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Giardia duodenalis is an important zoonotic protozoon, which can infect a

variety of animals, causing diarrhea and even death of animals or humans. Dairy

cattle have been implicated as important sources of human G. duodenalis.

However, the information about the prevalence and genetic diversity of G.

duodenalis in dairy cattle in China’s Yunnan Province remains limited. This

study investigated the occurrence and multilocus genotyping of G. duodenalis

of Holstein cattle in Yunnan Province, China. A total of 524 fresh fecal samples

of Holstein cattle were randomly collected from 8 farms in Yunnan. In this

study, 27.5% (144/524) of tested samples were positive for G. duodenalis

infection. The highest infection ratio was found in preweaned calves (33.7%),

and the infection rates of postweaned calves, growing cattle, and adult cattle

were 24.5%, 23.0%, and 17.3%, respectively. The sequence analysis of SSU rRNA

gene showed that the predominant assemblage of G. duodenalis in this study

was assemblage E (97.9%, 141/144), whereas assemblage A was identified only

in three samples (2.1%, 3/144). All G. duodenalis-positive samples were further

assayed with nested polymerase chain reaction (PCR) targeting β-giardin (bg),

triosephosphate isomerase (tpi), and glutamate dehydrogenase (gdh) genes,

and 87, 41, and 81 sequences were obtained, respectively. Mixed infection

of assemblages A and E of G. duodenalis was detected in three samples.

Multilocus genotyping yielded 23 multilocus genotypes (MLGs). This is the first

study that reveals the prevalence data of G. duodenalis in Holstein cattle in

Yunnan Province, and the results of this study provided baseline data for the

prevention and control of G. duodenalis infection in Holstein cattle in Yunnan

Province, China.
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Introduction

Giardia duodenalis is one of the most common parasitic

protists that can infect humans, livestock, companionn animals,

and wildlife (1). G. duodenalis has a simple life cycle that

consists of two stages of development (trophozoite and cyst)

(2–4). Trophozoite is the replicative stage that can cause

clinical symptoms of giardiasis, while cyst is the main stage

of infection (5, 6), and the cysts can excyst in the small

intestine when exposed to bile salts and gastric acid. One

G. duodenalis cyst releases two trophozoites that parasitize

the intestinal epithelia of duodenum and jejunum. Cysts are

environmentally resistant and they can survive at 0–8◦C

for 2 months. Successful infection of G. duodenalis can be

established by ingestion of 10–25 cysts (2, 7). G. duodenalis

could lead to acute or chronic diarrhea, abdominal cramps,

nausea, vomiting, weight loss, and malabsorption in the

infected hosts (8, 9), and the severity of clinical symptoms

of Giardiasis is related to the virulence of the genotype of

G. duodenalis (10).

G. duodenalis consists of eight assemblages (A–H), and some

of those aggregates display host specificity (6, 11). Assemblages

A and B of G. duodenalis infect various mammals (e.g., bovines)

(7), assemblages C and D infect dogs and other canines,

assemblage E infects hoofed animals, assemblage F infects cats,

assemblage G infects rodents, and assemblage H infects marine

vertebrates (1, 12). Recently, assemblages C, D, E, and F have

also been found in humans (13–16). Dairy cows are dominantly

infected with G. duodenalis of assemblages A, B, and E (11, 17).

Calves are more frequently infected with zoonotic assemblages

A and B than adult cattle (18). G. duodenalis is one of the

most important parasitic pathogens that causes calf diarrhea

(19). The infection rate of G. duodenalis in cattle ranges from

2 to 89% (20–27). There was a relatively high prevalence of

G. duodenalis infection in cattle in China (28–36). Humans

and other animals can be infected by ingesting food or water

contaminated with Giardia cysts (8, 37). It is clear that cattle

is an important zoonotic reservoir of G. duodenalis and plays

important roles in the cross transmission between humans and

cattle (38, 39).

A previous study has shown that the occurrence of mixed

infection with different assemblages is common in animals

(1). Since the use of multiple markers can obtain more

reliable results for genotyping (1, 40, 41), multilocus sequence

typing (MLST) or multilocus genotypes (MLGs) has been

widely applied to study the population genetic structure of

parasites, detecting and discriminating the mixed infections of

different assemblages (or subassemblages) (42, 43). SSU rRNA,

β-giardin (bg), triosephosphate isomerase (tpi), and glutamate

dehydrogenase (gdh) genes are four commonly used genetic

markers in the genotyping of G. duodenalis. Mixed infection of

G. duodenalis will result in inconsistent genotyping results of

different loci for that bg, tpi, and gdh genes show high genetic

polymorphism (41).

Up to now, the infection data of G. duodenalis in dairy

calves mainly focus on the difference between preweaned

and postweaned stages in China. The prevalence data of G.

duodenalis in dairy cattle remain to be limited in Yunnan,

especially the molecular data. In this study, we investigated

the infection of G. duodenalis in Holstein cattle in some

areas of Yunnan Province by using nested polymerase chain

reaction (PCR) targeting the small subunit ribosomal RNA (SSU

rRNA) gene of G. duodenalis. All positive samples were further

subjected to the gene analysis of bg, tpi, and gdh genes for the

genotyping of G. duodenalis.

Materials and methods

Ethical statements

This study was approved by the Life Science Ethics

Committee of Yunnan Agricultural University with the ethical

code 202109003. Fecal samples were collected from the Holstein

cattle with the permission of the farm owners or managers.

Sample and data collection

From July to November 2021, a total of 524 fecal samples of

Holstein cattle were randomly collected from 8 farms, including

one free-ranging farm and seven intensive feeding farms. The

age of Holstein cattle ranged from newborn to 2 years old. The

collection sites included Dali, Kunming, Qujing, and Chuxiong.

Feces were collected from 422 females and 102 males, and only

18 of them had obvious clinical symptoms of diarrhea. Fresh

fecal samples (10–20 g per cattle) were collected directly from the

rectum using disposable gloves and then transferred separately

into disposable plastic bags, marked with the date, age, and

geographical information. Fecal samples were stored at 4◦Cuntil

used for DNA extraction.

The age of Holstein cattle was classified according to the

Technical Specification for Standardized Scale Breeding and

Production of Dairy Cows (Trial) issued by the Ministry of

Agriculture of the People’s Republic of China. The cattle ≤ 60

days old are preweaned calves, 61–180 days old are postweaned

calves, 181–450 days old are growing cattle, and ≥ 450 days old

are adult cows.

DNA extraction and PCR amplification

Before DNA extraction, stored feces were washed with

distilled water and centrifuged at 3,000× g for 3min; 250mg of

each washed sample was used for DNA extraction individually.
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The DNA of the collected sample was extracted by using

E.Z.N.A.R R© Stool DNA Kit (Omega Bio-Tek Inc., Norcross,

GA, USA) according to the manufacturer’s instructions. The

extracted DNA was stored at−20◦C until use.

All DNA samples were tested with nested PCR that targets

the SSU rRNA of G. duodenalis to determine the infection of

G. duodenalis (44). The bg (45), tpi (46), and gdh (41) genes

were used to determine the subtypes of G. duodenalis. The

primers, annealing temperatures, and the expected product sizes

of nested PCR are listed in Table 1. The nested PCR reaction

of SSU rRNA, bg, gdh, and tpi loci was conducted in a 25-

µl reaction system containing 10 × PCR buffer, 200µM of

each dNTP, 0.4µM of each primer, 1 unit of TaKaRa r-Taq

DNA polymerase (TaKaRa Shuzo Co., Ltd.), and 2 µl of DNA

sample. Dimethyl sulfoxide (DMSO) was added to enhance the

amplification efficiency of nested PCR. The products of the

second nested PCR were subjected to electrophoresis on 1%

agarose gel and photographed by using a gel imaging system.

DNA sequencing

The positive secondary nested PCR products were sent to

Shenggong Bioengineering (Shanghai) Co., Ltd. for bidirectional

sequencing. All sequences obtained in this study were searched

against GenBank by using BLAST, and the Clustal X software

was used for sequence alignment analysis. All representative

nucleotide sequences generated at bg, tpi, and gdh loci in this

study were deposited in the GenBank database under accession

numbers ON773555–ON773581.

Statistical analysis

The chi-square (χ2) test was used to analyze the differences

in G. duodenalis infection in Holstein cattle among different

regions, age, sex, and farming methods. The confidence interval

was set as 95%, and P < 0.05 was considered statistically

significant. All statistical analyses were performed by using the

SPSS20.0 statistical software.

Results

Prevalence and risk factors of Giardia
duodenalis

In this study, 144 samples were G. duodenalis positive, and

the global positive ratio of G. duodenalis was 27.5% (144/524)

(Table 2). G. duodenalis infection was found in all 8 farms,

while the prevalence of G. duodenalis varied from farm to

farm, and the infection rate ranged from 5.6 to 43.7% (Table 2).

The highest infection rate was found in Dali (44.0%, 40/91),

followed by Shilin (40.4%, 23/57) and Wuding (40%, 4/14).

The lowest infection rate was found in Qijiashan Ranch (5.6%,

5/89) in Qujing. This study showed that the prevalence of G.

duodenalis among different regions was significantly different

(χ2 = 57.74, df = 8, P < 0.01). Infection of G. duodenalis was

found in Holstein cattle in all age groups, among which the

highest infection rate (33.7%) was found in preweaned calves.

Adult cattle showed the lowest infection rate (17.3%). The χ2

test showed that the prevalence of G. duodenalis among the

four age groups was significantly different (χ2 = 11.56, df = 3,

P < 0.01) (Table 3). No significant difference was found between

intensive feeding and free-ranging farms (χ2 = 2.95, df = 1,

P > 0.05) (Table 3). By comparing the infection in different

sexes, we found that the infection rate in females and males was

25.6% and 35.3%, respectively. The difference was significant

between female andmale (χ2 = 3.88, df= 1, P < 0.05) (Table 3).

In addition, in this study, no significant difference was found

between diarrhea sample (22.2%) and normal feces (27.7%)

(χ2 = 0.26, df= 1, P > 0.05) (Table 3).

Molecular identification and
polymorphisms of Giardia duodenalis

isolates

Sequence analyses of the amplified 144 SSU rRNA genes

showed that three of them were classified into G. duodenalis

assemblage A (2.1%, 3/144) and the rest of them were a member

of assemblage E (97.9%, 141/144). Of the 144 positive fecal

samples, 60.4% (n = 87) were bg positive, 28.5% (n = 41) were

tpi positive, and 56.3% (n = 81) were gdh positive. Notably,

20.1% (n = 29) of samples were positive for all four genes in

this study.

The bg subtype analysis showed that 9 subtypes of

assemblage E and 1 subtype of assemblage A were identified,

among which 5 subtypes of assemblage E had previously been

identified; for that, there was a 100% similarity to the sequences

available in GenBank with accession numbers of E9 (KY769091,

n = 8), E3 (MK252653, n = 7), E5 (KY769092, n = 6), E1

(MK252651, n = 2), and E2 (MK252652, n = 1); the remaining

4 subtypes represent novel subtypes (Table 4). Assemblage A

shares the same sequence with MK610391 in GenBank. Of the

tpi subtype, 16 subtypes of assemblage E and 2 subtypes of

assemblage A were observed, including 3 subtypes of assemblage

E and 1 subtype of assemblage A with sequences identical

to those in GenBank, namely, E34 (MK252659, n = 9), E17

(MK252661, n= 3), E2 (EF654683, n= 1), and A1 (MK639171,

n = 2). The remaining 13 subtypes of assemblage E and 1

subtype of assemblage A represented novel sequences. At the

gdh locus, 13 subtypes of assemblage E and 1 subtype of

assemblage A were identified, including 5 known subtypes of

assemblage E with sequences identical to those in GenBank,
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TABLE 1 Primers and expected amplicon sizes for PCR detection and amplification.

Gene Primer (sequence 5′-3′) Fragment length

(bp)

Annealing temperature

(◦C)

References

SSU r RNA GIA20: AAGTGTGGTGCAGACGGACTC 292 55 (44)

GIA21: CTGCTGCCGTCCTTGGATGT

RH11: CATCCGGTCGATCCTGCC 59

RH4: AGTCGAACCCTGATTCTCCGCCCAGG

bg G7F: AAGCCCGACGACCTCACCCGCAGTGC 511 50 (45)

G7R: GAGGCCGCCCTGGATCTTCGAGACGAC

GF: GAACGAACGAGATCGAGGTCCG 60

GR: CTCGACGAGCTTCGTGTT

tpi ALF1: AAATIATGCCTGCTCGTCG 530 58 (46)

ALR1: CAAACCTTITCCGCAAACC

ALF2: CCCTTCATCGGIGGTAACTT 62

ALR2: GTGGCCACCACICCCGTGCC

gdh Gdh1: TTCCGTRTYCAGTACAACTC 530 50 (41)

Gdh2: ACCTCGTTCTGRGTGGCGCA

Gdh3: ATGACYGAGCTYCAGAGGCACGT 65

Gdh4: GTGGCGCARGGCATGATGCA

TABLE 2 Occurrence of Giardia duodenalis in Holstein cattle in Yunnan Province.

Sampling site Simple size Number of positive specimens No. positive (%) Odds ratio (95% CI) P

SSU bg tpi gdh

Dali Ouya 40 10 6 2 8 25.0 5.6 (1.8–17.7) <0.01

Juxin 29 4 2 0 1 13.8 2.7 (0.7–10.8)

Heqing 114 27 20 13 20 23.7 5.2 (1.9–14.2)

Dali 91 40 31 14 27 44.0 13.2 (4.9–35.6)

Kunmin Shilin 57 23 13 6 14 40.4 11.4 (4.0–32.3)

Qujing Qijiashan 89 5 2 0 0 5.6 Ref. group

Luliang 69 21 7 2 5 30.4 7.4 (2.6–20.7)

Chuxiong Wuding 35 14 6 4 6 40 11.2 (3.6–34.6)

Total 524 144 87 41 81 27.5

TABLE 3 Risk factors of Giardia duodenalis in Holstein cattle.

Risk factors Sample size No. positive (%) OR (95% CI) P

Age (d) <60 258 87 (33.7) 2.4 (1.4–4.3) 0.009

61∼180 143 35 (24.5) 1.6 (0.8–2.9)

181∼450 13 3 (23) 1.4 (0.4–5.7)

>450 110 19 (17.3) Ref. group

Sex Female 422 108 (25.6) Ref. group 0.049

Male 102 36 (35.3) 1.6 (1.0–2.5)

Farming model Intensive farming 489 130 (26.6) Ref. group 0.086

Free–ranging 35 14 (40) 1.8 (0.9–3.7)

Clinical symptom Asymptomatic 506 140 (27.7) 1.3 (0.4–4.1) 0.6

Diarrhea 18 4 (22.2) Ref. group
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namely, E3 (KY769099, n = 9), E1 (KY769096, n = 8), E14

(KY769097, n = 1), E15 (KY432839, n = 1), and E (MH794177,

n = 1). The remaining 8 subtypes of assemblage E and 1

subtype of assemblage A represented novel subtypes in this

study (Table 4). Of these subtypes, E9 (n = 8, bg subtype), E34

(n = 6, tpi subtype), and E3 (n = 8, gdh subtype) were the

predominant subtypes.

In this study, 29 samples were simultaneously amplified at

all three intra-assemblage variation genetic loci. Notably, 26

samples’ G. duodenalis belonged to assemblage E, including 23

novel assemblage EMLGs (namedMLG-E1 toMLG-E23). Three

samples showed mixed infection with assemblages E and A

(Table 4). MLG-E1 and MLG-E2 were the predominant MLGs

in this study. MLGs were detected only in preweaning calves and

postweaning calves.

Discussion

This study indicated that 27.5% of the tested Yunnan

Holstein cattle were infected withG. duodenalis, which is similar

to the result of dairy cows reported in Hubei (22.6%, 77/339)

(33). The infection rate of G. duodenalis (27.5%) observed in

this study was higher than that of most provinces in China, such

as Jiangsu (20.6%, 281/1,366) (34), Henan (7.2%, 128/1,777)

(35), Xinjiang (13.4%, 69/514) (36), and Hebei and Tianjin

(4.7%, 49/1,040) (47). It was also higher than that of yak in

Qinghai (2.04%, 21/1,027) (48), Tibetan cattle in Tibet (3.8%,

17/442 ) (49), and Yunling cattle in Yunnan (10.49%, 41/391)

(30) but lower than that of calf in Sichuan (41.2%, 26/306)

(50), Guangdong (74.2%, 288/388) (31), and Shanghai (60.1%,

492/818) (32). Compared with G. duodenalis infection in other

countries, the overall infection rate in this study was higher than

that of Thailand (5.0%, 45/900) (51), South Korea (5.6%−12.7%)

(52, 53), Iran (4.2%, 8/192) (54), and Egypt (13.3%, 33/248)

(55). Infection rates are affected by a series of factors, such

as geographical and ecological conditions, animal age, health

status, sampling season, and diagnostic and research methods.

Previous studies have revealed that the prevalence of G.

duodenalis is associated with animal age (35, 56, 57), and the

infection is inversely associated with animal age (8, 58, 59). As

shown in Table 3, the prevalence of preweaned calves in this

study was significantly higher than that of postweaned calves,

and the infection rate of G. duodenalis gradually decreased

with the increase of age. The finding of this study is consistent

with previous reports (34, 60–62). It could be the result that

calves are more susceptible to G. duodenalis than adult cows.

In this study, no significant difference was observed between

intensive feeding and free-ranging farms (χ2 = 2.95, df = 1,

P > 0.05), which is consistent with the findings of a previous

study in Sichuan (50). By comparing the infection ratio between

different sexes, the results of this study showed that the infection

rate in females was 25.59%, while the infection rate in males

was 35.29%, which is statistically significant (χ2 = 3.88, df

= 1, P < 0.05) and contrary to the prevalence data of G.

duodenalis in Hubei (33). G. duodenalis infection showed no

significant correlation between the stool sample types in this

study. This result agreed with the findings of the previous study

in Korea (63), although some studies showed that there was a

statistical association betweenG. duodenalis and the type of fecal

sample (53).

At present, a total of 8 assemblages (A–H) have been found

in G. duodenalis. In this study, two assemblages (assemblages A

and E) were detected in dairy cows, and assemblage E was the

dominant assemblage in this study. In other studies, assemblage

E was also the predominant genotype in dairy cows (1, 32, 35,

36). It has been generally believed that assemblage E is animal-

specific and mostly infects ungulates. However, the occurrence

of assemblage E in human in Australia (9), Brazil (64), and Egypt

(16, 65) has been reported. In this study, zoonotic assemblage

A was observed in Dali and Kunming areas, and assemblage A

found in this study is close to assemblage A found in the human

body. These results indicate that the infected Holstein cattle

of Dali and Kunming could be a potential source of zoonotic

G. duodenalis.

In this study, SSU gene loci-positive samples were further

analyzed by multilocus genes to reveal genetic variation in

G. duodenalis. A total of 9 assemblage E subtypes and 1

assemblage A subtype were identified by using bg locus, 16

assemblage E subtypes and 2 assemblage A subtypes were

identified by using tpi locus, and 13 assemblage E subtypes

and 1 assemblage A subtype were identified by using gdh

locus. The combination of sequence polymorphisms at these

three loci led to the identification of 23 E MLGs, and three

samples had different assemblages at three loci (Table 4). In

this study, G. duodenalis A+E mixed infection was detected

in preweaned and postweaned calves, which is consistent

with other studies in Xinjiang (36), Henan, (35) and Shaanxi

(62) provinces of China and Europe (57). All three genes

were successfully amplified and sequenced from 29 isolates.

A total of 23 MLGs of assemblage E and 3 MLGs of

assemblage E+A were identified by three loci, among which

MLG-E12 and MLG-E16 were the dominating MLGs in

this study.

In this study, there was less overlap for MLGs among

samples. It might be the result that G. duodenalis of

Holstein cattle in Yunnan is rich in genetic diversity (66).

In Guangdong and Sichuan Provinces of China, there was

also a very high genetic diversity of assemblage E, and the

three genetic loci (bg, tpi, and gdh) show high sequence

polymorphism (31, 50). Assemblage E intra-assemblage genetic

recombination may be the cause of high subtype diversity

(41, 67). Previous studies have also shown that successful

amplification rates of the gdh, bg, and tpi loci varied from

8% to 58% (68, 69). The samples that were positive for

SSU showed the negative result for the other 3 genetic loci
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TABLE 4 Multilocus sequence genotypes of Giardia duodenalis assemblage E in Holstein cattle in Yunnan Province.

Isolate Genotype (GenBank accession no.) MLG type (n)a

bg tpi gdh

OY14 E9 (KY769091) E2 (EF654683) E3 (KY769099) MLG E1 (1)

OY17 E5 (KY769092) E36b E3 MLG E2 (1)

HQ24 A1 (MK610391) A10b E36b Mixed 1

HQ30 E3 (MK252653) E37b E37b MLG E3 (1)

HQ31 E5 E38b E1 (KY769096) MLG E4 (1)

HQ45 E5 E39b E1 MLG E5 (1)

HQ71 E9 E40b E3 MLG E6 (1)

HQ84 E9 E41b E14 (KY769097) MLG E7 (1)

HQ87 E5 E34 (MK252659) E1 MLG E8 (1)

HQ90 E9 E42b E3 MLG E9 (1)

HQ93 E9 E43b E38b MLG E10 (1)

HQ102 E9 E44b E3 MLG E11 (1)

DL9, 14, 79 E3 E34 E1 MLG E12 (3)

DL12 E9 E17 (MK252661) E1 MLG E13 (1)

DL24 E36b E45b E15 (KY432839) MLG E14 (1)

DL26 E37b E46b E39b MLG E15 (1)

DL48, 81 E3 E34 E3 MLG E16 (2)

DL67 E3 E34 E40b MLG E17 (1)

DL71 E9 E17 E41b MLG E18 (1)

DL84 E38b E34 E1 MLG E19 (1)

SL16 E1 (KY769095) E34 E (MH794177) MLG E20 (1)

SL37 E39b A1 E42b Mixed 2

SL38 E2 (MK252652) E47b E3 MLG E21 (1)

SL46 E1 A1 AI10b Mixed 3

WD22 E5 E48b E3 MLG E22 (1)

WD28 E5 E17 E43b MLG E23 (1)

aMLG in this study.
bNovel subtype in this study.

(bg, tpi, and gdh), possibly due to the limited sensitivity of

PCR in testing the single-copy gene. This is probably the

main limitation of this study. Despite this drawback, MLGs

provide a necessary tool to identify different genetic variants

within G. duodenalis (4). Further molecular epidemiological

studies are needed to be performed to reveal the molecular

characteristics of G. duodenalis in Holstein cattle in Yunnan

Province, southwestern China.

Conclusion

This is the first MLG characterization study of G. duodenalis

in Holstein cattle in Yunnan Province, southwestern China. In

addition, the factors associated withG. duodenalis infection were

also analyzed. In this study, two assemblages (A and E) of G.

duodenalis were found in Holstein cattle, and assemblage E was

identified as the dominating genotype. The presence of zoonotic

assemblage A in Heqing and Shilin cattle suggests their zoonotic

potential. Multilocus genotyping at bg, tpi, and gdh loci revealed

23 novel assemblage E MLGs and 3 E+A mixed infection in

Holstein cattle. These findings indicate that G. duodenalis of

Holstein cattle in Yunnan is rich in genetic diversity, and the

sequence of each gene locus is quite different. For the limited

sensitivity of PCR, intensive study is required to reveal the

molecular characteristics of G. duodenalis in Holstein cattle

in Yunnan, and it is important to strengthen the surveillance

of this parasitic disease to ensure the health of livestock and

human beings.
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