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Cancer is a leading cause of non-communicable morbidity and mortality

throughout the world, similarly, in dogs, themost frequent cause of mortality is

tumors. Some types of cancer, including osteosarcoma (OSA), occur at much

higher rates in dogs than people. Dogs therefore not only require treatment

themselves but can also act as an e�ective parallel patient population for the

human disease equivalent. It should be noted that although there are many

similarities between canine and human OSA, there are also key di�erences and

it is important to research and highlight these features. Despite progress using

chorioallantoic membranemodels, 2D and 3D in vitromodels, and rodent OSA

models, many more insights into the molecular and cellular mechanisms, drug

development, and treatment are being discovered in a variety of canine OSA

patient populations.
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Introduction

In both human and canine patients the predominant bone cancer diagnosis is OSA

(1, 2). Sarcomas are tumors originating in tissues derived from the mesoderm, affecting

bone, cartilage and connective tissue (3). Osteosarcoma produces malignant bone or

osteoid tissue, but a unifying feature is that all types of OSA histologically produce tumor

osteoid (4). Archetypal OSA consists of a primary tumor, usually originating within the

medullary cavity and spreading to the surface of the bone, but they can be extra-osseous

(5). Typically the tumor grows, proliferates, invades, and left unchecked frequently

metastasises to the lungs (6). OSA subtypes include osteoblastic (bony), chondroblastic

(cartilaginous), and fibroblastic (resemble atypical fibroblasts), with a range of rare types,

and those not originating in the medullary cavity (5), see also a previous review (7).
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Overview of experimental OSA models

Rodent and chorioallantoic membrane (CAM) models have

been utilized in OSA studies, in addition to a variety of in

vitro methods, however each has a number of limitations.

Early rodent models represent OSA well-histologically, but

do not represent the true etiology of the disease (8).

Immunocompromised mice inoculated with human OSA cell

lines or grafts have served well for studying metastasis, drug

screening, and helped toward identifying activation pathways,

but have limited capacity in understanding OSA development

and immune system interactions, although advances in this

area are continuing (9–11). P53 and Rb mutation transgenic

mouse studies have an overall relatively high cost and difficulties

relating to breeding and development of non-OSA cancers, but

have shown similarities to the human disease (12–15).

Although CAM models have been used for over a century,

an avian environment does not always replicate the mammalian

tumor environment or immune system. Although angiogenesis

in this model can assist with looking at invasion, drug

development, and metastasis, it has not been widely used for

OSA models (16, 17). Indeed many of the models developed

for OSA failed to produce a tumor and/or osteoid, a key

component of OSA (18). The advancements in 3D in vitro

models over 2D ones, represents a step forward in understanding

microenvironment interactions and mechanisms, with fewer

limitations than traditional culturing models (19, 20). Examples

using liquid overlays (21) and ultra-low binding plates to

develop spheroid formation have been used, the latter helping

identify a potential role of miR-335 in OSA (21). Hanging

drop methods have also been used, especially alongside

2D cell cultures to investigate VEGF expression, vital for

angiogenesis (22).

Unfortunately, none of these methods perfectly recreate the

tumor microenvironment, or replicate growth and development

of the cancer. While these methods have improved prevention,

diagnosis, and treatment of a range of diseases, OSA cure rates

and survival times have not improved significantly in decades

(23, 24). What is really required is a model or parallel patient

population that accurately recapitulates the clinical, biological

and molecular aspects of human/pediatric OSA.

OSA in dogs and people–parallel patient
populations

Given the spontaneous nature of OSA in dogs, and the

clinical relevance of canine to human OSA, these natural

models might be better described as parallel patient populations

(7, 25). Naturally occurring parallel patient populations allow

researchers access to additional cases of disease without

inducing disease.

Current understanding of OSA disease processes and

treatments is largely based on studying affected individuals

compared to unaffected individuals, or assessing differing types

of OSA, with computer simulations/bioinformatics playing an

increasing role (26, 27). The development and progression of

OSA is frequently influenced by a combination of environmental

and genetic risk factors. Understanding the basis of disease

and development of new treatments via animal models,

particularly within naturally occurring animal populations, is

crucial, however care must be taken to ensure phenotypes are

representative of the disease.

The overall canine population is genetically heterogeneous,

however breeds can be comparatively homogeneous which

further enhances their value for comparing genetic mechanisms

of disease (28). Some breeds are at increased risk of developing

OSA (1), making them a valuable parallel patient population.

Human diseases may progress over a number of years, and

spontaneously occurring canine OSA reflects this progression

in contrast to laboratory models which are often investigated

over much shorter periods of time. Indeed many human disease

phenotypes are closely matched to canine disease phenotypes,

exhibiting similar pathologies, progression, treatment options,

and prognosis (29–31), this includes OSA (7). The canine and

human OSA biological and histological similarities, alongside

treatment trials and comparisons have been evidenced through

numerous studies across the decades. More recently, the

molecular and cellular comparisons undertaken between the two

species, as detailed within this review, have provided crucial

steps toward understanding both the limitations and benefits of

studying canine OSA as a parallel population.

Similarities and di�erences in OSA
incidence, risk factors and survival rates
between people and dogs

Dogs naturally have a higher OSA incidence than people.

Human population studies have shown there are roughly 0.89

cases of bone cancer per 100,000 people/annum (32, 33). In a

population of 394,061 insured dogs, 764 (0.19%) developed a

bone tumor (1), representing an incidence rate of 27.2 dogs per

100,000/annum, a much higher rate than in people. The higher

incidence rate of canine OSA makes the pet dog population an

ideal parallel patient population for investigating the disease in

humans. In people, there is increasing evidence of variation in

the incidence rate between families and different populations

(2, 34, 35). Interestingly, OSA in dogs is highly influenced by

breed, with Irish wolfhounds displaying the highest levels (12.3%

of the population), with some other breeds mostly unaffected

(1, 36).

Osteosarcoma is bimodal in people peaking in the young

(<20 years old) and elderly (>60 years old) (2, 32, 33, 37, 38).
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Although widely reported as a bimodal occurrence in canines,

with peaks at 1.5–3 and 7–9 years, this bimodal observation has

not been shown all studies (39–43). An additional important

difference between the species is that OSA is more prominent in

the older dog range (7–9 years), whereas in people the incidence

is highest within the pediatric population. The first cross-species

genomic analysis between canine and human OSA indicated

that there were very strong gene expression similarities between

the two species (25). Hierarchical clustering showed branching

between OSA and normal tissues but showed no distinct

branching of canine and human OSA. This study specifically

compared pediatric tumors from children against canine (ages

not stated) OSA and was able to draw the conclusion regarding

the similarities between canine and pediatric OSA but did not

test adult human tumors (25). Notably a later study looked

at both juvenile and adult canine tumors indicated that the

adult dog was a good model regarding genomic features and

clinical characteristics (44). This supports the data indicating

clinical presentation and diagnosis, histological presentation and

treatment similarities between canine and juvenile human OSA

(45, 46).

Despite a general trend of improving 5-year-event-free-

survival rates across all cancer types in people (24, 47), OSA

has not shown comparable improvements in mortality rates

(2, 47, 48). The 5-year-event-free-survival for individuals with

metastatic tumors at diagnosis was reported to be 27.4%,

increasing to 70% in individuals with no metastases at diagnosis

(2, 6). The 1-year survival rate for canines is typically<45% (49–

51). It is worth noting that for appendicular OSA, the 1 and

2-year survival rates have been published at just 11.5 and 2%,

respectively for dogs receiving amputation only as a treatment

option (52). These similarities in presentation not only support

the rationale for the dog as a parallel patient population for

studying OSA but also highlight the urgent need to develop

improved treatments and cures.

The common risk factors associated with OSA development

in both humans and canines include sex, growth, puberty (2, 34,

53), in addition to population/breed and a range of molecular

associations. Growth has been associated with the development

of OSA in both people and dogs (1, 36). In people, age of onset

frequently coincides with rapid bone growth during puberty,

tumor sites are most frequently situated at the end of bones

where active growth occurs (2). In canines there is not as much

evidence linking to growth, given the later onset of OSA in

general, however OSA predominantly occurs in weight-bearing

bones and adjacent to late-closing physes (1, 36). Large dog

breeds make up the majority of canine OSA cases reflecting the

human population where affected individuals are more likely to

be taller than average (1, 34, 54).

In the canine population, as with the human population,

there appears to be a skewed sex ratio with males typically more

affected by OSA, and at younger ages, than females (1, 2, 32, 34,

55). Additionally, neutering status, although less relevant in the

human context, appears to contribute to risk with neutered dogs

more likely to develop OSA than non-neutered counterparts

(36). The neutering effect, combined with the association with

puberty, indicates that sex hormone signaling may play complex

roles in OSA.

Presently there are over 544 canine “potential models for

human traits” listed in OMIA (Online Mendelian Inheritance

in Animals), more than any other species (29, 30). Dogs

are typically treated as family members and so inhabit the

same environment as their owners, alongside many of the

environmental and other risk factors impacting disease

risk, initiation and progression. Pet dogs also frequently

benefit from high quality medical care, such that illnesses

are detected and treated promptly, similar in a way to people

(56). This also means that the amount of information being

collected by veterinary clinics, researchers, and insurance

companies expands the data available. These canine population

characteristics represent a valuable resource for modeling

human disease. Although understanding diseases and

developing novel treatments in companion animals exhibiting

occurring disease is less contentious than inducing disease in

experimental animals, ethical concerns regarding treatment

of individuals and gaining informed consent from owners

remain (57).

Similarities and di�erences between OSA
molecular mechanisms in people and
dogs

Developing new treatments is expensive and time

consuming. Only 4.1% of potential new compounds progress

from preclinical discovery to patient use, taking on average 13.5

years (58, 59). In order to create targeted pharmaceuticals in

shorter time frames, understanding the genetic mechanisms

behind diseases are critical (60). Indeed, parallel animal patient

populations of disease, including OSA, play crucial roles in

identifying genetic loci associations and biomarkers, which

may lead to target identification, to help determine appropriate

drugs, leading through to target validation (61–63). Much of

the molecular work, underpinning early drug development

and repurposing, is facilitated by the conservation of many

fundamental biological pathways between species (64–66).

Pedigree breeds in dogs are generally fairly closed

populations, ancestry can often be traced for many generations,

and even back to the breed’s founding members (28, 67, 68).

Although this restricts genetic diversity within breeds, it

facilitates understanding the mode of inheritance of traits and

diseases (67). Both the founder effects and later inbreeding

within canine pedigree breeds have led to divergent allele

frequencies between breeds, resulting in some breeds exhibiting

higher disease frequencies (28, 69). As a result, differing breeds
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have homologs of numerous human conditions, making them

ideal for identifying potential genetic loci associated with disease

for both canine and human benefit.

Some cases of human OSA have been associated with

heritable cancer syndromes, and the genetic basis of these has

been established (70–72). Despite this, most human OSA cases

are not considered to be heritable. Some somatic mutations in

tumor suppressor genes have been identified in individuals with

heritable cancer syndromes such as Li-Fraumeni syndrome, and

other mutations have been identified in OSA tissue compared

to normal tissue (70, 73–75). Interesting, to date, only two

somatic genetic mutations have been specifically associated with

OSA (53). Despite the lack of heritability and somatic genetic

mutations, over 900 genes are associated with human OSA

(76). These associations have been identified due to differences

in expression, or identification of mutations, that have arisen

in the tumor compared to the non-tumor tissue (77–79).

Mutations within OSA tumor tissue may exist as a cause, or as

a result, of the tumor. Differential expression, and mutations,

may also exist via genomic and chromosomal instability,

which in itself is a reported factor in many types of cancer

progression (80, 81). Osteosarcoma in people has been shown

to display chromosomal instability associated with mutations in

the TP53 gene (82). Aneuploidy can occur as a consequence

of chromosomal instability, which can lead to the gene

overexpression in affected malignant cells, causing disruption to

the normal cell processes (83). Althoughmutations in TP53 look

likely to be associated with chromosomal instability, the gene

itself is not over expressed following aneuploidy (82, 83). TP53

has also been implicated in canine OSA with whole genome

sequencing and whole exome sequencing (WES) indicating

frequent TP53 mutations in canine OSA tumors, at rates of up

to 83%, specific mutation rates were variable between breeds (44,

84, 85). TP53mutations have featured heavily in many of canine

OSA studies, however findings still differ between these studies

overall. For example it was found that TP53missense mutations

in dogs who had amputation followed by chemotherapy were

associated with a longer DFI than wild type of null tumor

samples investigated (85). Although similar results have not yet

been observed in human OSA, other cancer types and mutant

cell lines have shown improved treatment responses (86, 87).

Gene expression following treatment has also highlighted

key similarities between people and dogs. Studies identifying

gene expression in canine patients responding, and not

responding, to chemotherapy treatment, were later found to be

similar in people, indicating the value of the dog as a parallel

patient population for human OSA (88). It should also be noted

that gene expression variations have been observed on some

occasions, despite the often-high similarities in many other

studies (25), thus indicating a potential limitation of canine

comparisons with human OSA.

In canine OSA patients, 33 loci have been associated with

the disease across three breeds, and an additional single locus

is associated in Deerhounds (89, 90). None of these loci are

consistently associated across breeds, suggesting there may be

a difference between breeds regarding genetic predisposition

to developing OSA (89, 90). In addition to the 34 genetic loci

identified, genes have been identified as differentially expressed

in canine OSA compared to non-tumor tissue, many of which

have implications for growth and metastasis, and are potential

drug targets (55, 91–96). These genes have been identified

utilizing canine OSA tumor tissue, and/or canine OSA cell

lines. Some proteins of interest have also had histological work

undertaken to start identifying their presence and relevance in

OSA (55, 95). There has also been variation in the expression

of genes within tumors associated with survival time in canine

OSA (97–100).

Shared genes and proteins of interest for
development of future treatments

In both humans and dogs, effective treatment for OSA

involves surgery to remove primary tumors 27, 32], often

combined with neoadjuvant and/or adjuvant radiotherapy and

chemotherapy [33, 34]. The type of surgery rarely has an impact

on survival for most human tumors [27], more important

prognostic factors are how the tumor responds to chemotherapy

and the presence of metastases prior to surgery [27]. In

order to advance the treatments available, genomics and drug

discovery are providing potential new treatments. Increasingly,

comparisons between results from human and canine OSA

studies are showing shared genes of interest between the two

species. Many of these studies also highlight the need for further

testing in relation to potential therapeutic agents.

Comparative transcriptional profiling of dogs and human

OSAs has highlighted the similarities between the tumor tissues

in the two species. One example was OSA tissue cluster analysis

undertaken on 265 orthologous transcripts on pediatric human

OSA compared to canine (age not stated) OSA (25). The

conclusion was that it was not possible to differentiate between

canine and pediatric humanOSA tissues yet normal tissues from

both species did branch (25). Similar outcome predictions for

specific genes in both humans and dogs were also observed.

Examples of these include interleukin-8 (IL-8) and solute carrier

family 1 (glial high affinity glutamate transporter), member

3 (SLC1A3). Increased expression levels of IL-8 and SLC1A3

predicted poor clinical outcomes in tissues from both species,

a result initially identified in canine samples, then followed up

and confirmed using human OSA data and both human and

canine OSA cell lines (25). Interestingly, increased expression

of SLC2A1 (GLUT1) within tumors also resulted in poorer

prognosis and a shorter disease free interval in people (101).

SLC2A1/GLUT1 (see Figure 1) levels were also significantly

increased in naturally occurring canine OSA tissue compared
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FIGURE 1

Immunohistochemical staining in naturally occurring canine

osteosarcoma tissue. (A,B) GLUT1 and (C,D) MMP3, both

staining patterns expressing positive nuclear, cytoplasmic and

vascular tissue with negative staining observed in the osteoid.

(E,F) Negative control. Scale bars represent (A–D) 100µm, (E,F)

500µm. Staining was conducted with ethics, techniques and

tissues as previously published (95).

to normal bone tissue (55, 95). Inhibition of SLC2A1 and

cellular glucose transport has been achieved by a number of

pharmaceuticals, however, as with the MMP3 inhibitors, these

have yet to be utilized in OSA trials in either people or

dogs (102–105). Monoclonal IL-8 antibody therapy could also

be of interest given the importance of this chemo-attractant

angiogenic factor, which has been implicated in a number of

cancers (106, 107). Although not yet tested in OSA, clinical trials

using IL-8 monoclonal antibodies in other cancers types are

ongoing (108) and provide an interesting target given the links

between increased IL-8 expression and doxorubicin resistance

(109, 110).

Another good example of comparative OSA highlighted

the role of MMP3, with increased expression linked with a

poor prognosis in OSA, and to formation of metastases (23,

111). Tsai et al. (112) and Huang et al. (113) identified higher

expression of MMP3 in human OSA compared to normal

bone. Additionally Adiguzel et al. (114) reported on MMP3

polymorphisms associated with OSA in people. Naturally

occurring OSA was also associated with increased MMP3 levels

in canine patients (55), and work was later undertaken to

show expression patterns (Figure 1) of the protein in tissue

(95). Despite the increasing evidence regarding MMP3, neither

the selective inhibitor of MMP3 (UK370106) (115) or the

generic MMP inhibitor (marimastat) (116) have been assessed

in relation to restricting primary tumors or metastatic tumor

growth in canine or human OSA, despite some trials in other

tumor types.

The Dickkopf proteins are differentially expressed in a

number of cancers, and inhibit Wnt signaling which, in

turn, is aberrant in many cancers (117–119). Reduced DKK3

expression in human breast, endometrial, and cervical cancer,

has implicated it as a tumor suppressor (120–123). DKK3

expression within OSA has resulted in conflicting reports.

In human OSA cell lines, and in xenograft mice, DKK3

expression was reduced, however subsequent restoration of

DKK3 expression resulted in reduced tumor and metastatic

growth (124). In contrast, DKK3 was more highly expressed

in human OSA cells overexpressing NKD2 and in tumor tissue

(125), and also in tumor tissue compared to non-affected bone

in naturally occurring canine OSA (55). Despite differences

compared to some cancers, this outcome agreed with DKK3

knockdown in cells overexpressing NKD2 which exhibited

increased proliferation, indicating a possible mechanism of

NKD2 induced metastasis, although the authors noted more

work into the mechanisms was required (125). With a lack of

drugs available acting on DKK3, development in this direction

could prove useful for OSA in both people and dogs. Although

these examples represent just a small number of the genes and

proteins of interest in both human and canine OSA, it helps

show the benefits of using the dog as a parallel patient population

for this cancer, especially in relation to drug development.

Table 1 provides a summary of the genes, proteins and pathways

detailed in this review.

Whole genome and exome sequencing have also discovered

not only where mutations within pathways such as PI3K and

MAPK are similar between human and canine OSA, but have

also identified novel aberrations in canines, such as those in

SETD and DMD, which have not yet been reported in people

(44). Although these aberrations have not yet been found

in human OSA cases, despite the high sequence homology

between the two species, it is known that dysregulation of

SETD2 has been implied in human OSA (25, 133). Although

the DMD gene encoding dystrophin is more commonly

associated with Duchene and Becker muscular dystrophy in

both species, other studies have shown somatic DMD variants

in human OSA patients (129). Comparative canine and human

transcriptomic studies have also identified annotations and

pathways unique to particular cancers. For example, annotations

unique to bone material synthesis, including COL5A2, COL6A3,

and COL12A, were discovered in OSA in both species but

were not present in melanoma, pulmonary carcinoma, or

B- and T-cell lymphoma (130). Considerable insights into

possible pathways and biomarkers can be provided by such

studies. Often potential biomarkers, or targets that have

known chemistries presently available, including examples such

as COL16A1 and KDELR2 (130), are highlighted as areas

needing more research.
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TABLE 1 Summary of key comparative genes, proteins and pathways in human and canine osteosarcoma.

Gene/Protein/Pathway Human Canine

TP53 Chromosomal instability associated with mutations in the

TP53 gene (82). Chromosomal abnormalities leading to

aneuploidy, resulting in overexpression, disrupted cell

processes (83).

Frequent TP53 mutations in canine OSA (44, 84, 85).

TP53, RB1, MYC, PTEN,

RUNX2, CDKN2A, CDKN2B

Copy number aberrations (126–128). Copy number aberrations (126–128).

DMD Somatic DMD variants found in 5/8 patients (44). DMD aberrations, including canine specific mutations, in

50% specimens (44).

SETD Dysregulation of SETD2 implied in human OSA (25, 101). Putatively inactivating somatic SETD2 in 42% of specimens

including some canine specific compared to human (44).

IL-8 and SLC1A3 Increased expression levels of IL-8 and SLC1A3 predicted

poor clinical outcomes (25). Increased expression of SLC2A1

(GLUT1) within tumors resulted in poorer prognosis and a

shorter disease free interval (104).

Increased expression levels of IL-8 and SLC1A3 predicted

poor clinical outcomes (25). Increased SLC2A1/GLUT1

levels in OSA tissue compared to normal bone tissue (55, 95).

MMP3 Higher expression ofMMP3 in OSA tissue compared to

normal bone (115, 116). MMP3 polymorphisms associated

with OSA (117). Increased expression linked with a poor

prognosis and to formation of metastases (23, 114).

IncreasedMMP3 levels associated with OSA (55), proteins

expression shown in OSA tissue (95).

DKK3 DKK3 expression reduced in OSA cell lines, but subsequent

restoration of DKK3 expression resulted in reduced tumor

and metastatic growth (129). In contrast, DKK3 was more

highly expressed in OSA cells overexpressing NKD2 and in

tumor tissue (130),

DKK3 expression increased in OSA tissue compared to

non-affected bone (55).

PI3K, P13K-Akt,

P13K/mTOR and MAPK

pathway mutations

PI3K/mTOR shared vulnerability for both species (131) Mutations in PI3K in 37% of the samples and 17% for

MAPK (44). Dysregulation of P13K-Akt pathway and

COL6A3, COL5A2, TNC, and ITGB5 activation (103, 132),

and PI3K/mTOR (131)

Shared MicroRNAs in comparative studies

Recent reviews outlining the potential comparative values

for investigating vasculogenic mimicry molecular pathways and

microRNAs (miRNA) in the dog, highlight how little work has

been conducted in this species compared to humans (134, 135).

They contain detailed discussions aroundmiRNAs and lncRNAs

and provide interesting reading around these areas, especially in

relation to vasculogenic mimicry in canines in comparison to

people, which is not therefore covered in the present review. In

both dogs and people decreased expression of miR-1, miR-133b

and miR-196A have been shown to be involved in proliferation-

invasion, miR-34 with proliferation and 14q32 locus (including

mir-544, miR-396-3p, miR134 and miR-382) with proliferation-

apoptosis in OSA (135). Additionally increased miR-9 has been

associated with invasion and increases in miR-106b cluster have

been associated with proliferation (135). Comparative examples

such as the dysregulation of the 14q32 miRNA cluster in both

dogs and people, not only identified a potentially conserved

mechanism related to the aggressive and invasive biological

behavior of OSA in both species, but yet again emphasize the

similarities between the two species (136). Another example

is the discovery of miR-1 and miR-133b which showed lower

expression levels in canine OSA compared to normal tissue,

yet increased expression of their targets MET and MCL1 (137).

Interestingly a previous study had shown that both miR-1

and miR-133b were differentially expressed in human OSA

affected tissue compared to non-OSA bone (138). MiR-34a

looks especially promising given its links to both human and

canine OSA, its anti-proliferation and metastasis inhibition

activities and the research relating to a genetically engineered

pre-microRNA-34a prodrug (139–141). Work published after

the recent review (135) compared 19 miRNA candidates

expressing differential expression in OSA samples compared

to non-affected tissue in both people and dogs were also

assessed (142). This research showed that expression miR-

223 increases and in let-7b and miR-130a decreases were

associated with increased risk and a shorter disease free interval.

These were highlighted as potential targets and/or biomarkers

for OSA.
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Translational drug development studies

In addition to the molecular studies highlighting potential

targets of interest, a number of canine OSA trials have

assessed treatment regimens which were primarily designed

to increase survival times. Early evidence showed that while

amputation alone increased canine survival by around 2.5

months, addition of liposome-encapsulated muramyl tripeptide

(L-MTP-PE) administration following amputation prolonged

survival by an additional 5 months, primarily by reducing

OSA metastasis development (143). Later randomized canine

trials showed the outcomes of combining differing protocols

of L-MTP-PE and cisplatin chemotherapy treatment. L-MTP-

PE exhibited antimetastatic activity when administered post

amputation, increasing survival times to around 14.4 months

when cisplatin was administered after L-MTP-PE (144). The

survival advantages observed following L-MTP-PE alone were

not observed when cisplatin and L-MTP-PE were administered

concurrently rather than sequentially, indicating that treatment

timing is crucial. Trials of this drug in children with OSA

revealed an 8% improvement in survival (145), but anti-tumor

effects and increased survival times were also noted when

treating human OSA patients with L-MTP-PE, especially when

chemotherapy was administered (146–148). For example, a

24-week treatment with L-MTP-PE increased median time to

relapse from 4.5 months for the control group to 9 months

for the treatment group (146, 147). It was also noted that

plasma levels of cytokines including IL-8, TNF-α and IL-6

reduced following treatment, all of which may play roles in

monocyte-mediated tumor cell death (146, 147). This work

followed the smaller phase II trial indicating histological changes

to pulmonary metastases in OSA patients (148).

HER2/neu, a tyrosine kinase receptor within the epidermal

growth factor receptor family, is expressed in osteosarcoma

stem cells (149). Expression has been found in 40% of pediatric

and canine osteosarcoma, and associated with higher metastatic

rates, reduced response to neoadjuvant chemotherapy, and

reduced survival times (150–152). A chimeric humanHER2/neu

fusion protein (ADXS31-164, also now known as ADXS-HER2

and OST-HER2) was tested in dogs with a histopathological

and immunohistochemical diagnosis of HER2/neu OSA,

following amputation/limb sparing surgery and treatment with

carboplatin (153). Disease-free interval (DFI) following the

intervention was 615 days, median survival time (MST) was

956 days, and overall survival rates at 1, 2, and 3 years were

77.8, 67, and 56%, respectively. The authors noted significant

outcome improvements compared to matched historical control

group rates showing a DFI of 123–257 days, a MST of 207–321

days, and overall survival rates of 35.4% (1 year) and 10–15%

(2 years). Additionally, this study showed only mild side-effects

of ADXS31-164 when administered to canine patients. This

therapy specifically induced HER2-specific immunity, targeting

the cells expressing HER2/neu, broke peripheral tolerance to

HER2/neu and mediated cytotoxic T-cell–dependent tumor

regression (153). In 2016, ADXS-HER2 was granted orphan-

drug designation, then rare pediatric disease designation in

2021, from the FDA and EMA, for the treatment of OSA. In

2021 ADVAXIS Immunotherapies, in collaboration with the

Children’s Oncology Group, reported that the first human OSA

patient had received doses in the Phase IIb trial of this drug

(154). The outcomes from this trial, including any clinical

results andmechanistic studies will be of great interest regarding

not only human and canine OSA, but in relation to other

cancer types which also express HER2 including mammary

carcinoma (126).

The angiotensin-receptor blocker losartan, when used in

combination with the kinase inhibitor toceranib, has also shown

promising results in canine OSA patients (127). By blocking

OSA-elicited monocyte recruitment via the action of losartan

inhibiting the CCL2–CCR2 axis, clinical benefits including

tumor stabilization and/or regression were observed in half

of the dogs. Notably, both human and canine OSA cells

secrete CCL2, resulting in monocyte migration. By interrupting

the CCR2–CCL2 axis and by blocking monocyte migration,

these trials have provided more insights into the tumor

microenvironment and indicated a direct mechanism by which

these therapeutic agents could work in human OSA patients.

Owing to the success of this canine OSA trial published in 2021,

a phase I clinical trial (NCT03900793) was initiated in pediatric

and young adult OSA patients with lung metastases.

Limitations of canine OSA models

One of the limitations of this area of research is that

frequently the research concentrates on either dogs or people

with relatively few comparisons of the two using the same

analysis and techniques. Although this individual species

specific research is required, the number of directly comparative

studies is much lower and makes comparative conclusions

more complex. This also complicates matters with regards

to potential differences observed between breeds and age of

onset, as highlighted in this review. For example although the

differences between breeds are often presented, in many cases

the comparisons between each of the breeds and human OSA

are not frequently investigated. Canines are often referred to

as a good model for juvenile human OSA but in addition

to the published comparisons between general canine OSA

and juvenile human OSA, it must be highlighted that many

studies do draw any conclusions regarding juvenile or later

onset OSA specifically in either species. In some OSA studies,

particularly the canine studies, the ages of the patients are not

presented or the juvenile/later onset differences, if any, are not

specifically referred to or investigated. Additionally, particularly

when thinking about juvenile OSA, matters such as whether
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growth is a risk factor is not as easy to justify in dogs compared

to people.

With molecular differences between OSA samples differing

between individuals within the same species, it is natural

to expect differences between the species and between the

ages of the individuals. When comparing canine OSA to

human pediatric OSA in particular, mutational burden must

be considered. Generally pediatric human cancers present with

fewer mutational burdens, compared with geriatric tumors [as

reviewed previously (128)], therefore this must be considered

when comparing against older canines with pediatric OSA.

There are concomitant arguments for using the dog as a model

of aging (also presenting with limitations and differences) (131).

Although similarities between canine and human DNA repair

machinery have been shown, such as in lymphoma, mammary

tumors and even OSA (132, 155, 156), not every mechanism

may be similar, for example base excision repair and nucleotide

excision repair have both been shown to be lower in canines

(157). Unfortunately little is known about DNA repair in canine

OSA (158) even though it may play significant roles when

comparing geriatric with juvenile/pediatric OSA. This further

accentuates the need for vigilance when researching OSA in

general including both OSA specific molecular mechanisms

and pathways, and those related to more general factors such

as aging.

Discussion

Canine OSA occurs naturally within the population,

reflecting the development of human OSA (7, 159). In

contrast animal models of OSA rely on chemical induction,

xeno/allografts, and genetically engineered animals which are

unlikely to reflect many aspects of naturally occurring disease

(159–162). Canine OSA has several features that can accelerate

the understanding of the molecular basis of OSA, potentially

facilitating more rapid development of novel diagnostic and

therapeutic targets relevant to both people and dogs. The

advantages of canine OSA parallel patient populations include

a shared environment with people, natural disease progression,

higher incidence rates, alongside shorter lifespans resulting

in a quicker clinical course. Arguments have also been put

forward that in addition to the dog being a good parallel patient

population for OSA in people, the reverse is also technically true.

It has also been indicated that canine OSAmay represent a more

accelerated biology than human OSA and that novel metastasis-

associated tumor targets may be more readily identifiable in

canine tissues (25). Whilst this review has concentrated on some

of the shared molecular observations and mechanisms, there

are many examples presented where canines do not exactly

mirror human OSA. Canine OSA parallel patient populations

can therefore give valuable insights, advancing knowledge about

disease progression and development, cellular and molecular

mechanisms, and therapeutic and treatment strategies, in both

people and dogs.
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