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Understanding the impact of human behavior on the spread of disease is

critical in mitigating outbreak severity. We designed an experimental game that

emulated worker decision-making in a swine facility during an outbreak. In

order to combat contamination, the simulation features a line-of-separation

biosecurity protocol. Participants are provided disease severity information

and can choose whether or not to comply with a shower protocol. Each

simulated decision carried the potential for either an economic cost or an

opportunity cost, both of which a�ected their potential real-world earnings.

Participants must weigh the risk infection vs. an opportunity cost associated

with compliance. Participants then completed a multiple price list (MPL) risk

assessment survey. The survey uses a context-free, paired-lottery approach

in which one of two options may be selected, with varying probabilities of

a high and low risk payouts. We compared game response data to MPL risk

assessment. Game risk was calculated using the normalized frequency of

biosecurity compliance. Three predominant strategies were identified: risk

averse participants who had the highest rate of compliance; risk tolerant

participants who had the lowest compliance rate; and opportunists who

adapted their strategy depending on disease risk. These findings were

compared to the proportion of risk averse choices observed within the MPL

and were classified into 3 categories: risk averse, risk tolerant and neutral. We

found weak positive correlation between risk measured in our experimental

game compared to the MPL. However, risk averse classified participants in the

MPL tended to comply with the biosecurity protocol more often than those

classified as risk tolerant. We also found that the behavioral risk clusters and
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categorization via the MPL were significantly, yet weakly associated. Overall,

behavioral distributions were skewed toward more risk averse choices in both

theMPL and game. However, theMPL risk assessmentwasn’t a strong predictor

for observed game behavior. This may indicate that MPL risk aversion metrics

might not be su�cient to capture these simulated, situational risk aversion

behaviors. Experimental games have a large potential for expanding upon

traditional survey instruments by immersing participants in a complex decision

mechanism, and capturing dynamic and evolving behavioral signals.

KEYWORDS

experimental games, livestock disease, decision making, computer science,

experimental economics, data science, computational social science

1. Introduction

Understanding how human behavior impacts the spread

of disease is crucial in strengthening agricultural industries.

Our research focuses on building interactive games and

simulations to emulate complex decision-mechanisms that can

impact the well-being of agricultural production networks. This

can be especially useful for testing how people respond to

risk communication strategies in preparation for infectious

disease outbreaks. Here, we compare risk classifications using

a traditional survey-based risk assessment to response data

collected using an experimental game with the goal of helping

to inform decision support during potential disease outbreak

scenarios.

In order to combat disease spread, biosecurity protocols

and the practices that they detail have become prominent

tools, integrated into standard operating procedures among

the agricultural industry (1, 2). These may include forms of

decontamination like truck washes, line of separation protocols,

and other disease preventative measures like vaccinations,

and feed treatment. However, the use and compliance with

biosecurity protocols implemented within farms can vary (3).

Some of these procedures may be onerous or cumbersome and

at times bypassed by workers (4, 5). Motivators of biosecurity

decision making are unclear, but decision ramifications can be

substantial.

Experimental gaming simulations can be used as digital

tools for studying factors that influence behavior and decision-

making, including in various sectors of agriculture (6–12). Since

risk communication is an important tool for education and

nudging behaviors for crisis mitigation (13), several of our

experimental games were designed to test how various risk

communication strategies impact decision-making. In another

experimental game, we simulated biosecurity investment amidst

several outbreak scenarios along pig production supply chains

(6). This allowed us to identify prominent strategies and

behaviors that were used to address conflicts associated with

disease in agriculture (9, 10). In Clark et al. (9), clustering

algorithms (14) were shown to be a useful tool for categorizing

behavioral observations from the experimental game.We’ve also

shown how non-monetary awards and incentives can affect

conservation decisions in farms (11). Experimental gaming

simulations can be applied to quantify situational risk aversion

associated with agricultural decision-making. This may be

especially useful for identifying and accounting for biosecurity

non-compliance among worker populations within agricultural

production networks.

There are many avenues used to assess behavior associated

with confronting risk. One such tool ,MPL risk assessment

(15, 16), has shown potential in quantifying economic risk

preferences. We compare our simulation results with a well-

tested MPL risk assessment strategy, Holt and Laury (16) in

which 10 disjoint binary lotteries are presented, and participants

choose between a safe or risky option. The payouts are

structured such that the probability of success for choosing

the more risky, higher paying option sequentially increases.

Participants generally move from the less to more risky option

as the probability spread between the two choices becomes more

favorable. The proportion of safe choices, and the probability

point at which participants switch from the safe to risky option

can provide a metric for comparing risk aversion profiles.

This general context-free approach has been correlated to real

world behaviors in finance (17). Risk aversion via the MPL was

found to be associated with less participation in negative health

practices, including smoking, excessive alcohol consumption,

and lack of seatbelt compliance (18). Since the MPL-style risk

aversion metrics are context-free, it is unclear how context-

related conflict will influence behavior, given the possibility that

risk aversion may evolve throughout an individual’s experience

with a complex decision mechanism.

Our study uses an experimental game to emulate potential

rule breaking behavior (i.e, non-compliance) with a line of

separation shower protocol within a pig production facility.

The aim of our simulation is to understand under what
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circumstances participants will engage in risky behaviors

during an outbreak scenario. We then compared observed

behavioral risk to a well-tested MPL risk assessment survey.

We hypothesized that risk aversion observed within the

experimental simulation would correspond to risk aversion

measured in the MPL assessment.

2. Methods

The experimental game was originally designed and featured

in Merrill et al. (7). An additional, larger sample of online

participants was recruited for this follow-up study. The

game emulates working in a pig production facility during

an infectious disease outbreak. To begin the experiment,

participants engaged with an introductory slide show to provide

contextual background information and frame the simulated

decision mechanism. Participants then completed a practice

round, featuring an interactive tutorial, in order to acquaint

them with the simulation mechanics. These practices were

accepted by the University of Vermont Institutional Review

Board concerning experiments using human participants

(University of Vermont IRB # CHRBSS-16-232-IRB).

The experimental game was designed using Unity game

development software (Unity Technologies, Version 5.6.3)

and was built for online deployment using webGL (19).

Data were compiled using a relational database. Participants

were recruited using the Amazon Mechanical Turk (MTurk)

survey marketplace (20–22). We motivated participants with

performance based incentives, as a means to bolster immersion

and increase effort throughout the experiment (23). Player

earnings from the experimental simulation were converted at

a rate of $350 simulation dollars to $1 USD. A demo of

the experimental game is hosted here: https://segs.w3.uvm.edu/

demos/compliance/.

During the game, participants controlled a digital avatar

throughout several simulated workdays. Participants were

directed to collect coins, which symbolized indoor tasks, as

well as completion of a single outdoor task per day. When

the outdoor task was initiated, a score timer began ticking

down (see Figure 1). The player then decided to either comply

with the shower-in shower-out biosecurity practice or exit via

the emergency exit. The emergency exit was faster (and thus

more profitable), but risked the possibility that the animals in

the facility could become infected with a disease. Choosing

the shower-in, shower-out biosecurity practice exit effectively

prevented animals from becoming sick. However, the shower-

in, shower-out practice required that the participant wait 5 s

before both exiting and returning to the facility. The time spent

“showering” resulted in lost potential earnings both with the

outdoor task losing value, and with not being able to collect coins

(as inside tasks) upon re-entering the facility. Using observations

from each participant’s gameplay, we can explicitly calculate

this opportunity cost to describe the economic motivations for

breaking compliance. On average participants earned $18.29

(σ = $2.92) simulation dollars per round when using the

shower-in, shower-out biosecurity practice, and $22.42 (σ =

$3.56) when using the emergency exit, if their animals did not

become sick, equating to an estimated $4.13 opportunity cost for

using the biosecurity practice. This accounts to approximately

$99.12 simulation dollars ($0.28 USD) over the course of the 24

experimental scenarios, or “rounds” of gameplay. However, this

opportunity cost was contrasted with the monetary penalty of

contracting an infection. If the player’s facility became infected,

the round ended, and they incurred a monetary penalty ($50

simulation dollars) and lost any experimental dollars they had

accrued during that round. Thus, players were expected to

balance the economic tradeoff regarding completing their tasks

quickly but with the risk of contaminating their facility, or

completing their tasks more slowly (opportunity costs) yet

safely. At the end of each round, or simulated workday, the

next round begins with a new set of experimental treatment

parameters. This continues until all 24 rounds of gameplay are

completed.

Each simulation round was designed to test how participants

will behave under a set of treatments, or initialization factors,

which act as our experimental variables. This allows us

to quantify behavior with respect to a set of predefined

epidemiological parameters and interface modifications to

compare rates of compliance. The risk communication prompts

included one of three types of messages describing the risk

of infection associated with non-compliance with the shower

protocol: 1) a linguistic (i.e., Very Low, Low, Medium, High)

infection probability message, 2) a graphical threat gauge (see

Figure 1), or 3) a discrete numeric or percentile value (i.e.,

25%). These messages corresponded to four probabilities of

infection if participants used the emergency exit: We tested a

1% (Very Low), 5% (Low), 15% (Medium), and 25% (High)

probability of infection. Uncertainty in the decision making

process was also tested by specifying that the disease was

described as having known infection or contagion rates, or

unknown characteristics prompting estimates of infection or

contagion rates. If the disease was described as unknown then

a range of contagion risk rates (e.g., infection risk is very low to

medium with a best estimate of low risk) was provided instead

of a discrete value.

The focus of the experimental simulation was to observe a

participant’s willingness to comply with the shower biosecurity

protocol throughout various risk messaging strategies.

Behavioral risk was quantified using the rate of compliance

throughout the experimental simulation. This was calculated

as the proportion of shower exits throughout each participant’s

gameplay. We then normalized by the total number of decisions

to obtain each participant’s risk score on a scale of 0 to 1: with 0

being risky (all emergency exits) and 1 as risk averse (all shower

exits). The coin collection (indoor tasks) were designed to
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FIGURE 1

Screenshot of the compliance game decision mechanism. Participants can choose to comply with a biosecurity shower protocol carrying an

associated time cost, or bypass via the emergency exit which can subject the facility to infection.

immerse participants within the simulated decision mechanism,

so these were not pertinent for quantifying risk.

To quantify behavioral strategies within the experimental

game, we applied the K-means clustering algorithm (24)

to the observed rates of compliance for each participant.

We administered K-means to the one-dimensional set of

observations calculated using the average rate of compliance

across all 24 experimental scenarios. Although we could have

split these observations by treatment in order to perform a

multi-dimensional analysis, we found the one dimensional case

produced a straightforward distribution of behavioral strategies.

We chose K = 3, using the elbow method by inspection, as

this value optimized the sum of the square errors across each

clustered interval (25, 26) and generated a rational division of

observed behavioral compliance.

Upon completing the experimental simulation, participants

were directed to an exit survey containing a demographic

questionnaire and the MPL assessment derived from Holt ann

Laury (16). Participants were informed that their choices in the

experimental lottery and resultant winnings would be added to

their final compensation. Figure 2 provides the MPL directions

and interface. Here, participants were instructed to choose their

preference across ten disjoint paired lotteries: a safer “Option A”

vs. a more risky “Option B.” The payout between option A is

either $0.60 or $0.50 USD while the payout for the more risky

Option B was $1.10 or $0.05. For example, in the first choice

both “Option A” and “Option B” have a 1/10 chance for the

high payout and 9/10 chance for the low payout. Here, it best to

choose Option A, as Option B has a 90% chance at only earning

a nickel. The probability for the high payout increases by 10%

sequentially per lottery question. This makes the risky “Option

B” more favorable toward the end of the survey. Participants

at some point generally crossover between the safe Option A

and more risky Option B, as the probability spread becomes

more favorable. The final question features a 100% chance for

the high payout, in which “Option B” becomes the optimal and

rationally should be chosen over “Option A.” Participants could

revise their decision up until their final choice, after which a

random number generator selected one of their choices and

issued their corresponding reward. This payout is then added

to their experimental game earnings.

Risk in the MPL was measured using the proportion of

safe “Option A” choices throughout the survey. Following, Holt

and Laury (16) participants with 4 out of 10 safe choices were

classified as risk neutral; more than 4 safe choices were classified

as risk averse; and less than 4 safe choices were considered risk

tolerant. We excluded participants who didn’t choose at least

one safe and one risky option during the MPL portion of the

Frontiers in Veterinary Science 04 frontiersin.org

https://doi.org/10.3389/fvets.2022.962989
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Clark et al. 10.3389/fvets.2022.962989

FIGURE 2

Multiple price list (MPL) survey structure.

experiment, as this was indicative of a lack of understanding of

the paired lottery choice mechanics or a sign of potential survey

fatigue. Data from these participants were also excluded from

the experimental game analysis.

The goal of our study was to compare risk classifications

using the experimental game and the MPL risk assessment.

In particular we aimed to answer the question: Does more

compliance in the experimental game correspond to more risk

aversion in the MPL? To compare distributions of risk between

the experimental game and MPL, we used standard Pearson

linear correlation (27). We compared distributions of simulated

compliance and MPL risk assessment using Mann Whitney

(MW) U-tests (28). We chose a non-parametric test, as both

distributions of compliance and MPL risk failed D’Agostino and

Pearson’s test for normality (29, 30). This allowed us to infer

whether groups of participants categorized by the MPL as risk

tolerant, risk neutral, or risk averse complied more or less with

the simulated biosecurity shower protocol. We also compared

the categorical distributions from the clustering analysis of game

data to MPL risk classification using a Chi Square (χ2) test (31).

The strength of this association was then quantified with Cramer

(32), which is measured on a scale of 0 (no association) to 1

(strong association). Statistics were calculated using Python (v3)

with the SciPy stats module (33).

3. Results

We recruited 1,284 participants using the MTurk online

survey marketplace between March 5th and March 31st, 2021.

Participants were compensated with a base wage of $3.00 for

completing the task and earned an average bonus of $2.72

which included their game performance and MPL earnings. The

median completion time for both simulation and survey was 32

min.

In both the simulation and the MPL assessment, participant

choices were generally skewed toward more risk averse

behaviors, which in the case of the MPL is supported by

previous research (16). Participants in the MPL were classified

as 67.2% risk averse, 17.46% neutral, and 15.41% risk tolerant.

Overall, participants complied with the shower-in, shower-

out biosecurity practice on average 63% of their game play.

Within the simulation, the communicated infection probability

had the strongest impact on compliance with the biosecurity

practices, with 87% average compliance during rounds where

the probability of infection was high vs. 81% during the

medium infection probability rounds, 54% during low infection

probability rounds, and 33% during very low probability rounds.

Risk distributions for each set of experimental treatments as well

as the MPL assessment are given in Figure 3.
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FIGURE 3

Violin plots showing risk distributions calculated for each

experimental game treatment: probability of infection (pinf ) and

disease information uncertainty. The overall risk observed from

the full simulation (i.e., all experimental scenarios) as well as the

MPL calculated risk are given in the final violin plots.

To quantify behavioral strategies within the experimental

game, we applied the K-means clustering algorithm with K = 3.

Cluster 1 contained the most risk averse participants (38%), who

complied most often with the shower protocol throughout each

experimental scenario. In particular, these participants had the

highest compliance rate even when the probability of infection

was both “Low” and “Very Low.” Cluster 2 consisted of the

most risk tolerant individuals (13.8%). They had the least rate of

compliance throughout all experimental scenarios. Participants

in cluster 3, which we refer to as opportunists (48.2%), adapted

their behavior depending on the risk of infection. During

“Medium” and “High” risk rounds, they complied more often

with the shower protocol yet took more risks during rounds

with “Low” and “Very Low” probabilities of infection. The rates

of compliance of each behavioral cluster for each treatment are

given in Table 1.

We found very weak positive correlation between the

compliance rate within the experimental simulation and the

MPL risk assessment (Pearson r = 0.203, p < 0.001,N = 1, 168)

. Risk measured using the MPL was not a strong predictor

of participant’s behavior in the experimental game. That is, a

TABLE 1 Experimental game risk cluster compliance comparison.

Cluster 1 Cluster 2 Cluster 3

(Risk averse) (Risk tolerant) (Opportunist)

(n = 444) (n = 161) (n = 563)

Very Low pinf 0.71 (0.3) 0.06 (0.13) 0.11 (0.19)

Low pinf 0.92 (0.13) 0.08 (0.14) 0.37 (0.23)

Medium pinf 0.98 (0.07) 0.18 (0.22) 0.84 (0.19)

High pinf 0.99 (0.05) 0.29 (0.32) 0.93 (0.16)

Low Uncertainty 0.89 (0.11) 0.15 (0.14) 0.52 (0.11)

High Uncertainty 0.90 (0.11) 0.15 (0.16) 0.60 (0.13)

Full Simulation 0.90 (0.09) 0.15 (0.13) 0.56 (0.10)

Average rates of compliance (and standard deviations) are given for each set of

experimental treatments per risk cluster.

TABLE 2 Experimental game average compliance rates stratified by

MPL risk classification (N = 1,168).

MPL Average game Standard n (%)

classification compliance deviation

Risk Averse 0.66 0.25 784 (67.12%)

Neutral 0.60 0.27 204 (17.46%)

Risk Tolerant 0.55 0.31 180 (15.41%)

participant’s rate of compliance in the experimental game did

not directly relate to their risk aversion score within the MPL.

In this way, we could not adequately determine if a participant

may comply more or less with the shower protocol given their

choices within the MPL.

Participants who did not choose both the low and high risk

option at least once during the MPL assessment were excluded

from the analysis. However, including the data of these 116

participants (9.03% of the sample) would not have changed

the overall findings of our statistical analysis. Specifically, the

correlation between the simulation and MPL risk aversion

metric was still positive, yet slightly lower (Pearson r =

0.173, p < 0.001,N = 1, 284).

We also investigated how compliance rates differed when

grouping participants by their risk classification within the

MPL. In other words, we compiled rates of compliance from

participant’s classified as risk tolerant, neutral, and risk averse

in the MPL to compare whether or not they, as a group, behaved

differently within the game.We found that participants classified

as risk averse via the MPL, complied more often with the

biosecurity shower protocol vs. those classified as risk tolerant

(MW: U = 85, 874.5; p < 0.001). Risk neutral participants

also complied with the shower protocol less than the risk averse

group (MW: U = 90, 655.0, p < 0.01) and more often than

the risk tolerant group (MW: U = 16524.5, p < 0.05). These

results are summed up in Table 2. This shows that the MPL
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TABLE 3 Contingency Table comparing participants who were categorized using the game data clustering analysis (Rows) and classification using

the MPL assessment (columns).

MPL Risk Assessment

Risk tolerant Neutral Risk averse Total

Experimental Cluster 1 (Risk Averse) 52 (11.7%) 62 (14.0%) 330 (74.3%) 444

Game Cluster 2 (Risk Tolerant) 50 (31.0%) 33 (20.5%) 78 (48.4%) 161

Clusters Cluster 3 (Opportunist) 78 (13.9%) 109 (19.4%) 376 (66.8%) 563

Total 180 204 784 1,168

For each observed frequency, the percentage of the category (row) count is given in parentheses.

classification can be useful to capture group behavioral dynamics

(i.e., belonging to one of these groups may allow us to infer

whether the individual may be more prone to risky behaviors

comparatively).

Finally, we compare the 3 risk clusters found within the

experimental game to the MPL risk categories: Risk Averse,

Neutral, and Risk Tolerant. Using a Chi-Square test, we

found that these categorical distributions were related [χ2 =

47.33, p < 0.0001 ]. To measure the strength of the association

between distributions we calculated Cramér’s V as 0.142. This

shows that although these categorical distributions are related,

the association is relatively weak. The contingency table for each

of the observed counts of these categorical distributions is given

in Table 3.

4. Discussion and conclusion

Experimental gaming simulations can provide a unique

lens for quantifying behavioral risk. Contextual framing allows

for these simulations to elicit particular behaviors of interest

in comparison to generalized survey methods. Combining

economic risk aversion metrics derived from traditional survey

methodologies along with behaviors captured via simulation

may help build risk profiles that better capture how human

behavior may impact the resiliency of these systems.

Risk communication strategies are important tools for

mitigating disease spread among other crisis situations (13).

Experimental games are well suited to test the influence of

risk communication strategies on behavior in these types

of contrived instances. Our simulations have shown that

the type of risk communication strategy can have a large

impact on behavior (7). Our clustering analysis identified the

most prominent behavioral strategies driving non-compliance.

Participants classified as risk averse complied with the shower

protocol most often, while the risk tolerant and opportunists

took more liberties with risking infection for a potential

higher payout. All groups increased their compliance with the

communicated probability of infection, albeit at different rates.

The risk averse cluster bolstered very high rates of compliance,

even when the risk of infection was very low. The risk tolerant

were the least responsive to risk messaging, exhibiting high

rates of non-compliance even during scenarios with high rates

of infection. The opportunists were very responsive to the

risk messaging and changed their strategy based upon the

rate of contagion; adopting more risk as the probability of

infection decreased. Experimental games can be used to identify

how risk messaging impacts behavior and can help us adjust

communication strategies accordingly. These malleable, digital

tools are well suited for observing behaviors that may be difficult

to capture in the real-world.

MPL risk assessment was not a strong predictor of simulated

biosecurity compliance at the individual level. However, we did

find when grouping participants via their MPL assessment, the

risk averse participants complied with the biosecurity shower-

in, shower-out practice more often than those classified as risk

tolerant. We also found that the compliance rate of MPL-

classified risk neutral participants was sandwiched between the

risk averse and risk tolerant participants’ rate of compliance

observed during game play. This is interesting as it indicates

that a portion of the behavioral signal regarding biosecurity

compliance is preserved within the MPL assessment. It is also

noteworthy that the MPL risk assessment can be administered

without computers and thus may presently be better equipped

for sampling low income populations, especially in countries

lacking internet access. This shows, from a broad perspective,

the MPL risk aversion assessment can be a useful option as it is

lightweight and easily deployable in comparison to experimental

games.

We should also note that the MPL risk assessment was

administered directly after the experimental game. It is possible

that the experience within the game may have had a priming

effect on our participants. Though in our case, the MPL and

experimental game were very different thematically; one testing

pure economic risk aversion while the other simulated risk

associated with animal disease spread. It is still possible that

the profits and losses experienced within the game could have

had some influence on the behavioral risk exhibited within the
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MPL. However, since the risk distributions of the MPL were

found to align with previous research, this suggests the order of

administration did not have a large impact on our findings, but

should be considered in future experiments.

Although MPL risk assessment has many useful

applications, the contextual framing provided by experimental

games may be better equipped for targeting situational risk

and capturing nuanced behaviors at the individual level. Our

results show that group behaviors may be inferred using the

MPL classification, however could not be reliably applied to

the individual. This may suggest that pure economic risk does

not fully translate to situational risk, even when the monetary

drivers may be comparable. This may be a consequence of the

contextual framing embedded within the experimental game.

One’s actions within the simulated world had an effect on the

well-being of a farm and livestock health. This immersion factor

may have played a role in motivating individuals to behave

differently as opposed to purely economic motivators to achieve

a higher payout. This substantiates the use of experimental

games for studying complex decision mechanisms and for

building circumstantial risk profiles. Identifying behavioral risk

in this way can help us better understand the decision-making

process, and allow us to study how best to intervene or nudge

human behavior toward safer practices.

Identifying risk profiles is pertinent for modeling disease

spread across agricultural production networks. Agent

based modeling approaches (34–37) can be implemented to

simulate disease spread scenarios and economic impacts across

supply chain networks (38). Incorporating human behavior

components into these models can vastly impact the projections

of disease spread (39). Experimental simulations can help

inform these models to make more realistic epidemiological

forecasts. In particular, using outcomes from experimental

games (i.e., rates of compliance) to informmodeling approaches

can be useful in projecting potential damages to the supply

chain. Within the model, agents’ decision heuristics can

be adapted from behavioral strategies observed within

the experimental game. Experimental games can help us

identify realistic and prominent behavioral strategies along

with distributions of risk profiles to parameterize modeling

initiatives. This can help industry professionals account for

these outcomes and work toward strengthening our systems

against disease spread.

Quantifying emergent strategies using experimental

games can help us better understand the broad behaviors

most prominently driving outcomes within these scenarios.

Identifying a risk metric, in our case rates of biosecurity

compliance, and then applying a clustering algorithm can be

a straightforward solution for quickly identifying prominent

behaviors. Here, we found three overall strategies: risk tolerant,

risk averse, and opportunist. Interestingly, we found the same

categorical behaviors from another experimental game that

focuses on managing a pig farm’s biosecurity investment during

various outbreak scenarios (9). Although mechanically these

games were very different, as were the risk metric and clustering

strategy, the emergent group behaviors were analogous. In the

biosecurity adoption game, the risk tolerant invested very little

in biosecurity across all scenarios; the risk averse invested the

most in biosecurity throughout, and the opportunists changed

their investment strategy based upon the rate of contagion.

These three broad behavioral groups are thematic and can

likely can be applied to a wide variety of decision mechanisms.

Identifying membership within these groups can help us work

toward individualizing our risk messaging strategies and our

ability to influence positive changes in behavior.

Our study supports using experimental games for studying

contextualized risk situations. These digital tools can provide

nuanced insight into how context influences risk aversion using

immersive, complex environments to explore adaptive and

dynamic decision-making. Experimental games have a large

potential for expanding upon traditional survey instruments by

enveloping participants within a complex decision mechanism,

allowing us to capture dynamic and evolving behavioral signals.

By combining these simulations with survey instruments,

we can work toward generating stronger risk profiles with

more predictive power for modeling how human behavior

impacts crisis situations. More research should be conducted

to explore how experimental gaming simulations can be used

for quantifying behavior and the resultant impact on the well-

being of our agricultural industry. These digital applications

can provide valuable insights that may allow us to nudge social

ecological systems, such as swine production, to improve our

ability to keep our systems disease resilient and promote herd

health.
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