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Racing CARs to veterinary
immuno-oncology

James R. Cockey and Cynthia A. Leifer*

Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University,

Ithaca, NY, United States

Chimeric antigen receptors (CARs) have demonstrated remarkable promise in

human oncology over the past two decades, yet similar strategies in veterinary

medicine are still in development. CARs are synthetically engineered proteins

comprised of a specific antigen-binding single chain variable fragment (ScFv)

fused to the signaling domain of a T cell receptor and co-receptors. Patient

T cells engineered to express a CAR are directed to recognize and kill

target cells, most commonly hematological malignancies. The U.S Food and

Drug Administration (FDA) has approved multiple human CAR T therapies, but

translation of these therapies into veterinary medicine faces many challenges. In

this review, we discuss considerations for veterinary use including CAR design and

cell carrier choice, and discuss the future promise of translating CAR therapy into

veterinary oncology.
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1. Introduction

Cell-based immunotherapy has progressed exponentially over the past few decades as a

cutting-edge treatment option for multiple cancers. Adoptive cell therapy (ACT) involves

harvesting immune cells from the patient, expanding them under good manufacturing

practice (GMP) conditions, and reinfusing a clinically relevant dose. One of the first human

ACTs used isolated tumor infiltrating lymphocytes (TILs) and selected for cells with a T

cell receptor (TCR) specific toward a tumor neoantigen presented on MHC I of the tumor

(1–3). Although promising (4–6), a significant advance in ACT that takes advantage of the

specificity and affinity of antibodies against a tumor surface antigen, rather than relying on

endogenous T cell receptors (TCRs), is chimeric antigen receptors (CARs). The FDA has

approved multiple CAR T therapies against human B cell maturation antigen expressed

on antibody-secreting plasma cells (7, 8), and CD19, which is expressed on the surface

of almost all B cells (9–12). Similar to humans, lymphomas are common in companion

animals. Retrospective analysis of 171 canine and feline non-Hodgkin’s lymphoma samples

revealed 79.9% of canine cases were B cell lymphomas that were predominantly multicentric,

while 64.6% of feline cases were T cell lymphomas that were predominantly alimentary (13).

While chemotherapy remains the standard of care in veterinary medicine (14), CARs are an

attractive alternative or add on therapy for refractory veterinary lymphomas. Clinical trials

have only recently been initiated in dogs. In this review, we outline the design of CARs and

the future outlook of the therapy for veterinary use.
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2. CAR construct design

Development of a CAR therapy requires multiple steps, each

of which presents unique challenges for translation to veterinary

medicine (Figure 1). In this section, we summarize basic CAR

design and methods of expressing the CAR in primary cells.

CARs are created by stitching together an ScFv, a hinge, a

transmembrane domain, and one or more cytoplasmic signaling

domain(s) derived from the TCR signaling complex (15, 16). ScFvs

are developed from the variable light and heavy chains of a specific

monoclonal antibody targeting a tumor-associated antigen. Some

CAR approaches use endogenous ligands or receptors, rather than

ScFvs, to target tumors and may be a good alternative when cross-

reactive or veterinary-specific antibodies are not available (17).

Newer high-throughput fluorescence-activated cell sorting (FACS)

screens can also be used to identify potential antibodies or ScFvs

(18), but it is unclear if this strategy would be practical for clinical

manufacturing in veterinary medicine.

The cytoplasmic signaling domains are critical to drive T

cell activation and can lead to different effector functions in the

FIGURE 1

Overall scheme for CAR therapy in veterinary medicine. (1) Autologous (from the patient) or allogeneic (from a donor) cells are harvested from

peripheral blood or apharesis, (2) enriched and (3) engineered to a express a CAR ex vivo. The CAR contains the variable heavy and light chains of a

monoclonal antibody specific for a tumor-associated antigen and signaling domains from the TCR signaling complex. (4) The CAR+ cells are

expanded to a clinically relevant dose and (5) infused into the patient. These CAR cells will detect and destroy cells expressing the target antigen.

patient. Use of one signaling domain, CD3ζ, resulted in low-level

signaling, and poor persistence or anergy in patients (19, 20). CAR

T therapies approved for human use have additional costimulatory

receptor signaling domains like 4-1BB (Kymriah
R©
, Breyanzi

R©
,

Abecma
R©
, and CarvyktiTM) or CD28 (Yescarta

R©
, Tecartus

R©
).

Human primary T cells transduced with a CAR containing the

CD28 signling domain preferentially generated effector memory T

cells in vitro (CCR7−CD45RO+) while the 4-1BB signlaing domain

drove a central memory phenotype (CCR7+CD45RO+) (21). Using

NSG mice with a xenografted osteosarcoma, infused human CAR

T cells with 4-1BB had lower expression of exhaustion markers

than those with CD28 (22). Some CARs use two costimulatory

domains and have increased efficacy in preclinical animal models

(23, 24). Comparison of efficacy of different CAR components

in veterinary oncology remains limited and will likely require

additional empirical testing (25).

CARs are frequenty delivered to patient primary T cells using

a replication-incompetent lentivirus or γ-retrovirus (26, 27). Pre-

activation is required because the viruses can only (γ-retrovirus),

or preferentially (lentivirus), integrate into dividing cells (26, 27).
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However, other approaches have used transposons to integrate

the CAR-encoding DNA (28, 29). To avoid delivery of viruses to

patients, anti-canine CD20 CARmRNAwas directly electroporated

into canine T cells (30, 31). However, CAR expression by mRNA

delivery was transient and waned after 14 days (30). Lipid

nanoparticles may enhance delivery of CAR mRNA and can be

used in vivo (32). Transient CAR expression could be an advantage

for veterinary therapy since it will limit immune reaction against

the xenogeneic antibody components of the ScFv. Regardless of

which CAR is developed, the sequences should be species-matched

as much as possible to reduce host anti-CAR immune responses.

Gene editing tools like transcription activator-like effector

nucleases (TALEN R©) and clustered regularly interspaced

palindromic repeats (CRISPR)/Cas9 allow for simultaneous

delivery of the CAR and reduced graft-vs-host and host-vs-

graft responses (33–36). For example, CAR insertion into

the TCR locus allows for expression of the CAR under the

endogenous transcriptional regulation of the TCR promoter,

which limits exhaustion, and elimination of TCR expression,

which reduces graft vs. host disease (37). Conversely, deletion of

β2-microglobulin, part of MHC I, reduces CAR T cell rejection

by the host. However, loss of MHC I increases detection and

destruction by natural killer (NK) cells, which can be mitigated

in part by knock-in of human leukocyte antigen E into the B2M

locus (38). Inhibitory receptors such as PD-1, which limit CAR T

cytotoxicity, can also be deleted using these gene editing tools (39).

However, CRISPR can induce unwanted mutations (40, 41), or

multiple donor DNA insertions (42). Unpredicted translocations

have also occured when TALEN R© was used to delete the TCR alpha

chain and CD52 to make “universal” CAR T cells (35). Fortunately,

these off-target events are relatively rare (43).

3. Cell manufacturing

While GMP guidelines must be followed for clinical-stage ACT

in both human and veterinary medicine, there are some specific

considerations for veterinary application. In this section we will

outline methods that are under investigation for veterinary CAR

T cell expansion, as well as systems employed in human CAR T cell

production that could be adapted for veterinary use.

Production of cells for clinical use requires validation of

standard operating procedures and GMP-grade reagents and

materials in all manufacturing steps with individual certificates of

analysis. Growth of cells for human medicine requires serum-free,

xeno-free, GMP-grade, commercial media formulations. Theremay

not be commercially available GMP-grade species-specific sera for

veterinary applications. Anti-canine CD20 CAR T cells failed to

grow in OpTmizerTM serum-free media, and while there was some

growth in LymphoONETM serum-free media, CAR expression

levels were low, suggesting empirical identification of optimal

growth conditions for each veterinary CAR application may be

necessary (44). Moreover, veterinary species cytokine supplements

are limited (45) and thus validated cross-reactive reagents may be

required (46). Feeder cells or special additives can enhance ex vivo

expansion. For example, K562 cells can be engineered to express

human CD32 and canine CD86, thereby acting as artificial antigen

presenting cells (aAPCs). Co-culture of canine T cells with these

aAPCs resulted in nearly six-fold expansion, and was even able to

stimulate proliferation in T cells that were unresponsive to agonistic

anti-canine CD3/CD28 beads (30). High CD8+ subset expansion

and reduced PD-1/PD-L1 expression on canine CAR T cells

occurred when the cells were grown with thyroid adenocarcinoma

aAPCs expressing CD80, CD83, CD86, and 4-1BBL in the presence

of phytohemagglutinin (47). Phytohemagglutinin also increased

retroviral transduction efficiency (44). Additional advancements in

cell culture using closed-system bioreactors can further enhance ex

vivo expansion yield, reduce contamination risks, and minimize

technician handling (26, 48–52). These devices will likely be

employed more frequently in future veterinary clinical trials.

4. Choosing the right “CAR driver”

Currently all FDA approved human CAR therapies are T

cell-based, and T cells are also the “driver” for canine CAR

therapy. However, many different immune cells could potentially

be used to carry a CAR (Table 1). In this section, we describe

the major advantages and limitations of each cell type, as well as the

development and therapeutic potential in veterinary medicine. The

focus is on canine CARs since they have advanced the furtherest

in veterinary medicine, but we will discuss potential use in felines

and highlight findings in human medicine that have potential for

veterinary applicability.

4.1. T cells

The most advanced CAR therapeutics in veterinary medicine

are T cells. The first clinical trial of CAR T cells in canine patients

delivered a CD20 CAR mRNA by electroporation. The CAR

contained a murine anti-canine CD20 ScFv with human CD8α

leader, hinge, transmembrane, and a CD3ζ signaling domain (30).

One canine patient with relapsed spontaneous B cell lymphoma

was infused in three separate doses and had reduced CD20+ cell

numbers with no adverse events. A follow up study treated diffuse

large B cell lymphoma with anti-CD20 CAR containing the same

ScFv, but canine signaling domains (78). No adverse events were

documented following infusion in three dogs, but this therapy

had lower efficacy and in vivo persistence of the cells was poor.

Eventually, an escape-variant of CD20 was detected on peripheral

blood B cells post-infusion. Additionally, two of the dogs developed

anti-mouse ScFv CAR serum antibodies, which peaked at day 50

post-infusion. These types of anti-CAR immune responses can

be reduced by generating a “caninized” ScFv where all but the

complementarity determining regions of the ScFv are canine.

Preclinical and clinical investigation of canine CAR T cells has

also begun to target solid tumors, which have notoriously been

resistant in human CAR therapy. A HER2 CAR T cell therapy

(79) with canine CD28 and CD3ζ signaling domains secreted

IFNγ and was cytotoxic against HER2+ osteosarcoma and breast

cancer target cell lines in vitro (80). IL13Rα canine CAR T cells

secreted IFNγ when incubated with IL13Rα+ targets (81). A

canine glioma cell line implanted into mouse brains was effectively

eliminated using canine CAR T cells against IL13Rα with either

a human or a canine 4-1BB signaling domain. B7-H3 CAR T
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TABLE 1 Summary of species-specific surface markers that define immune cells and can be used to enrich desired populations through FACS or

magnetic bead enrichment.

Immune cell Human
phenotypic
markers

Murine
phenotypic
markers

Canine
phenotypic
markers

Feline
phenotypic
markers

References

T cell CD3+CD56− αβTCR+ CD3+ αβTCR+NK1.1− CD3+CD5brightNKp46−

αβTCR+

CD3+CD56−

αβTCR+

(53–58)

NK cell CD3−CD56+CD7+ CD3− NK1.1+ αβTCR− CD3−/+

CD5dimCD8+TCRαβ−TCRγδ−

CD21−CD4− CD94+ NKp46+

CD3−CD56+ (53, 54, 59–64)

NKT cell CD3+CD56+/−iTCR+ CD3+NK1.1+iTCR+ CD3+CD5intermediate

NKp46+CD94+ iTCR+

CD3+CD56+ (53, 54, 59–61,

65–68)

γδ T cell CD3+γδTCR+ CD3+γδTCR+ CD3+γδTCR+ CD3+γδTCR+ (69–71)

Macrophage CD68+ :

CD80+CD206dim (M1) or

CD80−CD206bright (M2)

F4/80+ :

CD38+ (M1)

or

CD38− (M2)

Iba1+ :

CD204− (M1)

or

CD204+ (M2)

Iba1+ :

CD204−(M1)

or

CD204+(M2)

(72–77)

cells (82) were more cytotoxic than HER2 CAR T cells toward

canine osteosarcoma spheroids, but cytotoxicity was similar for the

constructs incorporating CD28 or 4-1BB signaling domains (83).

Two healthy canine subjects were then infused with either frozen or

fresh autologous B7-H3 CAR T cells. The fresh infusion did induce

a grade 2 toxicity but no other adverse events were observed, while

the recipient of frozen cells had an allergic reaction 67 days later

that was likely unrelated to the infusion. Together, these results

show that canine CAR T cells are safe and well-tolerated, even for

some solid tumors.

The most notable drawback of human CAR T therapy

is cytokine release syndrome, which presents with pyrexia,

delirium, hypotension, and increased serum IL6, and often requires

administration of the IL6 receptor antagonist tocilizumab and

steroids (84). To enhance safety and rapidly deplete infused cells

in the event of an adverse reaction, drug-sensitive “kill switches”

can be incorporated into the CAR (85–89). Since some adverse

reactions have been observed in canine CAR T trials, including a

case report of increased serum cytokines consistent with cytokine

release syndrome (90), incorporating kill switches in the CAR

construct may be needed in veterinary medicine as well.

4.2. Natural killer cells

NK cells have reduced risk of inducing a graft vs. host reponse

and have shown promise in human preclinical studies. Moreover,

human NK cells can be sourced allogeneically (91, 92), and infused

at higher doses (93, 94). Allogeneic sourcing may allow mass

production of an “off the shelf ” product, reducing manufacturing

costs, which is a significant concern in veterinary medicine.

Major challenges to using NK cells for veterinary CAR therapy

include the lack of consensus on surface markers, limited antibody

reagents, and lack of robust purification and expansion protocols.

Feline NK cells are CD56+CD3− (53, 59) and feline CD3 and CD56

antibodies exist (clones NZM1 and SZK1, respectively) (95, 96).

However, there is not a consensus on canine NK markers. NKp46

is a common NK marker across species and CD3−NKp46+ cells

enriched by FACS from canine peripheral blood mononuclear cells

(PBMCs) exhibited cytotoxicity toward canine osteosarcoma and

canine thyroid adenocarcinoma targets (60). Coculture of canine

PBMCs with K562 cells expressing membrane bound IL15 and 4-

1BBL, and added human IL2 and IL15, expanded large granular

lymphocytes with cytotoxic activity (61). These presumptive NK

cells were CD5dimCD3+CD8+TCRαβ−TCRγδ−CD21−CD4− and

although they did not have mRNA for CD56, they did have mRNAs

for other NK receptors like NKG2D, NKp30, and NKp46. CD5

depleted canine PBMCs cultured with IL2 alone or IL2 and IL15 for

14 days also had NK-like cytotoxicity yet were CD56− (97). CD94+

cells enriched from canine PBMCs were CD5dimNKp46+CD3−

(54). A first-in-canine clinical trial infused expanded cells with a

similar phenotype into ten sarcoma patients in combination with

intratumoral rhIL2 following focal radiotherapy (98). Five of the

patients remained metastasis free at the 6-month primary endpoint

(98). Despite NK cells being safe (99), their clinical efficacy does not

yet match CAR T.Moreover, NK cells have a shorter in vivo lifespan

than T cells. Addition of the IL15 gene may provide sufficient

signaling to overcome these limitations (100, 101).

4.3. Other cells

Immune cells such as natural killer T (NKT) cells, γδ T

cells, and macrophages have been explored preclinically and

clinically as human CAR drivers. Human NKT cells are rare CD3+

lymphocytes expressing an invariant αβ TCR, and may coexpress

CD56 (65, 102, 103). Feline NKT cells are CD56+CD3+ (53, 59);

however, canine NKT markers are more controversial. Originally

defined as CD3+ lymphocytes that bound to complexes of α-

galactosylceramide and murine CD1d (68), one group identified

a CD5intermediateNKp46+CD94+CD3+ subset of large granular

lymphocytes that may be NKT cells (54). Clinical isolation

protocols for NKT cells may require dual CD56/CD3 enrichment

for felines or NKp46/CD3 for canines, and there are currently

no expansion protocols to obtain clinically useful numbers of

these feline or canine cells. Regardless, human CD19 CAR NKT

cells against lymphoma (104), and GD2 CAR NKT cells against

neuroblastoma (105), have demonstrated preclinical efficacy, with
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CD19 CAR NKT cells exerting anti-lymphoma activity through

both the CAR and the invariant TCR interaction with CD1d.

However, not all tumors express CD1d and much of the activity

will be via the CAR (106, 107). Human GD2 CAR NKT cells, co-

expressing IL15, infused in pediatric neuroblastoma patients, were

well-tolerated and reduced metastasis in one patient. This study

provided safety data for human CAR NKT cells co-expressing self-

supporting growth factors (108). NKT cells may soon be explored

for CAR therapy in veterinary medicine.

In veterinary medicine, γδ T cells play an important role in

mucosal immunity (109), and can comprise nearly half of the

PBMC compartment in young ruminants (110). γδ T cells express

TCRs with broad specificity and are MHC independent, yet they

have in vitro cytotoxic activity similar to NK and T cells. Human

GD2CAR γδ T cells demonstrated in vitro cytotoxicity to the LAN1

neuroblastoma cell line (111). Both canine and feline TCRG loci

have been identified and subsets can be classified through PCR, but

robust isolation and expansion protocols are lacking (69, 70, 112).

Moreover, many γδ T cells are located in peripheral tissues andmay

be difficult to enrich from peripheral blood in sufficient numbers

to expand for clinical use (113). Enrichment of human Vδ1 cells

from peripheral blood and expansion in cell culture bags using

IFNγ, anti-CD3, and IL4, for 2 weeks followed by IL15 for 1 week,

did generate a clinically relevant product yield and upregulation

of effector markers (NKG2D, DNAM-1, NKp30, NKp44, and 2B4)

(114). However, further research is needed to determine if γδ T cells

will be useful in veterinary CAR therapy.

Macrophages are abundant in tumors of many different species,

can exhibit anti-tumor activity, and have therapeutic potential

as CAR drivers (115, 116). Macrophages can polarize to many

different functional states from the extremes of proinflammatory

M1 to anti-inflammatory/immunosuppressive M2 cells. Tumor-

associated macrophages also adapt to the tumormicroenvironment

in ways that promote rather than eliminate tumors (117). In

dogs, high numbers of macrophages in tumors is correlated with

increased aggressiveness and worse prognosis for mammary cancer

(72). Human THP-1 monocytic cells engineered to express CD19,

HER2, or mesothelin CARs, phagocytosed target cells in vitro

(118). Primary human HER2 CAR macrophages extended survival

in a mouse ovarian xenograft model, suggesting that they still

demonstrated antitumor activity despite the immunosuppressive

tumor microenvironment (118). Macrophage immunotherapy in

veterinary oncology has largely focused on in vivo activation of

macrophages rather than ex vivo manipulation and reinfusion,

but there is potential to develop them as CAR drivers (119–

122), A limitation is that macrophages, and their precursor

monocytes, are notoriously difficult to geneticallymodify regardless

of species. Some approaches to overcome this limitation include

using a replication-incompetent adenovirus (118, 123). Despite

their limitations, macrophages and other CAR drivers warrant a

basic science investigation to understand their true potential for use

in veterinary medicine.

5. Discussion

Cell-based immunotherapy has gained traction as a promising

therapeutic modality for multiple cancers in both human and

veterinary patients. Although clinical veterinary studies are still

in the beginning phases, the potential for breakthrough therapies,

like has happened for human hematologic oncology, is high.

Veterinary clinical trials involving infusions of T cells and NK

cells have demonstrated the feasibility and safety of harvesting

and manufacturing cells for clinical use (30, 78, 83, 98). However,

to fully break into the cellular immunotherapy sector the way

human medicine has, veterinary schools or other hospitals

will need appropriate infrastructure for cellular manufacturing

and genetic modification, or identify industry partners. Current

manufacturing systems are designed for clinical production of

human cellular therapeutics, but as interest in veterinary cell

therapy grows, so will the market for xeno-free GMP-grade

media, reagents, and supplements to be used for species-specific

cell isolation and clinical expansion. The potential cost of the

therapy also presents a major hurdle, and possibly the biggest

challenge toward translation to clinical veterinary use. Insurance

coverages that can defray the six-figure prices of human CAR

T cell therapies would not be an option in veterinary medicine.

Thus, a significant focus of future veterinary CAR research

must be to develop more generally tolerable therapies with

low levels of side effects to create a product that could be

administered at a general veterinary practice. These will likely

include a product where endogenous TCRs are deleted and other

modifications are made to reduce cytokine release syndrome.

Overall, companion animal patients may greatly benefit from

immunotherapies that have seen success thus far in human patients

due to their shared spontaneous disease development. As the

field progresses in veterinary medicine, future treatment modalities

designed for companion animals may one day translate back to

human medicine.
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