CPV-2/IND/2011/dog/vac4-JN625222 P

(CCT)

V

(GTA)

S

(TCT)

K

(AAA)

I

(ATT)

N

(AAT)

T

(ACA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

CPV-2/ITA/2005/dog/388.05-3-FJ222824 P

(CCT)

V

(GTA)

S

(TCT)

K

(AAA)

I

(ATT)

N

(AAT)

T

(ACA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

CPV-2/USA/1979/dog/5.us.79-EU659116 P

(CCT)

I

(ATA)

S

(TCT)

Q

(CAA)

I

(ATT)

N

(AAT)

T

(ACA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

CPV-2/USA/1990/dog/790312-M38245 P

(CCT)

I

(ATA)

S

(TCT)

Q

(CAA)

I

(ATT)

N

(AAT)

T

(ACA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

CPV-2/USA/1988/dog/N-M19296 P

(CCT)

I

(ATA)

S

(TCT)

Q

(CAA)

I

(ATT)

N

(AAT)

T

(ACA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

CPV-2a new/CHN/2018/dog/AHmas16-MT648208 P

(CCT)

I

(ATA)

A

(GCT)

Q

(CAA)

I

(ATT)

N

(AAT)

A

(GCA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

CPV-2a/CHN/2015/dog/BJL1-MH106698 P

(CCT)

I

(ATA)

A

(GCT)

Q

(CAA)

I

(ATT)

N

(AAT)

A

(GCA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

CPV-2a/IRN/2020/dog/22-MW653250 P

(CCT)

I

(ATA)

A

(GCT)

Q

(CAA)

I

(ATT)

N

(AAT)

A

(GCA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

CPV-2a new/CHN/2016/dog/10-MF805798 P

(CCT)

I

(ATA)

A

(GCT)

Q

(CAA)

I

(ATT)

N

(AAT)

A

(GCA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

CPV-2a new/IND/2018/dog/TN-MH545963 P

(CCT)

I

(ATA)

A

(GCT)

Q

(CAA)

I

(ATT)

N

(AAT)

A

(GCA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

(Continued)
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TABLE 2 Continued

aa position 13 219 297 386 418 426 440 542 543 549 557

CPV-2a/IND/2020/dog/ABT03-MT441832 P

(CCT)

I

(ATA)

A

(GCT)

Q

(CAA)

I

(ATT)

N

(AAT)

A

(GCA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

CPV-2a/URY/2011/dog/recUY364-KM457139 P

(CCT)

I

(ATA)

A

(GCT)

Q

(CAA)

I

(ATT)

N

(AAT)

A

(GCA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

CPV-2b/THA/2015/dog/VT123-KP715712 P

(CCT)

I

(ATA)

A

(GCT)

Q

(CAA)

I

(ATT)

D

(GAT)

T

(ACA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

CPV-2b/TUR/2020/dog/I1-MW539053 P

(CCT)

I

(ATA)

A

(GCT)

Q

(CAA)

I

(ATT)

D

(GAT)

A

(GCA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

CPV-2c/CHN/2020/dog/XA-1-MZ506743 P

(CCT)

I

(ATA)

A

(GCT)

Q

(CAA)

I

(ATT)

E

(GAA)

T

(ACA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

CPV-2c/CHN/2020/dog/ZJHN-136-MW017617 P

(CCT)

I

(ATA)

A

(GCT)

Q

(CAA)

I

(ATT)

E

(GAA)

T

(ACA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

CPV-2c/CHN/2017/dog/SH1516-MG013488 P

(CCT)

I

(ATA)

A

(GCT)

Q

(CAA)

I

(ATT)

E

(GAA)

T

(ACA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

CPV-2c/CHN/2019/dog/AHhf27-MT648203 P

(CCT)

I

(ATA)

A

(GCT)

Q

(CAA)

I

(ATT)

E

(GAA)

T

(ACA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

CPV-2c/ITA/2017/dog/IZSSI_2743_17-MF510157 P

(CCT)

I

(ATA)

A

(GCT)

Q

(CAA)

I

(ATT)

Glu

(GAA)

T

(ACA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

CPV-2c/NGA/2018/dog/IZSSI_PA1464-MT840293 P

(CCT)

I

(ATA)

A

(GCT)

Q

(CAA)

I

(ATT)

E

(GAA)

T

(ACA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

CPV-2c/ROU/2019/dog/161-MW659473 P

(CCT)

I

(ATA)

A

(GCT)

Q

(CAA)

I

(ATT)

E

(GAA)

T

(ACA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

CPV-2c/THA/2016/dog/CU24-MH711894 P

(CCT)

I

(ATA)

A

(GCT)

Q

(CAA)

I

(ATT)

E

(GAA)

T

(ACA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

CPV-2c/VNM/2013/dog/HCM-7-LC214969 P

(CCT)

I

(ATA)

A

(GCT)

Q

(CAA)

I

(ATT)

E

(GAA)

T

(ACA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

CPV-2c/CHN/2016/dog/YZ1-MF001435 P

(CCT)

I

(ATA)

A

(GCT)

Q

(CAA)

I

(ATT)

E

(GAA)

T

(ACA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

CPV-2c/NGA/2018/dog/IZSSI PA1464/19

idYV2-MK895486

P

(CCT)

I

(ATA)

A

(GCT)

Q

(CAA)

I

(ATT)

E

(GAA)

T

(ACA)

S

(TCT)

H

(CAT)

Q

(CAA)

N

(AAC)

FPV/THA/2020/cat/TRC-B88-MW589472 P

(CCT)

I

(ATA)

S

(TCT)

Q

(CAA)

I

(ATT)

N

(AAT)

T

(ACA)

S

(TCT)

H

(TAC)

Q

(CAA)

N

(AAC)

FPV/THA/2018/cat/18R217C-MN127779 P

(CCT)

I

(ATA)

S

(TCT)

Q

(CAA)

I

(ATT)

N

(AAT)

T

(ACA)

S

(TCT)

H

(TAC)

Q

(CAA)

N

(AAC)

FPV/CHN/1999/tiger/G-MG764510 P

(CCT)

I

(ATA)

S

(TCT)

Q

(CAA)

I

(ATT)

N

(AAT)

T

(ACA)

S

(TCT)

H

(TAC)

Q

(CAA)

N

(AAC)

FPV/IND/2018/cat/TN-MH559110 P

(CCT)

I

(ATA)

S

(TCT)

Q

(CAA)

I

(ATT)

N

(AAT)

T

(ACA)

S

(TCT)

H

(TAC)

Q

(CAA)

N

(AAC)

FPV/SKR/2017/cat/Gigucheon-MN400978 P

(CCT)

I

(ATA)

S

(TCT)

Q

(CAA)

I

(ATT)

N

(AAT)

T

(ACA)

S

(TCT)

H

(TAC)

Q

(CAA)

N

(AAC)

FPV/ITA/2003/cat/189.03-EU498686 P

(CCT)

I

(ATA)

S

(TCT)

Q

(CAA)

I

(ATT)

N

(AAT)

T

(ACA)

S

(TCT)

H

(TAC)

Q

(CAA)

N

(AAC)

FPV/ITA/2017/cat/880007-MW847187 P

(CCT)

I

(ATA)

S

(TCT)

Q

(CAA)

I

(ATT)

N

(AAT)

T

(ACA)

S

(TCT)

Q

(GAC)

Q

(CAA)

N

(AAC)

FPV/ITA/2015/cat/IZSSI_3201_1_15-KX434461 P

(CCT)

I

(ATA)

S

(TCT)

Q

(CAA)

I

(ATT)

N

(AAT)

T

(ACA)

S

(TCT)

Q

(TAC)

Q

(CAA)

N

(AAC)

FPV/USA/1964/cat/4.us_64-EU659112 P

(CCT)

I

(ATA)

S

(TCT)

Q

(CAA)

I

(ATT)

N

(AAT)

T

(ACA)

S

(TCT)

Q

(TAC)

Q

(CAA)

N

(AAC)

(Continued)
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TABLE 2 Continued

aa position 13 219 297 386 418 426 440 542 543 549 557

FPV/AUS/1970/cat/193-X55115 P

(CCT)

I

(ATA)

S

(TCT)

Q

(CAA)

I

(ATT)

N

(AAT)

T

(ACA)

S

(TCT)

Q

(TAC)

Q

(CAA)

N

(AAC)

FPV/CAN/2017/american pine

marten/MAHG-3-MN862745

P

(CCT)

I

(ATA)

S

(TCT)

Q

(CAA)

I

(ATT)

N

(AAT)

T

(ACA)

S

(TCT)

Q

(TAC)

Q

(CAA)

N

(AAC)

Phylogenetic analyses were conducted using MrBayes 4 chains

run for >1 million generations (33, 34) and a bootstrap analysis

with 1,000 pseudoreplicated datasets.

Phylogenetic analyses using other evolutionary models

(maximum likelihood and neighbor joining) were performed

to compare the topology of the phylogenetic trees. Similar

topologies with slight differences in bootstrap values at the

nodes of the tree were observed. Accordingly, the Bayesian tree

was retained.

Results

CPV diagnosis and statistical analysis

In the screening performed using a qPCR assay based on

TaqMan technology, CPPV DNA was detected in a total of 25

animals consisting of 18 of 96 dogs (18.8%) and 7 of 100 cats

(7%) (Table 1). The detection limit of the CPPV qPCR was 101

DNA copy numbers per µl. The qPCR assay expressed a high

repeatability with CV within runs (intra-assay variability) and

between runs (inter-assay variability) that ranged from 0.73 to

1.69% and 0.97 to 2.18%, respectively. Overall, the viral load of

CPPV in samples ranged from 1.6× 101 to 1.1× 105 DNA copy

numbers per µl (mean 7.3 × 103 DNA copy numbers per µl,

median 2.1 × 103 DNA copy numbers per ml). In the MGB

probe-based qPCR assays, the most frequently detected variant

in dogs was CPV-2c (n= 7/18, 38.9%), followed by CPV-2a (n=

2/18, 11.1%), CPV-2b (1/18, 5.6%), and CPV-2 1/18 dog (5.6%).

Due to lower viral load (mean 2.1 × 102 DNA copy numbers

per µl, median 1.1 × 102 DNA copy numbers per µl), 7 of 18

CPV-positive samples (38.9%) identified in dogs could not be

characterized by MGB probe-based qPCR assays. Out of a total

of 7 cats, FPV and CPV-2a were identified in 3 (42.9%) and 2

(28.5%) cats, respectively. One cat (14.3%) tested positive for

CPV-2b, while in another cat (14.3%), the concurrent presence

of CPV-2a and−2c DNA was observed.

The total mean age in weeks of the 100 cats and 96

dogs tested was 13.54 ± 0.5 and 13.69 ± 4.92, respectively.

While all the cat samples tested were collected only from

Cairo, a significantly higher number of CPV-positive dogs

were reported for Giza in comparison to Cairo (p = 0.021).

In addition, a significant association was found between the

presence of CPPV-1DNA and clinical signs, with fever identified

as the most observed clinical sign in disease outcomes (p =

0.03). Similarly, fever was more consistently associated with

feline FPV and CPV than anemia or low weight, although

this association was not statistically significant (p > 0.05).

All positive cat cases occurred in kittens of 6 months of age

or under (n = 7), although without statistical significance

(Table 1).

VP2 sequence and phylogenetic analyses

Out of 25 CPPV strains detected by qPCR, 10 full VP2

sequences (7 from dog samples and 3 from cat samples) were

successfully amplified by conventional PCR and sequenced.

BLAST and FASTA analyses revealed a high nt identity with

other reference sequences from the GenBank database (99.6–

100%) while identity within the sequences from this study was

97.8–100%. By sequence comparison of amino acid (aa) residues

of FPV strains identified in the present study with cognate

reference sequences, no aa substitutions were observed (Table 2).

Conversely, eleven non-synonymous mutations were found in

the CPV sequences from this study, compared to cognate

reference sequences used in the phylogenetic tree (Table 2).

CPV-2 strain EGY/2019/39-122 (OM937907) displayed three aa

substitutions at positions 219 (L→ V), 386 (Q→ K), and 418

(I→ T), while CPV2a strain EGY/2019/39-200 (OM937913)

exhibited two aa substitutions at positions 13 (P→ S) and

440 (T→ A). CPV-2c strain EGY/2019/39-167 (OM937910)

displayed two aa substitutions at positions 549 (Q→ H)

and 577 (N→ T). Unique aa substitutions were observed in

the CPV-2b strain EGY/2019/39-517 (OM937914) at position

440 (T→ A), in the CPV-2c strain EGY/2019/dog/39-134

(OM937908) at position 542 (S→ L), and in the CPV-2c strain

EGY/2019/39-168 at position 543 (H→ Q). All the CPV variants

identified in Egyptian samples displayed aa substitution S→ A

at position 297.

Phylogenetic analysis revealed that 5 strains (EGY/2021/39-

134, EGY/2021/39-168, EGY/2021/39-161, EGY/2021/39-167,

and EGY/2021/39-178) segregated into the CPV-2c clade

together with European, Asian, and Nigerian strains. Strain

EGY/2021/39-517 clustered with Turkish and Thai CPV-

2b strain while with strain EGY/2021/39-200, characterized

as CPV-2a, was immediately basal to the clade. Strain
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FIGURE 2

Bayesian open reading frame (ORF)2-based phylogenetic tree of Carnivore protoparvovirus 1. The tree was elaborated using a 1,755 nt long

alignment of the ORF2 sequence of the Egyptian canine parvovirus (CPV) and feline panleukopenia virus (FPV) strains identified in this study and

the cognate sequences of Carnivore protoparvovirus 1 strains retrieved from the GenBank database. The posterior output of the tree was

derived using a general time-reversible model, a proportion of invariable sites, a gamma distribution of rate variation across sites, and a

subsampling frequency of 1,000. Posterior probability values >95% are indicated at the tree nodes. The black arrows indicate the Egyptian

strains generated in this study. The scale bar indicates the number of nt substitutions per site.

EGY/2021/39-549 segregated into CPV-2a clade together

with other strains identified in China, Middle East, and

Uruguay. Strain EGY/2021/39-122 clustered with CPV-2 strains

retrieved from the USA, Italy, China, and India, while strain

EGY/2021/39-566 segregated with FPV strains identified in

Thailand (Figure 2).
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Discussion

Carnivore protoparvoviruses have maintained their status

as a major cause of mortality, especially in juvenile dogs and

cats globally, despite decades of vaccine use. Mutations in the

hypervariable capsid gene VP2 are of importance as they are

known to influence virus/receptor binding, thereby playing key

roles as determinants of host range and antigenicity (10, 35–38).

These mutant viruses also tend to acquire evolutive advantages,

thriving, spreading, and replacing existing variants, thus, driving

the dynamic epidemiology of CPV across countries. The use of

blood samples in this study rather than feces cannot account for

the overall low detection rate, as in infected animals, viremia is

longer lasting than fecal shedding (39), and CPPVs have been

frequently detected also in the blood of healthy dogs and cats

(40). Previous studies in Egypt based their selection criteria on

the development of diarrhea, followed by positivity to rapid tests,

resulting in the prevalence of 84% and higher (28, 41).

This study confirms the circulation of all three CPV variants

in domestic dog and cat populations from Egypt. CPV is known

to infect cats and has been suggested to contribute to genetic

diversity of CPPV as a consequence of infecting both dogs

and cats (23, 42). CPV infections in cats are usually mild (42)

but clinical cases resembling to feline panleukopenia have been

reported (23). Cats have been also found to shed CPV without

clinical signs (43, 44), serving as reservoir hosts. The present

study, however, cannot rule out the role of other blood-borne

pathogens in the induction of fever in the animals tested. A

lack of vaccination and of history of gastroenteric disease in the

animals limits the interpretation of the clinical significance of

this study.

A significantly higher number of CPV-positive dogs were

reported for Giza (17/71, 23.9%) as compared to Cairo

(1/25, 0.04%) (Table 1). While Cairo is more densely human-

populated, Giza is home to the popular pyramids and attracts a

huge number of tourists from around the world throughout the

year. The intensive movements of people (and their pets) from

diverse origins might favor the introduction of new pathogens

into the region, possibly through fomites. In addition, the

complexity of the host immunity response against the CPPV

vaccine cannot rule out the possibility of a vaccinated animal

getting infected following vaccination or shedding wild-type

virus without clinical signs.

A total of 10 CPPV strains have been characterized in this

study. The CPV-2 strain EGY/2019/39-122 was 100% identical

to isolate CC-33 (MN810900) identified from a dog in China

in 2019. CPV-2 has been sporadically detected in other studies,

usually as a consequence of recent vaccination (45, 46), since

the original strain is no longer circulating in the field, but it is

still contained in a number of vaccines (3). The CPV-2 strain

displayed the presence of Val-219 and Lys-386 as also observed

in the VP2 of the Nobivac R© vaccine (C3) (MG264079) (47), and

Thr-418 has been previously described in CPPV strains from

domestic and wild carnivores (20, 48).

CPV-2a strain EGY/2019/dog/39-200 displayed the

mutation S13P consistently reported in Italy in the last

decades (48–50). Both CPV-2a strain EGY/2019/dog/39-

200 (OM937913) and CPV-2b strain EGY/2019/cat/39-517

(OM937914) displayed the mutation T440A and were closely

related to the isolates from Turkey and Thailand (51, 52). The

T440A mutation was also prevalent in the CPV-2a strains

previously identified in Egypt (53). CPV variants displaying

VP2 changes F267Y, Y342I, and T440A are considered immune

escape mutants, which are likely emerged due to vaccine

pressure, with the role of the 267 mutation still unclear although

it is an unexposed residue (37, 46). Residues 324 and 440 are

located next to the spike residues 423 and 427, respectively (37).

CPV-2c was the predominant variant circulating in domestic

dogs in Egypt, in contrast to earlier reports that accounted for

a limited circulation of CPV-2c in this country (28, 53). The

CPV-2c mutant detected has been also reportedly spreading

in Europe, Asia, and Africa (54–63). This variant was recently

detected in Nigeria (64) and is widespread in this country (63,

64). Considering the rapid spreading of this CPV-2cmutant, and

Egypt being a touristic country, a predominance of this variant

is expected in the next few years.

Amino acid substitutions observed in the CPV2c strains

EGY/2019/39-21-134 (S542L), EGY/2019/39-167 (Q549H,

N557T), and EGY/2019/39-168 (H543Q) were unique and have

not been previously reported.

All CPV variants identified in this study displayed a VP2

with Ala-297, a recent widespread mutation (S→ A) due to host

adaptation (31, 65–70). The residue 297 is under strong positive

selection pressure (68) and mutants displaying such a change

have been considered a subvariant of CPV-2a/2b (46).

The FPV sequence from this study was 99.7% identical to

FPVTRC-B88/TH/2020, which had been detected in the brain of

a cat in Thailand. Overall, the FPV genome has a lower mutation

rate than CPV (18), hence the observation of nt changes with no

effect on the VP2 sequence is more frequent in the former.

A more extensive epidemiological surveillance is needed in

domestic carnivores from Egypt and other African countries

in order to better understand the evolution and variability of

CPPV in geographic areas where the epidemiological data of

these viruses are still scarce.
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