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Clinical review of high-flow nasal
oxygen therapy in human and
veterinary patients

Joanna Whitney* and Iain Keir

Department of Emergency and Critical Care, Small Animal Specialist Hospital, Sydney, NSW, Australia

Oxygen therapy is the first-line treatment for hypoxemic acute respiratory failure.

In veterinary medicine this has traditionally been provided via mask, low-flow

nasal oxygen cannulas, oxygen cages and invasive positive pressure ventilation.

Traditional non-invasive modalities are limited by the maximum flow rate and

fraction of inspired oxygen (FiO2) that can be delivered, variability in oxygen

delivery and patient compliance. The invasive techniques are able to provide

higher FiO2 in a more predictable manner but are limited by sedation/anesthesia

requirements, potential complications and cost. High-flow nasal oxygen therapy

(HFNOT) represents an alternative to conventional oxygen therapy. This modality

delivers heated and humidified medical gas at adjustable flow rates, up to 60

L/min, and FiO2, up to 100%, via nasal cannulas. It has been proposed that HFNOT

improves pulmonary mechanics and reduces respiratory fatigue via reduction of

anatomical dead space, provision of low-level positive end-expiratory pressure

(PEEP), provision of constant FiO2 at rates corresponding to patient requirements

and through improved patient tolerance. Investigations into the use of HFNOT

in veterinary patients have increased in frequency since its clinical use was first

reported in dogs with acute respiratory failure in 2016. Current indications in

dogs include acute respiratory failure associated with pulmonary parenchymal

disease, upper airway obstruction and carbon monoxide intoxication. The use of

HFNOT has also been advocated in certain conditions in cats and foals. HFNOT

is also being used with increasing frequency in the treatment of a widening

range of conditions in humans. Although there remains conflict regarding its use

and e�cacy in some patient groups, overall these reports indicate that HFNOT

decreases breathing frequency and work of breathing and reduces the need for

escalation of respiratory support. In addition, they provide insight into potential

future veterinary applications. Complications of HFNOT have been rarely reported

in humans and animals. These are usually self-limiting and typically result in lower

morbidity andmortality than those associated with invasive ventilation techniques.

KEYWORDS

high-flow nasal oxygen therapy (HFNOT), acute respiratory failure (ARF), hypoxemia,

carbon monoxide toxicity, brachycephalic obstructive airway syndrome (BOAS), positive
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1. Introduction

Oxygen delivery to tissues depends on adequate ventilation, gas exchange and circulatory

distribution (Figure 1) (1). Conditions resulting in tissue hypoxia can be classified into three

groups: (i) those causing arterial hypoxemia [decreased fraction of inspired oxygen (FiO2),

alveolar hypoventilation, gas diffusion impairment, ventilation-perfusion (V/Q) mismatch,
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FIGURE 1

Oxygen delivery equation.

cardiopulmonary shunt]; (ii) those causing failure of the oxygen-

hemoglobin transport system without arterial hypoxemia (anemia,

dyshemoglobinemia, and inadequate blood flow to tissues) and

(iii) those impairing the cells’ ability to utilize oxygen (cyanide

toxicity) (2).

The cornerstone of treatment of hypoxemic patients is the

provision of increased FiO2 to improve oxygen delivery by ensuring

oxygen saturation of hemoglobin and increasing the concentration

of dissolved oxygen in plasma (1). Oxygen delivery systems are

categorized into low-flow and high-flow systems. Low-flow systems

deliver oxygen at a flow rate that is lower than the patient’s

ventilatory requirements resulting in dilution of the concentration

of inspired oxygen relative to the inspiratory flow rate.Modalities in

this category are generally considered conventional oxygen therapy

(COT). High-flow systems can provide gas at a rate to match

minute ventilation and, therefore, a stable and predictable FiO2 (3).

A variety of oxygen delivery systems have been described in human

and veterinary medicine (Table 1).

Oxygen cages are frequently used in small animal patients to

provide oxygen at a set FiO2, humidity and temperature while

efficiently removing carbon dioxide (2). However, the oxygen

levels within the cage rapidly deplete when the doors and opened,

complicating patient monitoring and treatments.

Flow-by oxygen is a simple technique often applied in

emergency veterinary patients. Positioning an oxygen line within a

few centimeters of a patient’s nostrils creates a small area of available

air with increased oxygen concentration (2). A oxygen flow rate of

2–3 L/min may provide a FiO2 of 25–40% (4).

In humans low flow masks can provide up to 60% FiO2 at

moderate flow rate (6–10 L/min). However, these need to be tight-

fitting to prevent entrainment and significant rebreathing may

occur at flow rates<5 L/min (1). In veterinary patients, a face mask

positioned over the muzzle can be used during initial stabilization

or in immobile patients, however ongoing use in conscious patients

is limited by a lack of compliance. The FiO2 generated and degree of

rebreathing that occurs depends on the tightness of fit of the mask

as well as the oxygen flow rate (4).

Nasal prongs provide low-flow oxygen with improved comfort

compared to mask oxygen. The FiO2 depends on the oxygen flow

rate and varies according to minute volume. In resting human

patients, 2 L/min oxygen results in 25–30% nasopharyngeal oxygen

(1). Although flow rates >6 L/min can be achieved with some

systems, these should be avoided as they are associated with dry of

the nasal mucosa (3). Nasal prongs prevent rebreathing and allow

patients to eat. Human nasal prongs can be used in larger dogs of

suitable conformation, however no investigations of the efficacy of

this technique have been undertaken.

Nasal oxygen catheters are typically used in place of nasal

prongs to provide ongoing low flow oxygen support in veterinary

patients. Higher FiO2 can be achieved compared to flow-by and

mask interfaces but is dependent on oxygen flow rate, the degree of

open-mouth breathing of the patient and if unilateral or bilateral

cannulas are placed (2). Dunphy et al. demonstrated that mean

tracheal FiO2 of 77% can be achieved with flow rates of 200

ml/kg/min delivered bilaterally in healthy dogs (5). However, flow

rates > 100 ml/kg/min resulted in discomfort and distress in this

group of patients; while 100 ml/kg/min administered bilaterally

were well tolerated and resulted in a mean FiO2 of 56% (5).

High-flow mask oxygen utilizes Venturi valves to create a

Bernoulli effect and provide higher flow rates (30–50 L/min)

generating 24–60% FiO2. These systems are able to provide the

total ventilatory requirement of the patient regardless of the pattern

of ventilation and eliminate rebreathing due to the high flow

rate (1). However, humidification is limited to a standard bubble

humidifier resulting in inadequate humidification of inhaled gases

and subsequent airway desiccation and discomfort (6, 7).

Non-invasive ventilation refers to the delivery of mechanical

ventilation via techniques that do not require endotracheal

intubation (8). These improve gas exchange and reduce inspiratory

effort through the generation of positive pressure within the

airways, reducing upper airway obstruction and recruitment

of alveoli (9). There are two main modalities of non-invasive

ventilation—continuous positive airway pressure (CPAP) and

non-invasive pressure support ventilation (10). CPAP may be

performed using a tight-fitting mask or helmet with an expiratory

(positive end-expiratory pressure, PEEP) valve connected to

an oxygen source and gas blender or via a mechanical

ventilator. Non-invasive pressure support ventilation requires a
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TABLE 1 Modes of oxygen supplementation in veterinary patients.

FiO2 (%) Flow rate Advantages Limitations Indications

Low flow

Flow by 25–45 6–8 L/min • Utilizes readily

available equipment

• Not appropriate for prolonged

therapy

• Wasteful

• Triage and procedures

• Initial stabilization

Oxygen cage 21–60 • Well tolerated

• Allows eating and drinking

• Reduced access to patients

• FiO2 rapidly decreases when

doors opened

• Larger patients

• Patients that will not tolerate nasal

oxygen or in which nasal oxygen

is contraindicated

Face mask 35–55 1–6 L/min • Utilizes readily available

equipment

• Rebreathing at low rates

• Not appropriate for prolonged

therapy

• FiO2 depends on fit of mask

• Triage and procedures

• Initial stabilization

• Risk of rebreathing

Nasal prongs 50–150

ml/kg/min

• Easy to place

• Well tolerated

• Poor patient tolerance at high

flow rates

• Not suitable for some

facial conformations

• Ongoing oxygen support in hospital

Nasal catheter 30–60 50–150

ml/kg/min

• Well tolerated • Poor patient tolerance at high

flow rates

• Harder to place

• Ongoing oxygen support in hospital

High flow

CPAP 21–100 • Reliable FiO2

• Delivers PEEP

• Humidifies inhaled gases

• Often requires heavy sedation

• Specific equipment

• Hypoxaemia despite oxygen support

• Upper airway obstruction

HFNOT 21–100 10–60 L/min • Reliable FiO2

• Delivers PEEP

• Humidifies inhaled gases

• Specific equipment • Hypoxaemia despite conventional

oxygen therapy

• Increased work of breathing

Mechanical

ventilation

21–100 • Reliable FiO2

• Delivers PEEP

• Humidifies inhaled gases

• Specific equipment

• High complication rate

• High cost

• Hypoventilation

• Hypoxaemia despite oxygen support

• Increased work of breathing (fatigue)

ventilator triggered by the patient’s inspiratory effort to deliver

a decelerated gas flow in order to generate and maintain two

different pre-set pressures during inspiration and expiration

(10). Nasal or oronasal (full face) masks which form an air

seal are required to achieve non-invasive pressure support

ventilation (8, 11). Non-invasive ventilation via nasal mask

in cats requires similar levels of sedation as and confers

no significant cardiovascular benefits compared to mechanical

ventilation (11).

Significant increases in PaO2 have been demonstrated after

CPAP administered by helmet in dogs (pre-CPAP 80.6 mmHg

vs. CPAP 105.6 mmHg) and anesthetized cats (pre-CPAP 77.5

mmHg vs. CPAP 103.2 mmHg) (12, 13). Raidal et al. compared

the effect on respiration and ventilation in sedated foals treated

with CPAP and mask oxygen (14). They found that the effects of

CPAP on arterial blood gas parameters were comparable to mask

oxygen with modest increases in PaCO2 in almost all animals for

both modalities. The clinical use of CPAP in veterinary patients

is effective in providing a known level of PEEP and improving

oxygenation. However, its use is currently limited by the need for

sedation or anesthesia for the interface to be tolerated in some

patients and the high oxygen flow requirement to maintain PEEP

(13, 15).

Invasive mechanical ventilation is indicated in the management

of severe hypoventilation, severe hypoxemia despite oxygen

supplementation, when there is excessive work of breathing and

when long-term endotracheal intubation is required (16). ICU

ventilators that can provide humidified gas up to 100% FiO2

are recommended for the management of such conditions. In

addition to oxygen support and conditioning of inspired gases,

mechanical ventilation reduces the work of breathing and can

improve oxygenation via increasing airway and alveolar pressure

and recruiting collapsed alveoli (16).

Heavy sedation or a light plain of anesthesia is generally

required to facilitate mechanical ventilation (16). A number of

potential complications have also been reported in veterinary

patients associated with mechanical ventilation including corneal

and oral mucosal ulceration, hypothermia, positive fluid balance,

ventilator-induced lung injury, ventilator-associated pneumonia

and cardiovascular compromise (17–19). The prognosis for

veterinary patients undergoing mechanical ventilation for

conditions other than anesthesia-associated hypoventilation is

variable and depends on the underlying condition (16). Overall,

patients ventilated for primary hypoventilation have a better

prognosis that those being treated for primary pulmonary

pathology, in particular acute respiratory distress syndrome

(ARDS) (17, 20). Intensive patient care and specialized equipment

is required to provide effective mechanical ventilation and

minimize complications, and is associated with high cost to

clients (21).
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FIGURE 2

HFNOT device on which flow rate, FiO2, and temperature can be set.

High-flow nasal oxygen therapy (HFNOT) is a non-invasive

respiratory support able to provide some of the features previously

limited to mechanical ventilatory techniques. It involves the

delivery of a humidified gas mixture [37◦C contains 44mg H2O

(100% relative humidity)] at up to 60 L/min, with a FiO2 ranging

from 21 to 100% (22). HFNOT devices allow modification of

three variables—the percentage of oxygen delivered, the flow rate

of gas and gas temperature (Figure 2). Components of HFNOT

devices include: a high pressure sources of oxygen and air, an air-

oxygen blender or a high-flow “Venturi” system, a humidifying and

heating system for conditioning the gas to optimal temperature and

humidity, a sterile water reservoir, a non-condensing circuitry, and

an interface (6).

There are several devices available which provide high flow,

humidified oxygen via a nasal cannula. The Precision FlowTM

(Vapotherm) and OptiflowTM/AirFlo 2TM (Fischer and Paykel)

are the most commonly used in human medicine and veterinary

reports (6, 23–30). An increasing number of HFNOT systems

have become available in the last 3–5 years. A recent benchtop

study found a marginal but statistically significant difference in

key performance parameters, however, the clinical effect of these

differences has not yet been evaluated in vivo (31).

Relevant studies published until June 2022 were retrieved

from the online databases Web of Science and PubMed using

the keywords “high-flow oxygen” and “high-flow” AND “oxygen.”

Reference lists of search articles were reviewed for additional

relevant articles. All veterinary articles and human articles, with

the highest level of evidence for the topic, deemed relevant and/or

applicable to veterinary medicine were reviewed.

2. Mechanisms of action and proposed
physiological benefits of high-flow
nasal oxygen therapy

A number of physiological mechanisms have been proposed to

explain the beneficial effects of HFNOT in human medicine,

however some aspects have not been fully investigated.

Furthermore, the contribution of each mechanism in different

clinical conditions and individual patients likely varies and these

have yet to be fully elucidated.

Clinically relevant features of HFNOT include provision

of fixed concentrations of inspired gases, delivery of heated

and humidified gases, generation of flow-dependent positive

airway pressure and flushing of anatomical dead space. These

features result in increased patient comfort and compliance,

provision of higher FiO2 compared to conventional oxygen

therapy, maintenance of mucosal integrity and function, alveolar

recruitment and decreased work of breathing (9, 32, 33).

2.1. Respiratory mechanics and
oxygenation

2.1.1. FiO2 and dead space washout
The flow rates provided during HFNOT, which are higher

than those achieved using conventional oxygen therapy, are able

to match the peak inspiratory flow of the patient, and thus

reliably provide the set FiO2 (34, 35). As such, FiO2 approaching

100% are able to be achieved without the need for endotracheal

intubation. Higher oxygen flow rates delivered during HFNOT

compared to conventional oxygen therapy are also proposed to

“washout” carbon dioxide from the anatomical dead space within

the nasopharynx resulting in reduced rebreathing. This results in

an improved FiO2, more efficient provision of minute ventilation

and decreased work of breathing (32, 33, 36–38).

Carbon dioxide washout has also been proposed to contribute

to the mechanism by which HFNOT is effective in sleep breathing

disorders. Reduced levels of inspired carbon dioxide may improve

breathing patterns in these patients (33).

2.1.2. Positive airway pressure
The provision of PEEP during any form of respiratory

support aims to prevent alveolar collapse and recruit atelectatic

lung, ultimately improving alveolar ventilation (16). Additionally,

providing higher flow rates to match intrinsic PEEP via CPAP

reduces the work of breathing in patients with obstruction airway

disease (39–41).

A small study of human cardiac surgery patients demonstrated

a positive linear relationship between flow rate and mean

airway pressure during HFNOT, with PEEP ranging from 3.0

to 4.8 cmH2O at flow rates of 30–50 L/min (42). The authors
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proposed that this PEEP resulted, in part, from the resistance

to expiration associated with the continuous incoming gas flow

(43). Studies in which pharyngeal and esophageal pressures have

been measured report generation of a 2–4 cm H2O in children

(44, 45).

Individual variations in the generation of airway pressure

during HFNOT have been identified in a number of studies and

attributed to anatomical and physiological differences between

patients (43, 46, 47). Of particular consideration are the diameter

of the nasal prongs relative to the patient’s nares and whether or

not the mouth is closed (43). Multiple prospective studies of adult

humans treated with HFNOT have demonstrated that significant

airway pressure generation only occurs when the patient’s mouth is

closed (34, 43, 46).

2.1.3. Airway resistance
An important function of the nasopharynx is to facilitate

warming and humidification of inspired gases by contact with its

large surface area. However, this function also results in significant

resistance to inspiratory flow (48). By matching or exceeding rates

of inspiratory flow, HFNOT likely attenuates this effect and further

reduces the work of breathing (33).

A pharyngeal distending pressure of up to 4 cm H2O can be

achieved with HFNOT flow rates of 2 L/kg/min (44). This positive

upper airway pressure may reduce airway resistance by stenting the

soft palate and pharynx (44). It has also been proposed that HFNOT

stimulates airway stiffening and stenting by activation of the alae

nasae muscle (49).

HFNOT may also alleviate increased resistance in the lower

airways that can result from conventional oxygen therapy.

Provision of cool, dry air during respiratory support has been

shown to decreased pulmonary compliance and conductance in

infants (50). This has been demonstrated to be associated with a

protective bronchoconstrictive response, secondary to stimulation

of muscarinic receptors in the nasal mucosa, in healthy and

asthmatic children (51–53). Clinically, this has been supported

by Saslow et al. who demonstrated beneficial effects of the

provision of warm, humidified air via nasal catheter in infants

(54). In this study, pulmonary compliance was higher in patients

receiving HFNOT compared to CPAP, despite the former providing

lower PEEP.

In addition to the increased resistance created in the

upper respiratory tract, the conditioning of inhaled gases by

the nasal mucosa also consumes energy (33). This energy

requirement is conceivably increased during supplementation

of cool, dry gas during conventional oxygen therapy as well

as during periods of respiratory distress and increased minute

ventilation (33).

2.2. Mucociliary clearance

Mucociliary clearance is an import defense mechanism of

the airways and depends on normal cilia function and mucus

composition (55, 56). Slow, turbulent airflow in the nasopharynx

allows inspired air to be warmed to∼34◦C and humidified to 100%.

This helps to create optimal conditions for the functioning of cilia

and maintenance of mucus composition (57). The formation of

respiratory secretions also depends on adequate moisture content

of the respiratory epithelium.

Patient and treatment factors may affect conditioning of

inspired air and mucociliary clearance. Increased respiratory rates

and open-mouth breathing in respiratory failure can affect airway

humidification and conditioning of inspirated gas (58). HFNOT

has been shown to reduce respiratory rates and effort, and may

be able provide clinical improvement through the reduction in

open-mouth breathing (59).

The provision of cold, dry gas through conventional oxygen

therapy further exacerbates the detrimental effects on inspired gas

and airway function (60). An in vitro study of tracheal epithelium

demonstrated that exposure to low-humidity inspired gas, even

for relatively short periods, impaired the function of human

epithelial cells. This may result in mucus dehydration, impaired

mucociliary clearance and mucus retention (60). HFNOT delivers

gas at 100% and close to body temperature, features that may be

advantageous in maintaining or improving mucociliary clearance

(61). This has been demonstrated in canine model in which

provision of heated and humidified gas improved mucociliary

function (62).

2.3. Patient comfort

HFNOT is better tolerated and more comfortable than

conventional oxygen therapy (63, 64) and non-invasive ventilation

(65–67). This has been attributed to a number of factors including

conditioning of inspired gas, correction of hypoxemia, increased

alveolar recruitment and the ability to eat and speak more

readily (22).

2.3.1. Conditioning of gas
As previously discussed, HFNOT maintains conditioning of

inspired air and hydration of the airway mucosa. By not desiccating

the nasal passages, HFNOT is proposed to provide more comfort

and better tolerance of the higher flow of gas (33, 68–70). However,

a recent pilot study by Spoletini et al. proposed that additional

features of HFNOT may be associated with improved patient

comfort (71).

2.3.2. Device-patient interface
In humans, conventional oxygen therapy may be delivered

by a face mask or nasal cannula while non-invasive ventilation

utilizes oronasal masks, full-face masks or helmets. Non-invasive

ventilation interfaces in particular are associated with the

development of skin lesions and patient discomfort (72). Since

the interface of nasal CPAP requires secure fixing without leaks,

the reported incidence of pressure ulcers ranges from 15 to

100% (73). Furthermore, masks and helmets may interfere with

eating and drinking (3). When compared to conventional nasal

oxygen therapy patients, HFNOT patients experience decreased eye

irritation and find it easier to eat (71).
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3. High-flow nasal oxygen therapy in
human medicine

3.1. Indications

3.1.1. Acute hypoxemic respiratory failure
HFNOT is becoming the first-line therapy for acute hypoxemic

respiratory failure in patients that fail to show an adequate

response to conventional oxygen therapy and for whom

immediate intubation is not indicated (74). In addition to

its therapeutic benefits, a cross-over study demonstrated that

this modality significantly reduced discomfort in critically ill

patients with respiratory failure compared to conventional

therapy (75).

The FLORALI clinical trial compared conventional oxygen

therapy (≥10 L/min via mask), HFNOT (50 L/min) and non-

invasive ventilation (≥8 h/day with bilevel settings) (76). This

study included 310 non-hypercapnic patients with acute hypoxemic

respiratory failure (PaO2/FiO2 < 300 mmHg), 84% of which had

pneumonia. There was no significant difference in intubation rates

between the three groups, however, mortality was lower in the

HFNOT group in the ICU (11% with HFNOT vs. 19% with

COT vs. 25% with NIV) and at 90-days (12% with HFNOT vs.

23% COT vs. 28% NIV). Post-hoc analysis demonstrated that

HFNOT was associated with a decreased intubation rate in a

more severely affected subgroup of patients (PaO2/FiO2 < 200

mmHg) (76).

More than 75% of patients in the FLORALI trial had thoracic

radiographic changes that were consistent with a diagnosis of early

ARDS (77). A contemporary observational study evaluated the

effect of HFNOT in ARDS (78). Modes of oxygen support were

considered in 607 patients admitted to a single medicosurgical

ICU. 45/51 patients who received HFNOT as a first-line treatment

had ARDS (PaO2/FiO2 137 mmHg), with 26/45 successfully

treated with HFNOT alone. Patients who failed HFNOT had

higher Simplified Acute Physiology Score II (SAPS II) scores in

multivariate analysis (78).

The HOT-ER trial aimed to determine if HFNOT compared

to conventional oxygen therapy reduced the need for non-invasive

ventilation or intermittent positive pressure ventilation in patients

with acute respiratory distress presenting to a hospital emergency

department (79). 322 hypoxemic (SpO2 ≤ 92%) and tachypneic

(respiratory rate≥ 22 breaths/min) adult patients were randomized

to receive HNFOT or conventional oxygen therapy with need for

mechanical outcome as the primary outcome. HFNOT did not

reduce the need for ventilation in this population, results which

conflicted with the FLORALI trial but may be reflective of the more

heterogeneous population (76, 79). Of note, whilst adverse events

were infrequent in the HOT-ER trial, 1/12 patients did not tolerate

HFNOT (79).

Much of the recent human literature regarding HFNOT in

acute hypoxemic respiratory failure has focused on its use in

the treatment of COVID-19. HFNOT has been demonstrated to

result in a significant reduction in intubation rate and subsequent

mechanical ventilation without a clear survival benefit compared

to conventional oxygen therapy (80–82). A randomized clinical

trial of ICU patients with moderate to severe COVID-19 found

that HFNOT was associated with higher rates of intubation

compared to helmet non-invasive ventilation (83). Despite this,

there was no difference in in-hospital mortality between groups in

this study.

The Surviving Sepsis Campaign: Guidelines on the

Management of Critically Ill Adults with Coronavirus Disease 2019

(COVID-19) suggest the use of HFNOT over conventional oxygen

therapy in adults with acute hypoxemic respiratory failure despite

conventional oxygen therapy. Furthermore, they suggest HFNOT

over non-invasive positive pressure ventilation (84). At the time

of their publication, prospective and randomized control trials

investigating the use of HFNOT in the management of COVID-19

were scarce and these recommendations were based predominantly

on the FLORALI trial (76).

3.1.2. Acute heart failure
In addition to providing oxygen support, HFNOT has been

proposed to have haemodynamic effects that may aid in the

management of acute heart failure and pulmonary oedema.

In particular, reducing pulmonary congestion via reductions

in cardiac preload and afterload (85). Roca et al. performed

echocardiographs in 10 patients with NYHA class III heart failure

during HFNOT delivered at flow rates of 20 L/min and 40 L/min

with 21% FiO2 (86). Significant reduction in inspiratory collapse of

the inferior vena cava occurred relative to flow rate during HFNOT

and normalized following discontinuation of therapy. The authors

reasoned that as right atrial pressure is estimated by inferior vena

cava diameter collapses, and the right atrium is a surrogate of right

ventricular preload, HFNOT may be associated with a decrease

in preload (86). Additionally, HFNOT may decrease afterload

through the provision of PEEP and amelioration of sympathetic

nervous system stimulation associated with hypoxia (87). Despite

the proposed benefit of HFNOT in the management in acute

left-sided cardiac failure, prospective studies of its clinical utility

are limited.

A prospective randomized controlled study by Makdee et al.

assessed the efficacy of HFNOT in the management of acute

heart failure by comparing respiratory rates following HFNOT

with conventional oxygen therapy in patients presenting to an

emergency room with pulmonary oedema (88). Patients were

included if they had SpO2 < 95% and respiratory rate >25

breaths/min; patients requiring ventilation, with the presence

of myocardial infarcts or evidence of other organ failure were

excluded. HFNOT was associated with lower respiratory rates

at 60 mins after initiation of therapy but there was no

difference in mortality, non-invasive ventilation or intubation

between groups.

Amore recent prospective study of HFNOT in themanagement

of acute congestive heart failure compared HFNOT with

conventional oxygen therapy in patients presenting to the

emergency room with acute pulmonary oedema (89). The

conventional oxygen therapy group received oxygen via a nasal

cannula at flow rates of >2 L/min while HFNOT was initiated at

45 L/min and FiO2 100%. Patients in both groups were treated to

maintain SpO2 > 93%. HFNOT resulted in greater improvement

in respiratory rate, SpO2, lactate levels and arterial blood gas

parameters compared with conventional therapy (89).
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Osman et al. conducted a randomized controlled

trial comparing HFNOT to non-invasive ventilation

(helmet CPAP) in adult patients presenting the emergency

room with acute cardiogenic pulmonary oedema (90).

They found CPAP to be more effective in the very

short term in improving dyspnoea, hemodynamics and

respiratory parameters.

3.1.3. Interstitial lung disease
The interstitial lung diseases are a heterogeneous group of

pulmonary conditions that involve changes to the distal lung

parenchyma (91). The different diseases can be subdivided into

those with an identifiable etiology and those without, and have

marked variation in regards to their clinical course, treatment

and prognosis (92). Acute respiratory failure can complicate

interstitial lung disease and is associated with a poor prognosis

and high mortality rate (93). Mechanical ventilation does not

improve oxygenation in affected patients and is associated with

a high incidence of barotrauma and a poor prognosis (94,

95). HFNOT has been proposed as an alternate method of

oxygen support and palliation in patients with interstitial lung

disease. At this time, information is limited to case series and

retrospective studies.

Horio et al. (96) reported three case of acute respiratory

failure associated with interstitial lung disease. The patients were

commenced on HFNOT (FiO2 70–100%; flow rate 40 L/min)

while additional medical management was initiated and took

effect. HFNOT was well-tolerated and weaned in accordance with

improving oxygenation parameters until discharge at 21–26 days

(96). All of the subjects in this series demonstrated immediate

improvement with the commencement of HFNOT after failing to

respond to conventional oxygen therapy (96).

This initial support for HFNOT in the management of

interstitial lung disease was supported by a retrospective study

of 96 patients with exacerbation of interstitial pneumonia (97).

Patients were grouped into pre-HFNOT and post-HFNOT

cohorts based on the introduction of HFNOT at the hospital.

Oxygen support in the pre-HFNOT group was provided

by conventional oxygen therapy, non-invasive and invasive

mechanical ventilation. HFNOT was used in patients who

refused or were intolerant to non-invasive ventilation and during

weaning from ventilation. The incorporation of HFNOT into

the management of interstitial lung disease patients in this study

resulted in lower in-hospital mortality, reduced requirement for

sedation and analgesia and a lower incidence of discontinuation

of oral intake. There was no difference in the incidence of

complications (97).

Hypersensitivity pneumonitis is a form of interstitial lung

disease resulting from the inhalation of small particulate antigens.

Acute, subacute, and chronic forms have been reported which may

resolve or progress to pulmonary fibrosis (98). Lycoperdonosis is

a form of hypersensitivity pneumonitis associated with inhalation

of spores from Lycoperdon spp. (puffball) mushrooms (99,

100). A recent abstract at the North American Congress of

Clinical Toxicology reported the successful use of HFNOT

and bronchodilators in the management of a child with

lycoperdonosis. Corticosteroids were not required despite previous

recommendations by some authors (101).

3.1.4. Asthma
Acute exacerbation of asthma is a common cause of respiratory

distress, with non-invasive oxygen support recommended in

severe cases (102). However, the cold and dry air provided via

conventional oxygen therapy modalities may potential exacerbate

bronchoconstriction, promoted airway inflammation and impair

mucociliary function (103). As such HFNOT has theoretical

benefits in the management of severe asthma.

Retrospective studies of pediatric status asthmaticus showed

significant improvements in vital parameters, serum pH and

SpO2/FiO2 associated with HFNOT compared to conventional

oxygen therapy (104, 105). A pilot study of a similar population

supported these findings, demonstrating higher rates of pulmonary

score improvement 2 h after initiation of HFNOT compared

to conventional oxygen therapy (106). HFNOT has also been

associated in decreased intubation rates for severe pediatric asthma

(107). Despite these findings, improved patient outcomes have

not been demonstrated (108). Further to this, some studies have

raised concerns regarding delays in treatment escalation in patients

receiving HFNOT (109). Clinical trials are needed to further

investigate these findings.

3.1.5. Carbon monoxide intoxication
Carbon monoxide competitively and reversibly binds to

hemoglobin with 250 times greater affinity than oxygen resulting

in a marked anemic hypoxia despite a normal PaO2 (110).

Treatment involves provision of high FiO2 to compete with

carbon monoxide for hemoglobin binding sites and reduce

the half-life of carboxyhemoglobin (COHb) (1). HFNOT has

recently been reported as an alternative treatment for carbon

monoxide intoxication.

A prospective observational clinical study enrolled 33 adult

patients presenting to two academic emergency departments with

carbon monoxide intoxication (111). The primary objective of this

study was to determine the mean half-life of COHb after HFNOT

(FiO2 100%, T 37◦C, 60 L/min), which was found to be 36.8

mins. The investigators also assessed device tolerability and patient

comfort. 11/33 patients requested a change in flow rate due to

discomfort but then self-evaluated as very comfortable following

rate adjustment (111). A subsequent retrospective study identified

a similar COHb half-life following HFNOT (41.1min) but this was

found to not be significantly different to that in patients receiving

conventional oxygen therapy (112). However, post-hoc analysis

showed a significant difference in COHb levels between treatment

groups at 60 and 90 mins.

3.1.6. Procedural sedation
Oxygen desaturation, airway obstruction and apnoea are the

most prevalent adverse events during procedural sedation (113).

Risk factors for hypoxemia during procedural sedation include high

ASA physical status, reduced cardiopulmonary reserve, obesity

and prolonged procedural duration (114). Oxygen support via
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HFNOT has been evaluated during sedation for gastrointestinal

endoscopy (115–117), bronchoscopy (118, 119), dental procedures

(120, 121) and minimally invasive cardiovascular interventions

(122, 123).

A recent meta-analysis evaluated the effected of HFNOT

and conventional oxygen therapy during procedural sedation

in adults and children, and included 4,121 patients in 19

randomized control trials. This found that HFNOT reduced the

risk of hypoxemia and increased minimum oxygen saturation.

Furthermore, the reduction in hypoxemia persisted regardless of

the procedure, FiO2, risk-profile of the patient and mode of

propofol administration (114).

3.1.7. Post-extubation
Post-extubation respiratory insufficiency is a known

complication following weaning from invasive mechanical

ventilation and may progress to acute respiratory failure. Post-

extubation acute respiratory failure results in extubation failure and

reintubation (124). Conditions associated with post-extubation

respiratory insufficiency include upper airway obstruction,

decreased respiratory muscle function, atelectasis and increased

work of breathing, and haemodynamic stability (125). Several

studies have compared HFNOT and conventional oxygen therapy

in relation to risk of reintubation. In low-risk patients, results of

these studies have varied.

Zhu et al. attempted to quantify the benefits of HFNOT

for patients after planned extubation (126). They evaluated

results from 856 HFNOT patients and 852 patients who

received conventional oxygen therapy in 10 studies. HFNOT

was associated with reduced post-extubation respiratory failure,

decreased respiratory rates and increased PaO2. However, no

significant differences in reintubation rate, length of ICU

and hospital stay, PaCO2, mortality or severe adverse events

were identified (126). The unanticipated re-intubation rates

may reflect heterogeneity in patient populations and treatment

protocols. Additionally, some of the included studies contained

conventional oxygen therapy groups for whom escalation in

oxygen support included HFNOT and this may have confounded

the results.

Another recent meta-analysis compared HFNOT and non-

invasive ventilation in patients after extubation. Initial use of

HNFOT in the post-extubation period was not inferior to non-

invasive ventilation in regards to the probability of reintubation,

treatment failure or mortality and was associated with a reduced

probability of complications include cutaneous lesions and

respiratory failure (125).

A multicentre randomized control trial compared HFNOT

to HFNOT in combination with non-invasive ventilation in

patients at high risk of extubation failure (127). Patients who

successfully completed a spontaneous breathing trial after more

than 24 h intubation were included. Those in the combination

group commenced non-invasive ventilation immediately after

extubation with a minimum duration of 12 h per day for

the first 48 h. HFNOT was administered between non-invasive

ventilation sessions in the combined group and continuously

in the HFNOT sole treatment group. In the 641 patient

who completed the study, reintubation rate at day 7 was

significant higher in the HFNOT compared to when the therapies

were combined. Of interest, the combination of HFNOT and

non-invasive ventilation appeared to be more beneficial in

patients with pre-extubation hypercapnia, defined as PaCO2 >

45 mmHg.

3.2. Complications and considerations

Complications of HFNOT are rare but include facial trauma,

abdominal distension, aspiration, epistaxis and barotrauma.

However, risk of these is lower than with other non-invasive

ventilation modalities (77). A major concern during HFNOT

is the risk of delayed intubation and mechanical ventilation in

hypoxemic patients (74). A prospective study by Kang et al. (128)

evaluated if delaying intubation until failure of HFNOT adversely

affected patient outcome. 175 patients who failed HFNOT were

categorized based on time at which intubation occurred; before

(early) and after (late) 48 h of HFNOT. Patients intubated after

48 h had higher overall ICU mortality after propensity score

adjustment and matching. However, the results of this study may

have been affected by the lack of pre-determined criteria for

intubation. Furthermore, the median duration of HFNOT prior to

intubation in the late group was 126 h compared to 10 h in the early

group (128).

HFNOT is generally considered to be well tolerated,

particularly in comparison to other oxygen support modalities.

In a small prospective, observational emergency room study,

both patients (100%) and caregivers (82%) judged HFNOT to

be more comfortable compared to conventional oxygen therapy

(129). Patients also report less mouth dryness and improved

breathlessness with HFNOT compared with facemask oxygen (63).

However, patient discomfort is reported and may be associated

with specific patient and treatment factors. Post-hoc analysis of

the FLORALI trial reported higher patient discomfort after 1 h

in patients failing HFNOT (130). Lower temperatures with full

humidification was associated with lower discomfort regardless of

flow rate in another study (131).

Prolonged placement of nasal cannulas for HFNOT may cause

localized skin damage. Cutaneous and mucosal ulceration of the

nose, nasal septum, frenulum and pinnae associated with friction

between the skin and interface in prolonged HFNOT has been

reported (132). Older patients and those with co-morbidities may

be predisposed to such injuries (133). However, the risk of these

lesion is significant less with HFNOT compared to non-invasive

ventilation and CPAP (134, 135).

A retrospective study evaluated complications associated

with HFNOT in a pediatric ICU over 1 year (136). Two children

developed new pneumothoraxes, although neither could be

specifically attributed to HFNOT-associated barotrauma and

may have occurred secondary to the underlying conditions and

other treatments of the patients. None of the six pre-existing

pneumothoraxes worsened during HFNOT (136). Hodge and

Prodhak (137) reported three life-threating occurrences of air
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leak syndrome associated with HFNOT in pediatrics—a 2-

month old with bronchiolitis who developed a pneumothorax

after HFNOT at 8 L/min, a 16-year old with non-respiratory

illness who developed at pneumomediastinum after HFNOT

at 20 L/min and a 22-month old with a sub-dural haematoma

who developed a pneumothorax after HFNOT at 6 L/min.

Pneumomediastinum, pneumothorax and subcutaneous

emphysema has also been reported in an adult female treated

with HFNOT (FiO2 0.5, flow rate 40 L/min) for respiratory

failure (138).

Tension pneumocephalus is a rare but potentially catastrophic

complication of positive pressure ventilation and has been

associated with HFNOT. Chang et al. reported a case of tension

pneumocephalus is an adult with an unrecognized basilar skull

fracture (139). HFNOT-associated tension pneumocephalus has

also been reported in a pre-term neonate (140). Both events

resulted in severe neurological sequelae fromwhich the patients did

not recover.

Contraindications for HFNOT include nasal, facial and airway

abnormalities that may affect nasal cannula fit and device function

or predispose to complications. Implicated conditions include

epistaxis, basilar skull fractures, surgery to the nose and nasal

obstruction (77).

3.3. Predictors of treatment failure

Despite the significant advantages of HFNOT in the

management of acute respiratory failure, current literature

indicates that around 30% of patients will fail treatment and

require mechanical ventilation (74). In patients with acute

hypoxemic respiratory failure, an increased heart rate after 1 h

of HFNOT was associated with intubation (130). Hemodynamic

instability has also been associated with HFNOT failure in cohort

studies (141, 142). Other factors that have been associated with

HFNOT failure include elevated SOFA score, thoracoabdominal

asynchrony, significantly increased respiratory rate and poor

oxygenation (143).

The ROX index was developed to predict success and failure

of HFNOT (144). This index is the ratio of the pulse oximetry

oxygen saturation over the fraction of inspired oxygen over the

respiratory rate [(SpO2/FiO2)/RR]. The ROX index was evaluated

in a prospective study of 157 pneumonia patients treated with

HFNOT, with FiO2 set to maintain SpO2 > 92% and flow rate set

at the clinicians’ discretion. Treatment failure was assessed based

on respiration, oxygenation and ventilatory parameters; criteria

for intubation and mechanical ventilation were decreased Glasgow

Coma Scale score, haemodynamic instability and persistent or

worsening respiratory condition. A ROX index ≥ 4.88 measured

after 12 h of HFNOT was significantly associated with a lower risk

of mechanical ventilation (144).

A subsequent multicentre prospective observational cohort

study by the same group validated the diagnostic accuracy of

the ROX index (145). One hundred and ninety-one pneumonia

patients treated with HFNOT were evaluated and the most specific

cut-off to predict treatment failure and success were assessed. ROX

≥ 4.88 measured at 2, 6 or 12 h after HFNOT initiation was

consistently associated with a lower risk for intubation. A ROX

< 2.85, <3.47, and <3.85 at 2, 6, and 12 h of HFNOT initiation,

respectively, were predictors of HFNOT failure. Patients who failed

also demonstrated a lower increase in the values of the ROX index

over the 12 h (145).

4. High-flow nasal oxygen therapy in
veterinary patients

4.1. Canine

4.1.1. Studies in healthy dogs
The Precision FlowTM system was evaluated in a prospective

study of 6 healthy client-owned dogs (23). One hundred percent

oxygen was provided via conventional nasal oxygen cannula

(100 ml/kg/min) or HFNOT (20 L/min and 30 L/min; equating

to median flow rates of 0.7 L/kg/min and 1.1 L/kg/min with

minimum and maximum rates of 0.55 L/kg/min and 1.7 L/kg/min)

in a randomized order followed by a washout period. Blood

gas values and end-expiratory transpulmonary pressures were

assessed for each treatment after a 6-min acclimation period.

This study demonstrated a significantly higher increase in baseline

PaO2 between the delivery methods but no difference in PaO2

achieved using the HFNOT system at the different flow rates. No

differences in transpulmonary pressure were identified between

baseline and any of the treatment methods, or between any of

the treatments, suggesting negligible generation of positive airway

pressure. Although theminute ventilation was exceeded for all dogs

at both flow rates, the small number dogs and marked variation in

individual flow rates may have influenced the results.

Jagodich et al. evaluated the OptiflowTM/AirvoTM 2 system in

a prospective randomized crossover study of eight healthy dogs

(27). In this study 100% oxygen was provided via conventional

nasal cannula or HFNOT at a range of flow rates for each system.

Additionally, the effects of HFNOT were compared between

sedated and unsedated dogs. Vital parameters, airway pressure and

gas values, respiratory scores and tolerance were recorded for each

treatment and flow rate. Airway pressures generated by each system

were comparable at equivalent flow rates. However, only HFNOT

at flow rates of 1–2 L/kg/min was able to maintain positive airway

pressure and achieve CPAP in the majority of dogs. Furthermore,

both inspiratory and expiratory airway pressures significantly

increased with increases in flow rate. While undulations in airway

pressure wave form were identified in panting dogs, expiratory

pressure remained positive at high flow rates (27).

Harduin et al. prospectively evaluated the impact of gas flow

rate and temperature on tolerance of 12 dogs receiving HFNOT

(OptiflowTM/AirvoTM 2 system) during recovery from anesthesia

(25). Four treatment conditions (2- or 4-times estimated VT; 0.8

L/kg/min or 1.6 L/kg/min) and 31◦C or 37◦C) per dog were

randomly applied after placement of a nasal catheter immediately

after extubation. Vital parameters, level of sedation and tolerance

were assessed at initiation and after 10 mins for each treatment.

This study showed no effect of flow rate or temperature on vital

parameters or tolerance, and overall good tolerance in this group
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of dogs. A single dog did not tolerate the first treatment (4 ×

VT at 37◦C) but tolerated subsequent treatments. It could not be

determined if this were associated with the specific protocol or

dysphoria associated with emergence from anesthesia (25). These

findings in dogs conflict with findings in humans in which lower

set temperatures (31◦C vs. 37◦C) have been associated with increase

patient comfort and tolerance (131).

4.1.2. Clinical applications
4.1.2.1. Hypoxaemic respiratory failure

All canine studies of acute hypoxemic respiratory failure at this

time include a heterogeneous population and as such suitability and

response to treatment of specific conditions cannot be determined.

Notwithstanding, the majority of cases in all studies are associated

with pneumonia.

Keir et al. first described the use in HFNOT in veterinary

patients in six dogs with primary pulmonary hypoxemia (26). In

this retrospective study four dogs had aspiration pneumonia, one

dog had eosinophilic pneumonopathy with concurrent aspiration

pneumonia and one had pulmonary contusions. All dogs were

transitioned to HFNOT following failure of conventional oxygen

therapy to maintain adequate oxygenation. A significant increase in

mean PaO2 (61.85 mmHg on COT to 133.75 mmHg on HFNOT)

was achieved in association with a significant increase in oxygen

flow rate (122 ml/kg/min on COT to 688 ml/kg/min on HFNOT).

Overall, four of the dogs had resolution of their hypoxemia

following HFNOT (26).

A prospective pilot study of the effectiveness and tolerance

of HFNOT therapy in 11 dyspnoeic dogs included nine dogs

with primary pulmonary hypoxemia (30). Dogs were included if

they were transitioned to HFNOT after failing to stabilize after

30 mins of treatment with medical therapy and conventional

oxygen therapy; and assessed for 60 mins after the initiation of

HFNOT. Underlying conditions in patients included five cases of

aspiration pneumonia, and one each of cardiogenic pulmonary

oedema, non-cardiogenic pulmonary oedema, leptospirosis and

pulmonary hemorrhage secondary to trauma. After 60 minutes

of treatment with 100% FiO2 at a flow rate calculate to match

minute ventilation there was a significant increase in mean PaO2

and resolution of hypoxemia in 5/8 dogs with PaO2 < 80

mmHg prior to initiation of HFNOT. Although 6/11 dogs had

a decrease in respiratory rate only 2/11 were classified as not

in respiratory distress base on the authors’ criteria (RR < 40

breaths/min). Overall, HFNOT was well tolerated in this group of

dogs (30). 6/11 dogs in this study died as result of cardiac arrest

or euthanasia due to deteriorating clinical condition. Of the non-

surviving group, 5/6 met criteria for intubation within 24 h of

admission (30).

A second prospective study has also evaluated HFNOT in

acute hypoxemic respiratory failure in 22 dogs (28). Dogs were

included in the study if they had no improvement in oxygenation

(n = 11), work of breathing (n = 10) or both (n = 1)

after 30 mins of treatment with conventional oxygen therapy.

Underlying conditions included pneumonia (n= 7), inflammatory

disease (n = 3), pulmonary arterial hypertension (n = 3) and

congestive heart failure (n = 2). Patients were not included if

immediate intubation/mechanical ventilation was indicated, unless

this treatment was declined by the owners. Vital parameters, blood

gases, patient tolerance, work of breathing and level of sedation

were evaluated at baseline, 30mins, 60mins and then every 6 h after

initiation of HFNOT. Patients remaining on HFNOT beyond 1 h

did so for a median for 18 h, however, analysis was only performed

on data collected for the first 7 h of treatment so as to limit the

influence on patient condition of other concurrent treatments. The

majority of dogs in this study received 100% FiO2 at the initiation

of treatment, although 3 were started at lower levels; the median

FiO2 reduced significantly over all of the following time points.

The median flow rate was 1 L/kg/min for the first 7 h for which

data was evaluated. Significant improvements in dyspnoea score

and oxygen saturation were identified at all time points compared

to baseline with a moderate correlation between HFNOT flow rate

and PaO2. There was no significant difference if PaCO2 between

conventional oxygen therapy and HFNOT treatment, although

there was a moderate correlation between PaCO2 and HFNOT

flow rate. 6/22 dogs in this study were intubated and ventilated

after starting HFNOT and an additional 6/22 were euthanized due

to required escalation of therapy. Overall, 10/22 dogs survived to

discharge, including 8/22 who avoided intubation and mechanical

ventilation (28).

4.1.2.2. Post-extubation

The use of post-extubation HFNOT in brachycephalic dogs

has also be investigated (29). Jagodich et al.’s prospective study

included five brachycephalic dogs with signs of upper airway

obstruction in the immediate post-anesthetic period. Four dogs

were receiving supplemental oxygen and 4/5 were commenced on

HFNOT for non-hypoxemic signs of brachycephalic obstructive

syndrome. Patients were treated with sedation at the clinicians’

discretion and commenced on HFNOT at 0.5–1.5 L/kg/min and

variable FiO2 depending on their oxygenation. Dyspnoea scores

and respiratory rates improved over time with stable normoxemia

despite decreasing FiO2 and flow rates. HFNOT was able to

be discontinued in <12 h in 3 dogs and all dogs survived to

discharge without requirement of reintubation (29). Unfortunately,

the design of this study did not allow for comparison with

standard treatment.

4.1.2.3. Carbon monoxide poisoning

A case report by Gazsi et al. compared the use of mechanical

ventilation and HFNOT in two dogs with carbon monoxide

poisoning following progression of clinical signs despite

conventional nasal oxygen therapy (146). One dog received

HFNOT at 100% FiO2 at 1 L/kg/min for 4 h. After this time

co-oximetry indicated marked improvement in FCOHb and

oxygen supplementation was discontinued. Interestingly,

the dog treated with mechanical ventilation had similar

improvements in FCOHb and was weaned off the ventilator

in the same time period. The calculated half-life of FCOHb

was 167min and 150min in the dogs treated with HFNOT and

IPPV, respectively.
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4.1.3. Complications
Few complications have been identified in canine patients at

this time, the majority of which have been subclinical and self-

limiting.

An experimental crossover study of HFNOT in health dogs

demonstrated a significant increase in PaCO2 in dogs following

heavy hydromorphone/dexmedetomidine sedation and HFNOT,

a finding not identified in unsedated dogs or dogs treated with

conventional oxygen therapy in the same study (27). These findings

were not supported in another study of six sedated healthy dogs in

which no significant differences in PaCO2 were identified between

baseline for any oxygen delivery method, including HFNOT

delivered up to 1.75 L/kg/minute (23). These differing findings

between the two groups of healthy dogs may have been, in part,

influenced by the sedation protocols used and level of sedation

achieved (23, 27).

A mild but significant increase in PaCO2 was identified in

dogs with primary hypoxemia following initiation of HFNOT

(26). Moderate-to-severe hypercapnia was also observed in 3/5

brachycephalic dogs treated with HFNOT in the post-anesthetic

period. The relative role of sedation, HFNOT and underlying

condition in the development of hypercapnia in these patients

could not be further elucidated (29). These findings were not

replicated in the HOT-Dog study (30).

Aerophagia was noted on thoracic radiographs in 8/8 healthy

dogs receiving HFNOT in one study (27). Gastric distension

was also identified on radiographs in 1/6 healthy dogs receiving

HFNOT another study (23). In the study of post-anesthesia

HFNOT in brachycephalic dogs, one dog experienced severe

aerophagia requiring orogastric intubation. This dog experienced

no further complications despite remaining on HFNOT for an

additional 19 h (29).

No cases of air leak syndrome have been identified in canine

HFNOT patients. However, in the study by Keir et al. one dog

experienced persistence of a pre-existing pneumothorax which only

resolved following discontinuation of HFNOT (26).

4.2. Equine

Floyd et al. have recently described the use of HFNOT

(OptiflowTM/AirvoTM 2) with a modified interface in foals <36 h

old (24). This retrospective study reports the use of HFNOT

in foals with a variety of clinical diagnoses. Treatment was

initiated with a target flow rate of 40 L/min and variable FiO2

based on arterial blood gas analysis. No significant improvement

in oxygenation with treatment was identified although not all

foals were hypoxemic prior to initiation of HFNOT. However,

improvements if respiration pattern and decreased respiratory rates

were observed (24).

Overall, 10/14 foals survived to discharge and HFNOT

was considered well tolerated in all patients. No significant

complications were observed in this group although two foals

required escalation of therapy (mechanical ventilation) and

HFNOT had to be discontinued in two foals due to excessive

activity. Unlike in many canine studies, no significant increase in

TABLE 2 A quick guide to HFNOT set up in veterinary patients.

Sedation

• Only if required

• Base on patient assessment and comorbidities

• Butorphanol and/or α2-agonists commonly use

Nasal prongs

• Occlude <50% opening of nares

• Suture to keep in place

Initial settings

• FiO2 100%

• Flow rate 1–2 L/kg/min

• Temperature 37◦C

Monitoring

• Continuous ECG

• RR, respiratory effort SpO2 every 1–2 h

• PaO2 and PaCO2 at least every 12 h

Weaning

• Reduce FiO2 by 5–10% every 1–2 h based on SpO2

• Reduce flow rate after stable RR and SpO2 on 40% FiO2 for 12–24 h

• Consider discontinuing when FiO2 < 30–40%

Indications for escalation

• No improvement after 1–2 h of high FiO2 and rate

• Persistent increased work of breathing

• Hypercapnia/hypoventilation

mean PaCO2 was observed, and conversely, a mild but insignificant

decrease in PaCO2 was observed in many foals (24).

4.3. Feline

A single Letter to the Editor briefly reports the successful

clinical use of HFNOT in cats (147). The authors report the need for

sedation to enable the appropriate placement and securing of the

nasal cannula but that treatment has been otherwise well tolerated

andmay be considered as an alternate treatment to CPAP generated

by helmet (12).

5. Clinical application of high flow
nasal oxygen therapy

No specific veterinary protocols are available for HFNOT.

However, increasing clinical experience and published

investigations in animals, in combination human guidelines,

has enabled repeatable and successful use of HFNOT (Table 2).

5.1. Nasal prongs

Nasal prongs specific for HFNOT are designed to optimize

device function and patient comfort. Selection should be based

on the recommendations of the device manufacturer. The prongs

should occlude ∼50% of the opening to the nares to facilitate

generation of desired airway pressures while minimizing resistance
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FIGURE 3

Nasal prongs often need to be secured with sutures at the margins

of the nares (A). Taping over the muzzle keeps the interface in place

in dolichocephalic breeds (B).

to exhalation (23, 28). In very small patients, placement of a prong

into a single nares has been advocate to create overall 50% nasal

occlusion (28). Instillation of local anesthetic into the nares prior

to placement of nasal prongs may facilitate placement and promote

tolerance (28).

As nasal prongs are designed for humans some modification

or additional fastening is required in veterinary patients. A variety

of suturing and taping techniques have been used, although

suturing of the prongs to the margins of the nares appears to

be most effective in keeping the prongs in position and limiting

dislodgement (Figure 3). The use of modeling clay to improve

the nasal prong interface in dogs has been advocated by some

authors (27).

Floyd et al. (24) described a nasal prong modification to

facilitate HFNOT in foals. Thoracic drains (24 Fr) measured to

level of the medial canthus are connected to a Y-adaptor and

then directly to the breathing circuit. The nasal catheters are

then sutured to the nostrils. Smaller diameter nasal catheters were

unable to deliver higher flow rates (24).

5.2. Device set-up

Patients should initially receive 100% FiO2 while stabilization

occurs. This may then be titrated down based on patient

oxygenation, aiming to maintain an SpO2 > 95% or PaO2 > 80

mmHg (30). Timely reduction of FiO2 to <60% is recommended

due to concerns for oxygen toxicity associated with prolonged

administration of high concentrations of oxygen (2, 30).

Flow rates should be commenced at 1–2 L/kg/min or calculated

to match the patients minute ventilation (respiratory rate ×

VT). A CPAP effect in dogs occurs at flow rates of 1–2

L/kg/min and these rates are generally well tolerated (27). A

study assessing the implementation of a HFNOT protocol in

the human pediatric intensive care patients demonstrated more

rapid weaning, decreased failure rates and possibly decreased

rate of escalation to positive pressure ventilation in patients

initially treated with higher flow rates. These patients also

received lower initial FiO2 and had a shorter length of

stay in hospital despite longer duration of HFNOT (148).

However, higher flow rates may result in patient discomfort and

aerophagia (27).

The temperature is initially set at 37◦C but may be adjusted

based on patient body temperature and comfort. In humans,

lower set temperatures (31◦C vs. 37◦C) have been associated with

increased patient comfort and tolerance (131). No difference in

tolerance was identified in healthy dogs administered HFNOT at

different flow rates and temperatures (25).

5.3. Weaning

No weaning protocols are available for veterinary patients and

human guidelines vary at this time. However, it is reasonable

to consider similar criteria as are used for weaning from

other methods of oxygen support—improvement in underlying

condition, decreased device settings, high likelihood of coping with

de-escalated therapy (e.g., conventional oxygen therapy). Patients

with stable respiration and oxygenation at <500 ml/kg/min FiO2

< 40% will likely meet these criteria.

FiO2 should be reduced prior to reducing the flow rate.

Reductions of 5–10% FiO2, followed by reassessment in 1–2 h

is recommended (6). In human adults, maintenance of stable

respiratory parameters at 40% FiO2 should be achieved prior to

flow weaning. In neonates, it has been recommended that FiO2 be

reduced to 30% prior to reductions in flow rate (149).

Respiratory rate, FiO2 and work of breathing should be stable

for 12–24 h before commencing flow reduction (149). Reductions

should be gradual and proportionate to patient size. Patients should

be weaned onto low flow nasal oxygen which may be provide via

HFNOT prongs and bubble humidifier.

5.4. Escalation

Based on human recommendations and clinical studies,

escalation of treatment is recommended when there is no clinical

improvement in 1–2 h despite high flow rates and FiO2 (6). Failure

to maintain adequate oxygenation despite HFNOT or persistent

increased work of breathing are indication for positive pressure

ventilation. Due to limitation in availability and utility of non-

invasive ventilation in veterinary patients, mechanical ventilation

is often the next step in escalation of therapy. Mechanical

ventilation is also indicated in cases of severe or progressive

hypoventilation (16).

5.5. Sedation

Many studies have reported the use of sedation to facilitate

initiation and/or maintenance of HFNOT in veterinary patients,

although this is not required in all patients (25, 26, 28, 30, 147).

Sedation protocols should be based on individual patient factors
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and assessment, however, the use of butorphanol and/or α2-

agonists is often reported (150, 151).

6. Discussion

HFNOT provides a modality of high flow oxygen delivery

allowing predictable FiO2 delivery with additional benefits

previously only available with non-invasive and invasive

ventilation. Its use has traditionally been focused on the

management of acute hypoxic respiratory failure; however,

an increasing range of potential indications is being reported and

investigated in human and veterinary medicine.

Pneumonia is the most commonly reported indication for

HFNOT in dogs and adult humans (26, 28, 30, 77). Until recently

euthanasia and mechanical ventilation have been the only available

options for veterinary patients with pneumonia that deteriorate

despite conventional oxygen therapy (152, 153). HFNOT provides

an alternative to these. Its use in veterinary patients appears

promising, however, further investigations with appropriate patient

selection are indicated.

Oxygen supplementation is recommended for the management

of stage C myxomatous mitral valve disease in dogs and

cardiomyopathy in cats based on expert opinion and is typically

provided via oxygen cages or nasal cannulas (154, 155). Short-

duration positive pressure ventilation has been shown to result in

good outcomes for dogs and cats with acute congestive heart failure

refractory to conventional management (156). The authors of this

study postulated that mechanical ventilation in these patients was

effective due to the same mechanisms that have been identified

in humans—improved oxygenation, alveoli recruitment, improved

lung compliance and reduced afterload, although this was not

specifically assessed (156).

HFNOT has been advocated in the management of pulmonary

oedema secondary to acute heart failure in humans (157).

Improvement in oxygenation in these patients is attributed to

provision of high FiO2, recruitment of collapsed alveoli and

decreased preload (74, 157). A small number of dogs with

congestive heart failure have been include in heterogeneous

populations in previous studies, however the utility and efficacy in

these patients has not been established (26, 28, 30). Whilst likely

to be similarly effective and by the same mechanisms of action

as in humans, the use of HFNOT in veterinary patients requires

further investigation.

Asthma is a common inflammatory condition of the lower

airways in cats believed to have an allergic etiology (158). Acute

asthma attacks are managed with oxygen supplementation and

administration of bronchodilators (159). Based on the human

literature, HFNOT presents theoretical benefits in the provision of

oxygen support in acute exacerbations of feline asthma. However,

reports of the use of HFNOT in cats are too scarce to evaluate its

feasibility (147).

The interstitial lung diseases of veterinary patients are poorly

understood but generally carry a similarly poor prognosis to those

of humans (160, 161). Pulmonary fibrosis in West Highland white

terriers is the most thoroughly investigated in this group of disease,

however there remains no effective treatment. Affected dogs may

experience acute worsening of their respiratory function and signs

due to bacterial pneumonia or acute exacerbation of the idiopathic

pulmonary fibrosis (162). Despite empirical treatments, the short-

term mortality rate in dogs is similarly poor to that of humans

(93, 162). Long-term oxygen therapy is recommended in humans

with pulmonary fibrosis but is not feasible in dogs (163). However,

as with humans, HFNOT may be considered for intermittent

and short-term treatment in dogs with acute exacerbations of

pulmonary fibrosis.

Lycoperdonosis is a rarely reported reversible interstitial lung

disease in dogs with a variable prognosis (164–166). No treatment

protocols exist for this condition; however, the provision of oxygen

support is indicated. HFNOT therapy has been reported to be

effective in humans and may be considered in future veterinary

cases, particularly in patients that do not respond to conventional

oxygen therapy (101).

There are currently no protocols for HFNOT in veterinary

species and recommendations are based on those for humans, a

small number of veterinary cohort studies and practical experience

(24, 26–28, 30). Further investigations are warranted to optimize

protocols for individual species and disease conditions. Greater

understanding of the role of the individual mechanism of HFNOT

in improving respiration and oxygenation in different conditions

will help to define the ideal settings for these. The effect of panting

(open-mouth breathing) on the FiO2 delivery and PEEP generation

in veterinary patients also warrants further investigation.

HFNOT is a non-invasive form of high flow oxygen support.

Although it is considered relatively low risk with a low incidence

of complications, rare serious and potentially catastrophic events

are reported in humans (137, 139, 140). Consideration and

identification of risk factors for adverse consequences should

be made in veterinary patients to minimize the incidence

of complications.

Hypercapnia is the most commonly reported complication in

veterinary HFNOT studies (26, 27, 29). This has been attributed

to the effects of sedation and increased resistance to exhalation

associated with continuous high inspiratory flow rates by some

authors (27). A role for alveolar overdistension may also be

consider. During HFNOT VT has been shown to increase

proportionally with gas flow, independent of respiratory rate (167–

169). A similar proportionally related increase in PaCO2 relative

to flow rate has also be identified in hypoxemic dogs treated

with HFNOT (28). Iatrogenically increased VT has been associated

with alveolar overdistension using other modalities (170) and

HFNOT may induce alveolar overdistension in some individuals

with an increase in risk identified in patients with low potential

for alveolar recruitment (171). Over-distension leads to increased

areas with high ventilation-perfusion inequality and dead space,

causing CO2 retention (172, 173).Whilst levels of hypercapnia were

not clinically significant in the animals in these studies, further

investigation into the use of HFNOT in hypoventilation-induced

hypoxemia is indicated.

Trauma is a common cause for admission in veterinary

hospitals, with severe trauma occurring in approximately one third

of these patients (174). Pulmonary contusions occur commonly

in dogs and cats that have sustained blunt force trauma and the

majority require oxygen support in the recovery period (175, 176).

In 143 dogs with pulmonary contusion secondary to motor vehicle

accidents 47% had pneumothoraxes, 10% had pulmonary bullae,

Frontiers in Veterinary Science 13 frontiersin.org

https://doi.org/10.3389/fvets.2023.1070881
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Whitney and Keir 10.3389/fvets.2023.1070881

6% had pneumomediastinum and 13% had rib fractures (175).

Iatrogenic pneumothorax is known to occur in dogs ventilated

for pulmonary contusions secondary to trauma with concurrent

thoracic pathology associated with increased risk (177). HFNOT

generates positive airway pressure and has been associated with

the development of pneumothoraxes in children (137). Although

the development of pulmonary air leaks have not been reported

in veterinary patients associated with HFNOT, a pre-existing

pneumothorax in a dog with pulmonary contusions failed to

resolved until HFNOTwas discontinued (26). Care should be taken

in evaluation of concurrent thoracic pathology and for iatrogenic

causes of respiratory deterioration in patients with pulmonary

contusions being treated with HFNOT.

Trauma in dogs and cats typically results in injury to multiple

body regions (178, 179). In one study, 26% of dogs and 42%

of cats had head injuries identified on physical examination

after a traumatic event (179). Tension pneumocephalus has been

reported secondary to HFNOT in a man with an undiagnosed

skull fracture (139). Due to the high incidence of polytrauma in

veterinary patients, consideration should be made of the potential

for skull fractures in patients prior to commencing HFNOT for

pulmonary contusions.

In the small number of available clinical veterinary studies

evaluating HFNOT in the treatment of acute hypoxic respiratory

failure, 44% (17/39) of dogs did not require escalation of therapy

and survived to discharge (26, 28, 30). Due to the heterogeneity of

the study populations and limited cases numbers insufficient data

is currently available to determine accurate predictors of treatment

success and failure. Development of a scoring system similar to

the ROX index through large retrospective or prospective studies

may aid in patient selection and the early determination of patient

prognosis (144, 145).
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