
TYPE Original Research

PUBLISHED 08 November 2022

DOI 10.3389/fvets.2022.983562

OPEN ACCESS

EDITED BY

Meng-Hua Li,

Institute of Zoology (CAS), China

REVIEWED BY

Rui Su,

Inner Mongolia Agricultural

University, China

Gaoliang Bao,

Gansu Agricultural University, China

Xiaolong Kang,

Ningxia University, China

*CORRESPONDENCE

Wei Sun

dkxmsunwei@163.com

SPECIALTY SECTION

This article was submitted to

Livestock Genomics,

a section of the journal

Frontiers in Veterinary Science

RECEIVED 01 July 2022

ACCEPTED 14 September 2022

PUBLISHED 08 November 2022

CITATION

Chen W, Gu X, Lv X, Cao X, Yuan Z,

Wang S and Sun W (2022) Non-coding

transcriptomic profiles in the sheep

mammary gland during di�erent

lactation periods.

Front. Vet. Sci. 9:983562.

doi: 10.3389/fvets.2022.983562

COPYRIGHT

© 2022 Chen, Gu, Lv, Cao, Yuan, Wang

and Sun. This is an open-access article

distributed under the terms of the

Creative Commons Attribution License

(CC BY). The use, distribution or

reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Non-coding transcriptomic
profiles in the sheep mammary
gland during di�erent lactation
periods

Weihao Chen1, Xinyu Gu1, Xiaoyang Lv2, Xiukai Cao2,

Zehu Yuan2, Shanhe Wang2 and Wei Sun1,2,3*

1College of Animal Science and Technology, Yangzhou University, Yangzhou, China, 2Joint

International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of

China, Yangzhou University, Yangzhou, China, 3International Joint Research Laboratory in

Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic

Improvement, Yangzhou University, Yangzhou, China

Sheep milk production is a dynamic and multifactorial trait regulated by

diverse biologicalmechanisms. To improve the quality and production of sheep

milk, it is necessary to understand the underlying non-coding transcriptomic

mechanisms. In this study, ribonucleic acid-sequencing (RNA-seq) was used

to profile the expression of microRNAs (miRNAs) and circular RNAs (circRNAs)

in the sheep mammary gland at three key lactation time points (perinatal

period, PP; early lactation, EL; and peak lactation, PL). A total of 2,369

novel circRNAs and 272 miRNAs were profiled, of which 348, 373, and 36

di�erentially expressed (DE) circRNAs and 30, 34, and 7 DE miRNAs were

detected in the comparison of EL vs. PP, PL vs. PP, and PL vs. EL, respectively.

A series of bioinformatics analyses including functional enrichment, machine

learning prediction, and competing endogenous RNA (ceRNA) network

analyses were conducted to identify subsets of the potential candidatemiRNAs

(e.g., oar_miR_148a, oar_miR_362, and oar_miR_432) and circRNAs (e.g.,

novel_circ_0011066, novel_circ_0010460, and novel_circ_0006589) involved

in sheep mammary gland development. Taken together, this study o�ers a

window into the dynamics of non-coding transcriptomes that occur during

sheep lactation and may provide further insights into miRNA and circRNA that

influence sheep mammary gland development.
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Introduction

Sheep have been used to supply dairy products for centuries and rank fourth in

global milk production (1). For these reasons, increasing the yield and quality of sheep

milk is a desirable goal in the dairy sheep industry. However, milk production is a

dynamic and multifactorial trait regulated by diverse molecular mechanisms and has a

moderate heritability (2), which emphasizes the importance of precise selection for sheep

milk production.
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With the development of nucleic acid sequencing

technologies, high-throughput sequencing has allowed for

in-depth investigation of coding and non-coding transcripts

in the lactating mammary gland of dairy species (3–5). In a

previous study (6), we profiled the expression of messenger

ribonucleic acids (mRNAs) and long non-coding RNAs

(lncRNAs) in the sheep mammary gland during different

lactation periods. However, due to the lack of information on

non-coding RNAs unrelated to lncRNAs, such as microRNAs

(miRNAs) and circular RNAs (circRNAs), the study only

provided a partial view of the transcriptomic profile of the sheep

mammary gland.

Circular RNA, a recently discovered non-coding RNA, has

received considerable attention in mammary gland research. Xu

et al. (7) identified a significantly greater number of circRNAs

in the human mammary gland than in other tissues such as

adrenal glands and thyroid, and similar results were found in

sheep (3), cattle (8), and rats (9), indicating the vital roles of

circRNAs in the mammary glands of various species. Moreover,

some circRNAs that share miRNA recognition elements with

miRNA target genes can enhance the expression of those

genes by acting as miRNA sponges (10), initially modulating

the cross talk between circRNA, miRNA, and its target genes

in what is referred to as a “competitive endogenous RNA

interaction” (ceRNA). Circ003429 enhances the expression of

YAP1 by sponging miR-199a-3p during fatty acid synthesis in

dairy goats (11). In dairy cows, circ11103 regulates milk fat

metabolism via the miR-128/PPARGC1A axis (12). Collectively,

these studies highlight the coordinated regulation of mammary

gland development by circRNAs and miRNAs. However, the

specific roles of these molecules remain largely unknown,

especially in dairy sheep.

Numerous studies have well investigated the roles of

circRNAs (8, 13) and miRNAs (14) in mammary gland

development in various species, based on the universal

characteristics of circRNAs and miRNAs and their potential

ceRNA regulation in mammary glands. However, few reports

have described dynamic RNA expression profiles or associated

mechanisms in the sheep mammary gland during different

lactation periods.

The mammary gland is a key organ related to lactation in

mammals, and milk yield is largely controlled by mammary

epithelial cells (MECs). From the beginning of pregnancy to

the end of the perinatal period (PP), the mammary gland

develops further and a rapid proliferation of MECs takes place

(15). After parturition, MECs differentiate into secretory cells,

regulate lactation, and remain stable during lactation. During

peak lactation (PL) to late lactation, milk yield begins to decrease

and apoptosis of MECs begins (16). Hence, we selected three key

time points in the development of MECs to study the molecular

mechanisms underlying sheep lactation: perinatal period, early

lactation (EL), and PL. In this study, RNA-seq was used to profile

the expression of miRNAs and circRNAs in the sheep mammary

gland at three key lactation points. A series of bioinformatics and

machine learning approaches were used to identify key circRNAs

and miRNAs involved in mammary gland development, and a

network of ceRNAs was constructed to better understand their

roles in sheep lactation.

Materials and methods

Sample collection

All experimental sheep were supplied by Zhenjiang Wan

Shan Hong Bian Agricultural Co., Ltd. (Zhenjiang, Jiangsu

province, China). Detailed information on the experimental

sheep can be found in our previous report (6).

Briefly, mammary gland biopsy tissues were collected from

first-time pregnant Hu ewes with similar pregnancy dates and

litter size, at three important lactation periods: 5 days before

expected parturition (perinatal period, PP), 6 days postpartum

(EL), and 25 days postpartum (PL). The collected mammary

gland biopsy tissues were snap-frozen in liquid nitrogen and

stored at−80◦C before RNA extraction.

RNA extraction and sequencing

Ribonucleic acid (RNA) was extracted from the stored

mammary gland biopsy tissues with the TRIzol reagent

(Invitrogen, Carlsbad, CA, USA). The quality and integrity of

the isolated RNA were examined with an RNA Nano 6000 Assay

kit and Agilent 2100 Bioanalyzer, respectively.

MicroRNAs libraries were constructed with the NEB Next R©

Multiplex Small RNA Library Prep Set for Illumina R© (NEB,

Ipswich, MA, USA). circRNA libraries were constructed with

the NEBNext R© UltraTM Directional RNA Library Prep kit for

Illumina R© (NEB). The miRNA and circRNA libraries were

sequenced on the Illumina HiSeqTM 2500 platform (a single-

end 50 bp strategy and a paired-end 150 bp strategy for miRNA

and circRNA sequences, respectively) by Beijing Novogene

Technology Co., Ltd. (Beijing, China).

Raw reads were generated in the FASTQ format, and reads

containing poly-N, adapters, or poly A, T, C, or G and low-

quality reads were removed by fastp (17). The clean reads

obtained were mapped to the Ovis aries reference genome

(Oar_v4.0) using Hisat2 (18). miRbase 20.0, as a known

miRNA alignment, was used as a reference, miRDeep2 (19)

was used to assemble miRNA transcripts, and srna-tools-cli

was used to identify the potential miRNAs and draw their

secondary structure. miREvo (20) and miRDeep2 were used

to distinguish novel miRNA candidates from the transcripts

by examining their secondary structure. circRNA candidates

were distinguished from transcripts with find_circ (21) and
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CIRI2 (22), and detailed parameters used for the aforementioned

software are provided in Supplementary Table S1.

Di�erentially expressed transcripts

The transcripts per million (TPM) parameter was used

to estimate the expression levels of miRNA and circRNA

transcripts. Multiple comparisons were used to identify

differentially expressed (DE) circRNAs and miRNAs among

the PP, EL, and PL groups using the DEseq R library (23).

Transcripts were deemed significantly differentially expressed

(DE) when the threshold of the adjusted p-value (adjusted

p-value with the false discovery rate (FDR) approach) was<0.05.

Gene ontology and Kyoto encyclopedia
of genes and genomes enrichment

The target genes of DE miRNAs (predicted with miRanda

and RNAhybird) and the parental genes of DE circRNAs were

functionally annotated. The GOseq R library (24) and KO-Based

Annotation System (KOBAS) (25) were used to determine gene

ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment, respectively. Fisher’s exact test with the

FDR multiple test correction was used to assess statistical

significance (p < 0.01), and the detailed parameters used for

GOseq and KOBAS are provided in Supplementary Table S1.

Investigation of sheep lactation
biomarkers using machine learning
approaches

To identify non-coding RNA biomarkers for predicting

sheep lactation, a two-step decision tree machine learning

method entitled Random Forest-XGBoost (RX) was used. The R

library randomForest (RF) and XGBoost were used for analysis.

A detailed strategy for RX was described in our previous

study (26).

In brief, a range of parameters (Ntree and mtry for RF and

colsample and eta for XGBoost) was systematically evaluated

by examining the out-of-bag (OOB) error rate to determine

the derive minimum hyperparameter values required for RF

and XGBoost.

To identify the biomarkers of sheep lactation, all samples

were divided into three classes according to lactation stage (PP,

EL, or PL). The miRNA and circRNA expression data sets were

first offered to Random Forest to select variables (miRNAs and

circRNAs) with positive values for their variable importance

measures (VIMs). The positive-VIM subset of variables was then

assessed with XGBoost. Similarly, XGBoost generated VIMs for

the variables designated “Gain.”

The VIM value of an individual variable (circRNA or

miRNA) denotes the relative contribution of the variable

to each decision tree; the higher the VIM value, the more

important the variable is to distinguish different classes (sheep

lactation stages). Therefore, variables with a high “Gain” were

prioritized as the potential non-coding RNA biomarkers of

sheep lactation.

ceRNA network construction

Messenger RNA (mRNA) expression data sets for the

sheep mammary gland during different lactation stages were

obtained in our previous study and are available on: https://

www.ncbi.nlm.nih.gov/, PRJNA759095. First, miRanda (27),

and RNAhybrid (28) were used to predict miRNA-binding

seed sequence sites and target mRNAs or circRNAs, detailed

parameters for miRanda and RNAhybrid are provided in

Supplementary Table S1. The miRNA–mRNA and miRNA–

circRNA interaction pairs that shared the same miRNAs

were then selected for subsequent analysis as candidate

competing endogenous interactions. Pearson’s correlation

coefficients (PCCs) and corrected p-value (adjusted with

Benjamini and Hochberg’s approach) were calculated for

the expression of the candidate circRNAs, miRNAs, and

mRNAs. Finally, negatively regulated miRNA–mRNA/circRNA

pairs with PCC < −0.75 and a corrected p < 0.05 were

selected to establish ceRNA networks with the Cytoscape

software (29).

Sequencing data validation

Five miRNAs and circRNAs were randomly chosen for the

validation of the RNA-seq data,GAPDH and U6 were selected as

the reference gene, and the primers were designed with Primer

Premier 5 software (Supplementary Table S2).

Total RNA was extracted from the mammary gland biopsy

samples with the TRIzol reagent according to the manufacturer’s

instructions. The extracted RNA was then reverse transcribed

into complementary DNA (cDNA) with FastKing gDNA

Dispelling RT SuperMix (Vazyme Biotech, Nanjing, Jiangsu,

China), according to the manufacturer’s instructions.

Real-time quantitative polymerase chain reaction (PCR) was

performed in triplicate with cDNA as a template. The 2−11Ct

method (30) was used to calculate relative expression levels.

The results were presented as fold changes in relative expression

levels, using the GraphPad Prism 6 software.
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FIGURE 1

Length distribution of the distinguished micro ribonucleic acids (miRNAs) (A) and circular RNAs (circRNAs) (B).

Results

An overview of the sequencing data

In the miRNA libraries, the average rates of clean reads were

96.54% (EL), 96.03% (PL), and 96.41% (PP), and the average

mapping rates were 95.71% (EL), 96.17% (PL), and 95.12% (PP).

In the circRNA libraries, the average rates of clean reads were

97.23% (EL), 96.98% (PL), and 97.68% (PP), and the average

mapping rates were 83.23% (EL), 80.03% (PL), and 81.71% (PP).

Detailed information on the circRNA and miRNA libraries is

given in Supplementary Table S3.

Based on the results of miREvo, miRDeep2, find_circ, and

CIRI2, a total of 2,369 novel circRNAs and 272 miRNAs (140

annotated miRNAs and 132 novel miRNAs) were identified.

The majority of circRNAs were 200–400 nt long, whereas the

majority of miRNAs were 20–24 nt long. The average length of

circRNAs was 326.69 nt, whereas miRNAs had an average length

of 21.76 nt (Figure 1).

Expression profiles of miRNAs and
circRNAs

Transcripts per million was used to normalize the expression

of miRNA and circRNA transcripts, based on which DEseq

was used to identify DE miRNAs and DE circRNAs among

the PP, EL, and PL groups. Detailed information on the

miRNA and circRNA is given in Supplementary Table S4, and

the results of DE analysis are given in Supplementary Table S5.

Pearson’s correction between the individual samples are shown

in Supplementary Figure S1.

Of these DE miRNAs, 30, 34, and 7 were detected in the

comparison of EL vs. PP (Figure 2A), PL vs. PP (Figure 2B),

and PL vs. EL (Figure 2C), respectively. No miRNA was DE

in all three comparisons (Figure 2D). Based on the adjusted

p-value, the top three most DE miRNAs were oar_miR_370_3p,

oar_miR_148a, and novel_miR_175 in the comparison of

EL vs. PP. In the comparison of PL vs. PP, the top three

most DE miRNAs were oar_miR_148a, oar_miR_370_3p, and

oar_miR_99a. In the comparison of PL vs. EL, the top threemost

DE miRNAs were oar-miR-218a, oar-miR-3959-3p, and oar-

miR-181a.

Of the DE circRNAs, 348, 373, and 36 DE circRNAs were

detected in the comparison of EL vs. PP (Figure 3A), PL vs. PP

(Figure 3B), and PL vs. EL (Figure 3C), respectively. A Venn

diagram of DE circRNAs in different comparison groups showed

that novel_circ_0010160 was DE in all three comparisons

(Figure 3D).

Based on the adjusted p-value, the top three most

DE circRNAs were novel_circ_0010649, novel_circ_0010160,

and novel_circ_0001655 in the comparison of EL vs. PP.

In the comparison of PL vs. PP, the top three most

DE circRNAs were novel_circ_0010252, novel_circ_0010649,

and novel_circ_0010642. In the comparison of PL vs. EL,

the top three most DE circRNAs were novel_circ_0000578,

novel_circ_0000885, and novel_circ_0001489.

Heat maps of DE miRNAs (Figure 4A) and DE

circRNAs (Figure 4B) indicated clearly different non-coding

transcriptomic profiles in the non-lactation period (PP) and

the lactation period (EL and PL), but there was no obvious

difference between the profiles of EL and PL.

GO and KEGG enrichment

Gene ontology and KEGG enrichment analyses of the

target genes of DE miRNAs and the parental genes of
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FIGURE 2

The volcano plot of di�erentially expressed (DE) miRNAs identified in early lactation (EL) vs. perinatal period (PP) (A), peak lactation (PL) vs. PP

(B), and PL vs. EL comparisons (C). A Venn diagram of DE miRNAs in all three comparisons (D).

DE circRNAs were performed. These results are given in

Supplementary Table S6.

In the comparison of EL vs. PP, the target genes of the

DE miRNAs were significantly enriched in 33 GO terms

(Figure 5A), and the most enriched GO terms were virus

maturation (GO: 0019075) in a biological process (BP), ESCRT

I complex (GO: 0000813) in a cellular component (CC), and

mannose-6-phosphate isomerase activity (GO: 0004476) in

the molecular function (MF). The parental genes of the DE

circRNAs were significantly enriched in 127 GO terms, and

the most enriched GO terms were mitotic CC organization or

biogenesis (GO: 0071840) in BP, membrane-bounded organelle
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FIGURE 3

The volcano plot of DE circRNAs identified in the EL vs. PP (A), PL vs. PP (B), and PL vs. EL comparisons (C). A Venn diagram of DE circRNAs in all

three comparisons (D).

(GO: 0043227) in MF, and chromatin binding (GO: 0003682) in

MF (Figure 5C).

In the KEGG enrichment analysis, the target genes of the

DEmiRNAs were significantly enriched in four KEGG pathways

(Figure 5B), the three most enriched KEGG pathways were

ovarian steroidogenesis (oas04913), bile secretion (oas04976),

and endocytosis (oas04144). The parental genes of the DE

circRNAs were significantly enriched in five KEGG pathways

(Figure 5D), the top three enriched KEGG pathways were ECM–

receptor interaction (oas04512), focal adhesion (oas04510), and

adipocytokine signaling pathway (oas04920).

In the PL vs. PP comparison, the target genes of the DE

miRNAs were significantly enriched in 85 GO terms, and the

most enriched GO terms were negative regulation of axon

regeneration (GO: 0048681) in BP, anchored component of the

external side of plasma membrane (GO: 0031362) in CC, and
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FIGURE 4

The heatmap of DE miRNAs (A) and DE circRNAs (B).

FIGURE 5

The most enriched gene ontology (GO) terms (A) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (B) of the target genes of

the DE miRNAs identified in the EL vs. PP comparison. The most enriched GO terms (C) and KEGG pathways (D) of the parental genes of the DE

circRNAs identified in the EL vs. PP comparison.
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FIGURE 6

The most enriched GO terms (A) and KEGG pathways (B) of the target genes of the DE miRNAs identified in PL vs. PP comparison. The most

enriched GO terms (C) and KEGG pathways (D) of the parental genes of the DE circRNAs identified in the PL vs. PP comparison.

chondroitin sulfate binding (GO: 0035374) in MF (Figure 6A).

The parental genes of the DE circRNAs were significantly

enriched in 72 GO terms, and the most enriched GO terms were

CC organization or biogenesis (GO: 0071840) in BP, membrane-

bounded organelle (GO: 0043227) in CC, and N4-(beta-N-

acetylglucosaminyl)-L-asparaginase activity (GO: 0003948) in

MF (Figure 6C).

In terms of KEGG enrichment, the target genes of the

DE miRNAs were significantly enriched in eight KEGG

pathways (Figure 6B), and the three most enriched KEGG

pathways were alpha-linolenic acid metabolism (oas00592),

linoleic acid metabolism (oas00591), and ether lipid metabolism

(oas00565). The parental genes of the DE circRNAs were

significantly enriched in six KEGG pathways (Figure 6D), and

the three most enriched KEGG pathways were pantothenate

and CoA biosynthesis (oas00770), fat digestion and absorption

(oas04975), and malaria (oas05144).

In the PL vs. EL comparison, the target genes of the DE

miRNAs were significantly enriched in 76 GO terms, and

the most enriched GO terms were malonyl-CoA biosynthetic

process (GO: 2001295) in BP, SMAD2–SMAD3 protein complex

(GO: 0071144) in CC, and progesterone receptor binding

(GO: 0033142) in MF (Figure 7A). The parental genes of the

DE circRNAs were significantly enriched in 72 GO terms,

and the most enriched GO terms were organelle organization

(GO: 0006996) in BP, cytosol (GO: 0005829) in CC, and inositol

1,4,5 trisphosphate binding (GO: 0070679) in MF (Figure 7C).

In terms of KEGG enrichment, the target genes of the DE

miRNAs were significantly enriched in five KEGG pathways

(Figure 7B), and the three most enriched KEGG pathways were

inflammatory bowel disease (IBD, oas05321), HTLV-I infection

(oas05166), and fatty acid biosynthesis (oas00061). Non KEGG

pathway was significantly enriched for the parental genes of

the DE circRNAs (Figure 7D), the three most enriched KEGG

pathways were apoptosis (oas04210), epidermal growth factor

receptor (EGFR) tyrosine kinase inhibitor resistance (oas01521),

and colorectal cancer (oas05210).

Identification of sheep lactation
biomarkers using machine learning
approaches

Parameters used in the present study was selected with a

systematic evaluation of a range of hyperparameter values. The
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FIGURE 7

The most enriched GO terms (A) and KEGG pathways (B) of the target genes of the DE miRNAs identified in PL vs. EL comparison. The most

enriched GO terms (C) and KEGG pathways (D) of the parental genes of the DE circRNAs identified in PL vs. EL comparison.

FIGURE 8

Gain values of the top miRNA (A) and circRNA (B) biomarkers of sheep lactation identified.

detailed parameter training results and biomarker identification

results are given in Supplementary Table S7.

To identify miRNA biomarkers, 114 positive-VIM miRNAs

were first selected with Random Forest, and then 38 of those

miRNAs were further selected with XGBoost. Three miRNAs

with the highest Gain values (Figure 8A) were oar_miR_362

(0.16), novel_miR_370 (0.13), and oar_miR_758_3p (0.08).

To identify circRNA biomarkers, 885 positive-VIM

circRNAs were first selected with Random Forest, then 42 of

those circRNAs were further selected with XGBoost. Three
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FIGURE 9

Competing endogenous RNA (ceRNA) networks, in which the “V” shape (green), triangle (purple), and circle (red) represent circRNAs, miRNAs,

and messenger RNAs (mRNAs), respectively.

circRNAs with the highest Gain values (Figure 8B) were

novel_circ_0010460 (0.11), novel_circ_0004804 (0.11), and

novel_circ_0006544 (0.09).

ceRNA network

When we combined the results of miRanda, RNAhybrid,

calculated PCC, and adjusted p-values, 130 miRNA–circRNA

interactions and 68 miRNA–mRNA interactions were

identified. ceRNA networks were then constructed based

on the shared miRNAs, and we finally obtained 73 competing

circRNA–miRNA–mRNA triplets containing 27 circRNAs,

15 miRNAs, and 36 mRNAs Figure 9. Within these, the

most strongly connected candidates circRNA, miRNA, and

mRNA were novel_circ_0006589 (13), oar_miR_432 (31),

and PRADC1 (12), respectively. Detailed results are given in

Supplementary Table S8.

Validation of RNA-seq data

The expression levels of selected non-coding RNAs

determined with RNA-seq and quantitative PCR (qPCR) are

presented in Figure 10. The results show that the expression

of both the selected circRNAs and miRNAs was similar in the

RNA-seq and qPCR analyses, confirming the accuracy of our

sequencing data.

Discussion

Lactation is a dynamic and multifactorial process in

mammary gland development (32). At the transcription level,

mammary gland development is regulated by a number of genes

and non-coding transcripts, including DGAT (33), miR-143

(34), lncRNA Neat1 (35), and circ11103 (12). In our previous

study (6), we systemically investigated the expression profiles
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FIGURE 10

Comparisons of the results of RNA-sequencing (RNA-seq) and quantitative PCR (qPCR) analyses of selected non-coding RNAs in the EL vs. PP

(A), PL vs. PP (B), and PL vs. EL comparisons (C).

of mRNAs and lncRNAs at three key points during mammary

gland development in sheep (PP, EL, and PL), and detected

a number of candidate genes and lncRNAs. However, the

transcriptomic mechanisms that underlie mammary gland

development are not fully understood, especially the roles of

non-coding transcripts. In the present study, we investigated

the expression profiles of miRNAs and circRNAs in PP, EL,

and PL, to determine how miRNAs and circRNAs functions

in mammary gland development, and their regulatory roles in

controlling the expression of lactation-related genes.

Expression profiles of circRNAs and
miRNAs

In total, 2,369 circRNAs and 272 miRNAs were annotated.

Compared with a previous transcriptome study on dairy cattle

(36) and other sheep breeds (31), which identified over 4,000

circRNAs in the mammary gland, remarkably fewer circRNAs

were identified in the present study. A possible explanation

for this discrepancy is that various animal models differ in

their properties.

Among the annotated circRNAs, the most highly

expressed circRNAs (according to the average TPM)

were novel_circ_0011066, novel_circ_0011021, and

novel_circ_0010252, whose parental genes are SLTM,USP3, and

SLC39A8, respectively. It is noteworthy that SLTM, USP3, and

SLC39A8 are closely related to the differentiation of mammary

stem cells, mammary epithelial cell cycle, and mammary gland

expansion (37–39). Moreover, Ahmad showed that circ_87295

from USP3 was highly expressed in the mammary gland of

Kashmiri cattle (13), and Hao et al. showed that circ_011411

from SLC39A8 was highly expressed in the mammary gland of

small-tailed Han sheep (3). Taken together, these data suggest

that these circRNAs and their parental genes function similarly

in mammary gland development across species. The most

highly expressed of the annotated miRNAs were oar_miR_148a,
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oar_miR_143, and oar_miR_30a. A previously published study

demonstrated that these miRNAs are involved in mammary

gland development. For example, miR_148a regulates milk

triacylglycerol synthesis in goat mammary epithelial cells (40),

miR_143 regulates milk fat synthesis in bovine mammary

epithelial cells (41), and the miR_30 family is involved in

fatty acid metabolism in the mammary gland (42). Although

the specific functions of these highly expressed circRNAs and

miRNAs in sheep are still largely unclear, our results suggest

that they act as principal regulators during mammary gland

development, as they do in other species. Of course, in-depth

work is still required to confirm this proposition.

When DEseq was applied, 30, 34, and 7 DE miRNAs, and

348, 373, and 36 DE circRNAs were detected in the comparison

of EL vs. PP, PL vs. PP, and PL vs. EL, respectively. Consistent

with our previous study on lncRNAs and mRNAs, clearly

different expression profiles of both circRNAs and miRNAs

were revealed between the non-lactation period (PP) and the

lactation periods (EL and PL). Our results imply that the

transcriptomic status of the mammary gland during lactation

may be relatively stable, in terms of both coding and non-coding

transcripts. It is noteworthy that novel_circ_0010160 was found

to be DE in all three comparisons. Specifically, the expression

level of novel_circ_0010160 rapidly decreased from the PP to

the EL and then slowly increased from EL to PL. Previous

studies on TBC1D14 (parental gene of novel_circ_0010160)

demonstrated its important role in cancer cell autophagy (43,

44). This evidence suggests that novel_circ_0010160 may also

function similarly in sheep MEC autophagy and would make

a prime candidate for future research, especially in the non-

lactation period.

When the non-lactation period and lactation periods were

compared (EL vs. PP and PL vs. PP), 171 shared DE circRNAs

and 16 shared DE miRNAs were identified. Of these, the most

upregulated circRNA and miRNA (ranked by fold changes and

adjusted p-value) were novel_circ_0011345 and oar_miR_148a,

respectively. The parental gene of novel_circ_0011345 is feline

leukemia virus subgroup C receptor-related protein 2 (FLVCR2).

Little is known about the roles of this circRNA and its

parental gene FLVCR2 in lactation, but the strong expression of

novel_circ_0011345 in the lactation period suggests that it acts

as a principal regulator during mammary gland development.

As mentioned earlier, miR_148a has been shown to play an

important role in mammary metabolism during lactation (45),

and it is highly probable that miR_148a also acts as a key

regulator of sheep milk production. The most downregulated

circRNA was novel_circ_0005886, whose parental gene is zinc-

finger 532 (ZNF532), a member of the C2H2-type zinc-finger

family. Previous studies conducted in mice have suggested

that the expression of circRNAs from ZNF532 is positively

associated with cell apoptosis and pyroptosis (46). Considering

the diverse roles of the zinc-finger family in mammary

gland cell organization (47), it is therefore conceivable that

novel_circ_0005886 also has certain effects on sheep milk

production, probably by regulating the cellular BPs of sheep

mammary epithelial cells. The most strongly downregulated

miRNA, oar_miR_99a, showed markedly higher expression in

PP than in lactation periods. Little is known about oar_miR_99a

in mammary gland development, but a similar study conducted

by Laurent et al. in the mammary glands of Prealpes-du-Sud

ewes showed that miR_99a is also highly expressed in the non-

lactation period (48). Collectively, these findings suggest that

miR_99a is a prime candidate for future research on mammary

gland development, particularly during the onset and early stage

of lactation.

As noted in the abovementioned sections, small subsets

of DE circRNAs and miRNAs were identified within the

lactation periods. This finding raises the question of why

sheep milk production varies in different lactation periods.

The comparison of PL and EL identified DE circRNAs

and miRNAs, which provide clues about the modification

of the non-coding transcriptomic profile during lactation.

The most upregulated (PL high) circRNA and miRNA

were novel_circ_0001786 and oar_miR_218a, respectively.

The parental gene for novel_circ_0001786 is LSM14A, and

most research on these transcripts to date has focused on

their roles in immunity (49, 50). However, their strong

expression during PL, which corresponds to an intensive phase

of proliferation in the mammary gland, suggests that the

expression of novel_circ_0001786 and oar_miR_218a contribute

to milk production in sheep, or at least some aspects

of it.

The expression of the most downregulated transcripts,

novel_circ_0006360 and oar-miR-181a, rapidly decreased from

EL to PL. The parental gene of novel_circ_0006360 is PCM1,

a key gene in both mammary gland development and breast

cancer (51), which is related to cell proliferation and the cell

cycle. Therefore, novel_circ_0006360 may act as a principal

regulator in mammary gland development and may function

similarly to its parental gene: PCM1. miR-181a, a star miRNA,

has been shown to be associated with multiple mammary gland-

related BPs, including milk fat biosynthesis (52), the heat stress

response (53), and themammary immune system (54). However,

it is noteworthy that numerous studies have shown that the

expressionmiR-181a is suppressed during the dry period relative

to the lactation period in dairy cattle (55) and goats (56), which

is inconsistent with our findings. Based on these findings, we

speculate that miR-181a may play opposite roles as it does in

other species, and may be involved in multiple functions that

regulate mammary gland development.

Functional enrichment of DE miRNAs and
DE circRNAs

To further define the biological functions of DEmiRNAs and

DE circRNAs, GO and KEGG functional enrichment analyses
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were conducted on the target genes of DE miRNAs and the

parental genes of DE circRNAs.

In comparisons between PP and lactation periods, the GO

annotation showed that the target genes of DE miRNAs and

the parental genes of DE circRNAs were mainly involved in

cellular progress, such as intracellular organelle, membrane-

bounded organelle, and the endosome. In comparisons of

lactation periods (PL vs. EL), the target genes of DEmiRNAs and

the parental genes of DE circRNAs were significantly enriched

in metabolic processes in the mammary gland during lactation,

such as negative regulation of single-organism process, cellular

metabolic process, and macromolecule metabolic process.

Consistent with previous findings in the dairy goat (57),

these results suggest that the identified miRNAs and circRNAs

differentially expressed in the non-lactation and lactation

periods mainly contributed to diverse lactation-related cellular

processes, especially in the organelles. Meanwhile, miRNAs and

circRNAs differentially expressed in different lactation periods

were found to regulate metabolism-related processes.

The KEGG enrichment analysis showed that the target genes

of DEmiRNAs and the parental genes of DE circRNAs identified

in the comparison between PP and lactation periods weremainly

enriched in ECM–receptor interactions and the AMPK signaling

pathway. ECM–receptor interactions are important components

of focal adhesions, which are involved in the migration of

mammary epithelial cells during lactation (58). The AMPK

signaling pathway is important in cellular energy sensing and in

the regulation of glucose supply and utilization in the lactating

mammary gland (59). Collectively, the DE miRNA and DE

circRNAs identified here may act as regulators of diverse cellular

processes and stimulate the development of mammary glands.

Similar to the results of the GO enrichment analysis, the target

genes of DE miRNAs and the parental genes of DE circRNAs

when the lactation periods were compared were significantly

enriched in metabolism- and cellular biology-related KEGG

pathways, including fatty acid metabolism, the cell cycle, and

apoptosis. Our results identified the regulatory roles of these

DE miRNAs and DE circRNAs in the cell cycle and fatty acid

metabolism, which may be responsible for differences in milk

yield and milk components in the EL and PL periods.

Identification of sheep lactation
biomarkers using machine learning
approach

Previously, we compared the classification accuracy of

several decision tree-based machine learning approaches

(Random Forest, XGBoost, and RX) and DE transcript

identification methods (edgeR and t-test) in subsets of

transcriptomic data. The results showed that a method

combining Random Forest and XGBoost (RX) outperformed

the other four methods (Random Forest, XGBoost, t-test, and

edgeR) with the highest classification accuracy and showed

biological value in the prediction of multiple traits such as feed

efficiency (26) and Escherichia coli infection (60).

For these reasons, RX was used to identify the biomarkers

of sheep lactation in this study. Of all identified biomarkers,

oar_miR_362 and novel_circ_0010460 outperformed all

candidate transcripts with the highest “Gain” value, indicating

the importance of oar_miR_362 and novel_circ_0010460

in distinguishing the different lactation periods. Although

the specific roles of oar_miR_362 and novel_circ_0010460

in lactation are still unknown, their high gain values show

their power to distinguish different lactation periods, and

are also evidence for the critical roles of oar_miR_362 and

novel_circ_0010460 in mammary gland development. The

algorithm underlying the decision tree also demonstrates

the strong interactivity between the top biomarkers and the

other identified candidate biomarkers, indicating additional

roles for oar_miR_362 and novel_circ_0010460 in sheep

lactation. Of course, systematic functional verification is still

required to clarify the biological roles of oar_miR_362 and

novel_circ_0010460 in sheep lactation.

ceRNA network

In recent decades, many studies have demonstrated that

circRNAs can function as competing endogenous RNAs, sharing

miRNA recognition elements, and regulating target gene

expression at different stages of mammary gland development

(10, 36). To clarify the circRNA-related ceRNA crosstalk

underlying mammary gland development, we constructed

ceRNA networks of circRNA–miRNA–mRNA triplets.

A total of 73 competing circRNA–miRNA–mRNA triplets

were identified, within which several key regulators were

found, including miR-143 [lipid droplet formation, (41)],

miR-125b [mammary inflammatory response (61)], SLC family

members [cell cycle (62)] and OVOL1 [mammary epithelial–

mesenchymal transition, (63)]. The most connected regulators

in the ceRNA networks were novel_circ_0006589, oar_miR_432,

and PRADC1. Previous studies have shown that these transcripts

have been widely investigated in cancers (64, 65), whereas

little is known about their functions in the mammary gland.

Our findings provide basic evidence that these most strongly

connected transcripts in the network are probably the key

ceRNA regulators in sheep mammary gland development.

Further research is required to confirm our hypothesis.

Conclusion

In conclusion, this study has characterized the expression

profile of miRNAs and circRNAs in the mammary gland

Frontiers in Veterinary Science 13 frontiersin.org

https://doi.org/10.3389/fvets.2022.983562
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Chen et al. 10.3389/fvets.2022.983562

of Hu sheep during different lactation periods for the first

time. By combining a DE analysis, functional enrichment,

machine learning prediction, and a ceRNA network

analysis, we identified subsets of candidate miRNAs (e.g.,

oar_miR_148a, oar_miR_362, and oar_miR_432) and

circRNAs (e.g., novel_circ_0011066, novel_circ_0010460,

and novel_circ_0006589) involved in the development of the

sheep mammary gland. Consequently, our study provides a

foundation for future research on the non-coding molecular

mechanisms underlying sheep lactation.
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