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Background: Currently, many studies have been published on the relationship

between the gut microbiome and knee osteoarthritis. However, the evidence

for the association of gut microbiota with knee osteoarthritis has not been

comprehensively evaluated.

Objective: This review aimed to assess existing results and provide scientific

evidence for the association of low-grade inflammation caused by gut

microbiota disturbances with knee osteoarthritis.

Methods: This study conducted an extensive review of the current literature

using four databases, PubMed, EMBASE, Cochrane Library and Web of Science

before 31 December 2021. Risk of bias was determined using ROBINS and

SYRCLE, and quality of evidence was assessed using GRADE and CAMADARES

criteria. Twelve articles were included.

Results: Studies have shown that a high-fat diet leads to a disturbance of

the gut microbiota, mainly manifested by an increase in the abundance of

Firmicutes and Proteobacteria, a decrease in Bacteroidetes, and an increase

in the Firmicutes/ Bacteroidetes ratio. Exercise can reverse the pattern of gain

or loss caused by high fat. These changes are associated with elevated levels

of serum lipopolysaccharide (LPS) and its binding proteins, as well as various

inflammatory factors, leading to osteoarthritis (OA).

Conclusion: This systematic review shows that a correlation between low-

grade inflammation caused by gut microbiota disturbances and severity of

knee osteoarthritis radiology and dysfunction. However, there was a very small

number of studies that could be included in the review. Thus, further studies

with large sample sizes are warranted to elucidate the association of low-grade

inflammation caused by gutmicrobiota disturbances with osteoarthritis, and to

explore the possiblemechanisms for ameliorating osteoarthritis bymodulating

gut microbiota.
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Introduction

Osteoarthritis (OA) is the most common musculoskeletal

disease and one of the leading causes of disability (1).

Epidemiological surveys show thatmore than 320million people

worldwide suffer from OA, and the prevalence is higher in

women than men. Traditionally, mechanical and genetic factors

have been considered important causes of OA (2, 3). However,

emerging evidence suggests that low-grade inflammation plays

an important role in the development of OA (4), and this

inflammatory state is closely related to the gastrointestinal

microbiota (5).

The gastrointestinal microbiota refers to the sum of

all genetic material and its metabolites of all microbiota

present in the gut (6, 7). The gut microbiota plays an

important role in maintaining the body’s homeostasis, which

underlies human physiology, immune system development,

digestion, fat storage, regulation of angiogenesis, behavior,

development, and detoxification responses. The human gut

microbiota is mainly composed of Firmicutes, Bacteroidetes,

Actinobacteria, Proteobacteria and Verrucobacterium. Among

them, Bacteroidetes and Firmicutes account for more than

98% of the total number of intestinal symbiotic flora of more

than 70 species (8, 9). Studies have shown that a variety

of diseases are associated with specific bacterial sequences

and alterations and disturbances in the composition of the

microbiota (10, 11). At the same time, the gut microbiota plays

a key role in the development and function of the immune

system, as well as in allergic and inflammatory responses (12–

15). Alterations in the microbiome activate the innate immune

system, leading to increased pro-inflammatory cytokines, and

these local and systemic low-grade inflammations contribute to

the development and progression of OA (16, 17).

At present, there are more and more studies on the

correlation between low-grade inflammation caused by

intestinal flora disturbance and OA. It is difficult to

draw conclusions about the consistency of the association

due to different study designs and assessment methods,

so it is unclear whether low-grade inflammation due to

disturbances in the gut microbiota has a different effect on

OA. Given the high prevalence of OA and its significant

socioeconomic burden, it is important to explore the

impact of low-grade inflammation caused by gut microbiota

disturbances on OA.

Methods

Search strategy

We searched comprehensively for articles published before

31 December 2021 using four electronic medical databases

(PubMed, EMBASE, Cochrane Library and Web of Science).

Studies were identified using the search terms “(’gut microbiota’

or ’microbiome’ or ’microbiota’ or ’gut’) and (’Osteoarthritis’ or

’arthritis’ or ’KOA’ or ’OA’) and (’Inflammation’)”.

Selection criteria

Inclusion criteria: (1) clinical and basic research with any

level of evidence; (2) English-language articles published in peer-

reviewed journals; (3) studies on the association of low-grade

inflammation caused by gut microbial imbalances with OA, and

OA Pathogenesis or related-symptoms. Exclusion criteria: (1)

studies with missing data; (2) studies with duplication and poor

scientific method; (3) abstracts, case reports, conference reports,

reviews, editorials, and expert opinions were excluded.

Literature screening and data extraction

Two investigators (WX and HX) independently searched,

selected relevant articles according to the inclusion and

exclusion criteria, read the full text, and extracted data from

the final included literature. Any disagreements were resolved

by an experienced systematic reviewer (BJJ). Differences in data

extraction are resolved by consensus.

After extraction, the data was considered of heterogenous

nature both by study design, measure, and method of

assessment. Therefore, a descriptive analysis approach was

preferred to a metanalysis. Figure 1 for details.

Risk of bias assessment

ROBINS was used to assess the risk of bias in non-

randomized clinical studies (18), and RoB 2.0 (19) was used to

assess the risk of bias in randomized clinical studies. Risk of bias

in preclinical studies was assessed using SYRCLE (20). WX and

HX conduct evaluations independently, and any disagreements

are resolved by consensus.

Study quality assessment

The quality of clinical studies (n = 6) was assessed using

the GRADE method (21) and each study was classified as

’low’, ’moderate’ or ’high’. All studies were ranked ’moderate’ or

’high’. The quality of preclinical studies (n = 6) was assessed

using the Collaborative Approach to Meta-Analysis and Review

of Animal Data from Experimental Studies (CAMADARES)

checklist (Supplementary material) (22, 23). Each study was

scored on a scale from 0 to 10 points, and the overall quality of

included studies was moderate (mean CAMADARES score 4.17,
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FIGURE 1

Literature search and screening flowchart.

range 4–5).WX andHX conduct evaluations independently, and

any disagreements are resolved by consensus.

Results

Study characteristics

The final analysis included 12 studies, 6 of which were

animal studies (24–29) and 6 were clinical studies (5, 30–34).

Regarding clinical trials, 4 were non-randomized observational

studies (5, 30, 33, 34) and 2 were randomized clinical trials

(31, 32). The main characteristics of the included studies are

reported in Table 1.

Most studies used 16S ribosomal RNA (rRNA) gene

sequencing to examine gut microbiota and Enzyme-linked

immunosorbent assay (ELISA) to measure inflammatory

markers. Meanwhile, most studies assessed radiographic or

symptom severity of OA using Western Ontario McMaster

Universities (WOMAC) score, Visual Analog Scale (VAS)

score, scores for articular cartilage structure (ACS) score,

the Osteoarthritis Research Society International (OARSI)

score, synovitis score and Osteophyte size. Overall, various

studies have suggested that there is a certain relationship

between inflammation caused by intestinal flora disturbance

and OA.

E�ects of diet, exercise or probiotics on
gut microbiota

High-fat diet leads to gut microbiota disturbances

and is a common model of low-grade inflammation (35).

Firmicutes, Bacteroidetes and Proteobacteria are the three

major phyla of the gut microbiota (28). High-fat diet cause

disturbance of the gut microbiota, increase endotoxin-

producing bacteria, and decrease bacteria protecting the

intestinal barrier, thereby enhancing bone destruction on

OA in mice. It is mainly manifested by an increase in the

abundance of Firmicutes and Proteobacteria, but a decrease in

Bacteroidetes, and an increase in the Firmicutes/Bacteroidetes

ratio (28).

Exercise reverses high fat diet-induced gut microbiota

disturbances, manifested by decreased abundances of

Firmicutes and Proteobacteria, increased abundance of

Bacteroidetes, and decreased Firmicutes/Bacteroidetes ratios. At

the family level, exercise reversed the unclassified Bacteroidetes,

Lachnospira, Desulfovibrio, Ruminococci, Lactobacillus,

Prevotaceae, Peptostreptococcus, Bifidobacterium, and

Staphylococcus (28).

Two studies suggest that probiotic supplementation reduces

intestinal damage and inflammation, and has great potential in

the treatment of osteoarthritis (27, 31).

Frontiers in Veterinary Science 03 frontiersin.org

https://doi.org/10.3389/fvets.2022.938629
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Xiang et al. 10.3389/fvets.2022.938629

TABLE 1 The main findings of the included studies.

Source Total

No.

Sex Age

Mean(SD)

Assessment

of OA

Assessment of

Inflammation

Main Findings

Huang et al. (30) 25 humans 18 female 62.4(15.8) JSN score,

NHANES-I and

WOMAC score

LPS and LBP LPS is important in the

pathogenesis and severity of

KOA.

Lei et al. (31) 461

humans

241 female Lcs group:

66.5(5.2)

Placebo

group: 67.2(4.8)

WOMAC score

and VAS score

hs-CRP LcS can improve OA by

reducing serum hs-CRP

levels.

Huang et al. (32) 431

humans

all female 54.7(5.64) uCTX-II, JSW

and JSN

LBP, sTLR4 and

IL-6

Plasma LBP and sTLR4

correlate with KOA

progression, suggesting a

role for systemic low-grade

inflammation in KOA

pathogenesis.

Ulici et al. (24) 50 mice all male Younger

12-18

weeks, older

37-48

weeks

ACS, osteophyte

size and synovial

hyperplasia

IL-6, LPS and LBP Factors related to the gut

microbiota promote the

development of OA after

joint injury.

Boer et al. (5) 1427

humans

821 female 56.9 (5.9) knee WOMAC

pain scores and

Kellgren-

Lawrence

radiographic OA

severity scores

the amount of

effusion of knee

Abundance of Streptococcus

species is associated with

increased knee pain and this

association is driven by local

inflammation in the knee

joint. The microbiome is a

possible therapeutic target

for KOA.

Huang et al. (26) 42 mice 6 male and

6 female

8 weeks OARSI score,

Safranin O score

and Synovitis

score

G-CSF, IL-1β, IL-6,

IL-10, IL-17, IP-10,

MCP-1, MIP-1α

and LPS

Changes in the gut

microbiota can promote the

development of OA.

Guan et al. (25) 54 mice 27 male and

27 female

8 weeks DXA, Micro-CT

and OARSI score

MMP-13 Antibiotic-induced gut

dysbiosis reduces serum

lipopolysaccharide levels and

inflammatory response,

resulting in decreased

MMP-13 expression and

improved OA.

Jhun et al. (27) 36 mice male rats 6 weeks modified Mankin

score and Matrix

staining

IL-1β, LPS,

MCP-1, CCR-2,

PPAR-γ, GABA,

MMP3, TIMP1,

TIMP3, SOX9,

COL2A1 and IL-10

Intestinal damage and

inflammation were improved

by L. rhamnosus and own the

therapeutic potential in OA.

Li KF et al. (28) 54 mice all male 8weeks Mankin score and

cartilage

thickness

LPS, TLR-4 and

MMP-13

Exercise can relieve of OA

and chronic inflammation,

which is a potential

therapeutic way for

obesity-related OA.

(Continued)
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TABLE 1 (Continued)

Source Total

No.

Sex Age

Mean(SD)

Assessment

of OA

Assessment of

Inflammation

Main Findings

Dunn et al. (33) 75 humans

and

23 mice

48 women

and 23 male

mice

11 weeks OARSI score LPS and LBP Reveal a microbial DNA

signature in human and

mouse cartilage and identify

strain-specific signatures

within mouse cartilage that

mirror human patterns.

Won et al. (29) mice NA 12 weeks OARSI score,

synovitis score

and Osteophyte

size

TLR-2, TLR-4, LBP

and CD14

LBP and CD14 are necessary

for the exacerbation of

posttraumatic OA cartilage

destruction resulting from

low-grade inflammation.

Loeser et al. (34) 92 humans 69 female Cases 73.7(6.9)

and

controls 70.8(6.4)

WOMAC pain

score, AUSCAN

hand pain score,

ACS score

Safranin-O score

and osteophytes

LPS and LBP The increasement of serum

LPS levels may contribute to

development of OA

associated with obesity.

uCTX-II, urinary (u) C-telopeptide of Type II collagen; JSW, radiographic tibiofemoral joint space width; JSN, joint space narrowing; WOMAC, Western Ontario McMaster Universities;

VAS, Visual Analog Scale/Score; LPS, lipopolysaccharide; LBP, lipopolysaccharide-binding protein; TLR2, Toll-like receptor 2; sTLR4, soluble Toll-like receptor 4; TLR4, Toll-like receptor

4; IL-1β, interleukin-1β; IL-6, interleukin-6; IL-10, interleukin-10; IL-17, Interleukin 17; MCP-1, Monocyte chemoattractant protein-1; CCR2: Recombinant Chemokine C-C-Motif

Receptor 2; MMP3, matrix metallopeptidase 3; MMP-13: matrix metalloproteinase-13; GABA, γ-aminobutyric acid; PPAR-γ, peroxisome proliferator-activated receptor γ; TIMP1,

tissue inhibitor of metalloproteinases 1; TIMP3, tissue inhibitor of metalloproteinases 3; MLI, Meniscal/Ligamentous Injury; METS, Metabolic Syndrome; OA, Osteoarthritis; KOA,

knee Osteoarthritis; ACS, scores for articular cartilage structure; Lcs, Lactobacillus casei Shirota; hs-CRP, high-sensitivity C-reactive protein; OARSI, the Osteoarthritis Research Society

International; GCSF, Granulocyte-colony stimulating factor; IP-10, Interferon Gamma-Induced Protein 10; MIP-1α, Macrophage Inflammatory Protein 1α; CD14, cluster of differentiation

14; AUSCAN, The AUStralian CANadian Osteoarthritis Hand Index;SOX9, SRY-related high mobility group-box gene9; COL2A1, Type II collagen fiber α1 gene; DXA, Dual Energy X-ray

Bone Densitometry.

The influence of intestinal flora
disturbance on OA

Intestinal microbial disturbances increase intestinal

permeability and cause low-grade inflammation throughout

the body, thereby aggravating OA. By transplanting human

microorganisms into mice, it was found that the abundance of

Fusobacterium and Enterococcus faecalis in the transplanted

mice increased, but the abundance of Ruminococcus decreased,

the average systemic concentration of inflammatory markers

increased, and the intestinal increased permeability is associated

with more severe OA (26). At the same time, the serum

estrogen level in OA rats was significantly decreased, which

was correlated with the significant increase in LPS. In

Lactobacillus rhamnosus-treated OA rats, the expression

levels of Monocyte chemoattractant protein-1 (MCP-1) and

its receptors Recombinant Chemokine C-C-Motif Receptor

2 (CCR2), interleukin-1β (IL-1β), matrix metallopeptidase 3

(MMP3) were decreased, while γ-aminobutyric acid (GABA)

and peroxisome proliferator-activated receptor γ (PPAR-

γ), tissue inhibitor of metalloproteinases 1 (TIMP1), tissue

inhibitor of metalloproteinases 3 (TIMP3), SRY-related high

mobility group-box gene9 (SOX9) and Type II collagen fiber α1

gene (COL2A1) and interleukin-10 (IL-10) increased expression

levels (27).

The e�ect of inflammation on OA

Inflammation is a key link in the occurrence and

development of OA. Whether it is inflammation in the plasma

or in the local soft tissue of the joint, it can cause OA.

Studies have shown that stimulation of toll-like receptor

(TLR) signaling can exacerbate invasive OA in mice (29). At

the same time, serum high-sensitivity C-reactive protein (hs-

CRP) levels were correlated with bone and joint WOMAC

score and VAS score (31). Research has shown that, LPS

and lipopolysaccharide-binding protein (LBP) were significantly

associated with activated macrophages and osteophyte severity

in the joints of Knee Osteoarthritis (KOA) patients (30). Guan

et al. also reported that the main indicators of OA, bone volume

over total volume (BV/TV), trabecular thickness (Tb.Th), and

medial femoral condyle (MFC) were positively correlated with

LPS, IL-6, and Tumor necrosis factor-α (TNF-α), and negatively
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correlated with the ratio of Firmicutes and Bacteroidetes (25).

However, not all studies have shown a correlation between

inflammatory markers and osteoarthritis. Studies have shown

no statistically significant association between soluble Toll-like

receptor 4 (sTLR4) or IL-6 and radiographic progression of

OA (32).

Discussions

Our systematic review suggests a link between low-grade

inflammation caused by gut microbiota and osteoarthritis,

but further research is needed in the future. Low-grade

inflammation leads to OA through the production of

inflammatory mediators, including innate immune activation,

macrophage-dominated inflammatory response, Toll-like

receptor (TLR) activation, and complement activation, among

which TLR signaling plays an important role in the pathogenesis

of OA (4, 36–38). Locally injured molecules activate TLRs,

which trigger the secretion of pro-inflammatory substances

and local inflammation in the joints (4, 38). It has been found

that TLR expression is increased in areas of cartilage damage

in OA patients (39). Upregulation of various TLR signaling

components is seen in OA-associated chondrocytes, most

notably LBP and cluster of differentiation 14 (CD14), which are

accessory proteins of multiple TLRs and interact with multiple

signaling molecules including LPS (37, 38).

Studies have shown that gut bacterial products such as

LPS can enter the systemic circulation and affect many organs,

including joints, by causing systemic low-grade inflammation

(30, 40). LPS is an endotoxin associated with the outer

membrane of various Gram-negative pathogens (41) and a

classic innate immune system activator that activates host

immune cells by binding to Toll-like proteins. Meanwhile,

a correlation study between LPS and OA has shown that

human serum LPS levels are associated with osteophyte severity

in OA, and synovial fluid LPS is associated with osteophyte

severity, joint space narrowing, and total pain/function severity

scores (30).

Similar to LPS, LBP has also been shown to be associated

with increased KOA severity in humans (30). LBP is mainly

produced by hepatocytes and is a well-known acute phase

reactant (42). LBP is activated by inflammatory mediators such

as IL-6 and directly or indirectly by LPS itself (43–45). In

humans, LBP triggers a dynamic endotoxin cascade by binding

LPS and transferring it to CD14, which transfers LPS to the Toll-

like receptor 4-myeloid differentiation protein-2 (TLR4-MD-2)

receptor on immune cells; LBP thereby concentrates LPS on

the cell membrane of immune cells, to induce an inflammatory

response (46). LBP binds pro-inflammatory components of

both Gram-positive and Gram-negative bacteria (47), making

it a more prevalent marker of bacterial exposure than LPS

derived only from Gram-negative bacteria (45). Meanwhile,

other studies have shown that LBP is necessary for the

inflammatory cascade triggered by saturated fatty acids and

metabolic endotoxemia (48, 49).

A high-fat diet, an unhealthy dietary pattern that leads

to obesity, altering microbial community structure and reduce

microbial diversity, resulting in an increase in pro-inflammatory

microbiota, thereby increasing intestinal permeability and

circulating levels of LPS. In a high-fat diet model, TLR signaling

plays a key role in low-grade inflammatory pathways (4, 50),

such as toll-like receptor 4 (TLR4) (37, 51, 52), LPS, and LBP

(31), and interleukin 6 (IL-6) (53–55), and have also been

implicated in the inflammatory mechanisms of OA.

Exercise diversifies the gut microbiota and reduces the

Firmicutes/Bacteroidetes ratio (56). This view was validated

in our systematic review (28). At the same time, exercise

produces high levels of endocannabinoids in arthritis patients,

which mediate the gut microbiota to produce anti-inflammatory

substances that reduce pain (57).

Gender variance is one of the factors affecting the prevalence

of OA. A meta-analysis on global incidence and prevalence

of OA in women is 1.69 and 1.39 times as much in males,

respectively (58). Meanwhile, a study found that polymorphism

in growth differentiation factor-5, estrogen-specific receptor-

alpha, and calmodulin-1 has increased the disruption of cartilage

and reduced mRNA and protein synthesis, which increased the

risk of KOA in women (59). Moreover, A prevalence study on

osteoporosis, hypovitaminosis D, and OA found higher rates of

Vitamin D insufficiency and deficiency in women than in men

(60), and there is a correlation between vitamin D deficiency and

OA (61).

Limitations

First, In the analysis of microbial sequencing, the analytical

methods were different across studies involving various regions

(V3-V5) and cut-off points for clusteringOTUswhichmay affect

the results. Second, the gut microbial community analysis by 16S

rRNA sequencing was not used in all studies, which may affect

the consistency of the results. Third, most of them are animal

studies, and there are fewer extensive studies in humans, and

fewer studies on the complexity of the gut microbiota and its

association with OA. Finally, most studies have only observed

changes in gut microbiota and inflammatory factors, but the

underlying mechanisms have not been further explored.

Conclusions

In conclusion, our systematic review provides evidence for

the development of OA due to low-grade inflammation caused

by intestinal flora disturbance. Further studies are needed to

explore the mechanisms involved.
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