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Pesticides are widely used to control crop diseases, which have made an

important contribution to the increase of global crop production. However,

a considerable part of pesticides may remain in plants, posing a huge

threat to animal safety. Thiram is a common pesticide and has been proven

that its residues in the feed can a�ect the growth performance, bone

formation, and intestinal health of chickens. However, there are few studies

on the liver metabolism of chickens exposed to thiram. Here, the present

study was conducted to investigate the e�ect of thiram exposure on liver

metabolism of chickens. Metabolomics analysis shows that 62 metabolites

were down-regulated (ginsenoside F5, arbekacin, coproporphyrinogen III,

3-keto Fusidic acid, marmesin, isofumonisin B1, 3-Hydroxyquinine, melleolide

B, naphazoline, marmesin, dibenzyl ether, etc.) and 35 metabolites were

up-regulated (tetrabromodiphenyl ethers, deoxycholic acid glycine conjugate,

L-Palmitoylcarnitine, austalide K, hericene B, pentadecanoylcarnitine, glyceryl

palmitostearate, quinestrol, 7-Ketocholesterol, tetrabromodiphenyl ethers, etc.)

in thiram-induced chickens, mainly involved in the metabolic pathways including

glycosylphosphatidylinositol (GPI)-anchor biosynthesis, porphyrin and chlorophyll

metabolism, glycerophospholipid metabolism, primary bile acid biosynthesis and

steroid hormone biosynthesis. Taken together, this research showed that thiram

exposure significantly altered hepaticmetabolism in chickens. Moreover, this study

also provided a basis for regulating the use and disposal of thiram to ensure

environmental quality and poultry health.
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Introduction

Increasing evidence indicated that pesticides play a vital role in agricultural production.

Statistical analysis indicated that China is the main consumer of pesticides, using 1.8 million

tons per year, followed by the America (1–3). At present, pesticides have been listed as

priority pollutants by the United Nations Environment Protection Agency (UNEP) (4, 5).

Although, the use of pesticides has effectively increased crop yield and reduced disease.

However, the extensive use of pesticides will also cause serious environmental pollution,

posing a serious threat to food security and animal health (6). In addition, some pesticides

may remain in plants and be introduced into nearby waters after rainfall, endangering the

health of aquatic animals and causing drinking water safety problems (7–16). Moreover,
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aerial spray of pesticides may cause the pollution of nearby or

distant areas through transboundary movement (17). It is worth

noting that humans and animals may also ingest plants containing

pesticides through the food chain, seriously endangering public

health and human security (18–21).

Poultry including chickens, ducks and geese are the largest

livestock species. These species developed rapidly in the past few

decades, effectively solving the problem of protein shortage. Among

the above-mentioned poultry, chickens are widely farmed because

of their fast growth and low price (22, 23). Consequently, any

factors that endanger chickens should be given enough attention.

However, chickens are likely to be exposed to feed containing

pesticide residues (24–27). Previous studies have indicated that

most pesticides could accumulate in multiple tissues and inhabit

the exposed organisms from few months to several years, thus

even very low concentration is also harmful to health (5, 28,

29). Liver is the vital metabolic and alexipharmic organ in

the animal and humans, which is considered as one of the

primary target organs for various hazardous substances such as

pesticides and heavy metal (30–32). Therefore, the intake of

feed containing pesticide residues will inevitably affect the liver

of broilers.

Thiram is one of the common pesticides, mainly used to

increase crop yield and reduce disease (33, 34). However, the

abuse of thiram not only cause pesticide residues, but also pose

a serious threat to the safety of humans and animals (35–

37). Previous studies have shown that thiram exposure causes

abnormal bone development and reduced growth performance

in chickens (38–40). In addition, thiram exposure has been

demonstrated to cause intestinal flora imbalance and liver

histopathology injuries in chickens (18, 26). However, studies

regarding the influences of thiram exposure on liver metabolism

in chickens remain scarce. Taking advantage of this gap, we

explored the effect of thiram exposure on liver metabolism

in chickens.

Materials and methods

Animal experiments and sample acquisition

A group of 60 one-day-old healthy Arbor Acres chickens

were purchased from a commercial hatchery and maintained

under the standard ambient temperature, sanitary condition and

illumination as previously described. Prior to the experiment,

all the subjects were performed physical examinations to avoid

deformity and other congenital diseases. After acclimatization for

3 days, an equal number of chickens (n = 30) regardless of sex

were divided into control and thiram-treated groups. Throughout

the trial, the control chickens were provided sufficient feed and

water. Moreover, the chickens in thiram-treated group received

same diet as controls but supplemented with thiram (50 mg/kg)

purchased from Macklin Biochemical Co., Ltd. (Shanghai, China)

in feed as suggested by previous research from days 3–7 (39).

All chickens were euthanized and liver tissue was collected on

days 18 of the experimental study. The achieved samples were

snap-frozen utilizing liquid nitrogen and stored at −80◦C for

further study.

Sample preparation

The metabolomic procedure was conducted based on the

previous protocols with minor improvements (41, 42). Briefly,

the acquired liver samples (∼100mg) were triturated in methanol

and then centrifuged for 15min at 14,000×g. The supernatant

of mixture was collected and stored in Eppendorf tubes for

10min. Subsequently, the deionized water (400 µl) was added to

the obtained supernatant and kept at −80◦C for further study.

The extract (100 µl) of each sample was mixed for preparing

quality control (QC) sample and QC samples were performed

testing between every five samples. The 0.22µm membranes were

applied to filter the supernatant and then the filtered supernatant

was performed UPLC-QTOF/MS (Waters, USA) analysis. The

condition of UPLC was determined as described previously (42).

Moreover, the reagents used in this study were HPLC grade.

Di�erential metabolite analysis

The original mass spectrometry was subjected to process using

Marker View 1.1 (AB SCIEX, USA). Subsequently, PCA and PLS-

DA were performed by importing metabolomics data into SIMCA

(version 14.1, Umetrics, Sweden). The determination of differential

metabolites was based on the variable weight value (VIP) and p-

value obtained from the OPLS-DA model. To obtain pathways

involved in differential metabolites, MetaboAnalyst and KEGG

database (https://www.kegg.jp/kegg/pathway.html) was used to

perform cluster analysis and metabolic pathway annotation of

differential metabolites.

Results

Thiram exposure disrupts liver metabolism

The plots of PCA analysis showed that the samples in the

thiram-exposed group were clustered closely and separated from

the control group, indicating that thiram exposure significant

changes in liver metabolome (Figures 1A, B). To further reveal the

alterations of liver metabolome during thiram exposure, OPLS-DA

score plots was applied for pattern discriminant analysis. Results

indicated that there was a clear separation between both groups and

no fitting occur (Figures 1C–F).

Identification of metabolites associated
with thiram exposure

The differential metabolites were recognized based on the

criterion of VIP > 1, P < 0.05. Results indicated that a

total of 97 differential metabolites were detected between both

groups (Table 1). Among significantly different metabolites, 62

metabolites (ginsenoside F5, arbekacin, coproporphyrinogen III, 3-

keto Fusidic acid, marmesin, etc.) were down-regulated, whereas 35

metabolites (L-Palmitoylcarnitine, quinestrol, 7-Ketocholesterol,
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FIGURE 1

Thiram exposure altered liver metabolism. (A, B) PCA score plots based on positive-ion mode and negative-ion mode, respectively. (C, D) OPLS-DA

plot based on positive-ion mode and negative-ion mode, respectively. (E, F) Permutation tests based on positive-ion mode and negative-ion mode,

respectively.

tetrabromodiphenyl ethers, etc.) were up-regulated in thiram-

induced chickens. Moreover, the alternations of metabolites also

could be observed in the heatmap (Figure 2).

Metabolic pathway analysis

The differential metabolites were subjected to pathway

analysis by utilizing MetaboAnalyst 4.0 and results indicated

that 13 metabolic pathways (linoleic acid metabolism,

glycerophospholipid metabolism, taurine and hypotaurine

metabolism, vitamin B6 metabolism, alpha-Linolenic acid

metabolism, glycosylphosphatidylinositol (GPI)-anchor

biosynthesis, sphingolipid metabolism, porphyrin and chlorophyll

metabolism, arachidonic acid metabolism, fatty acid degradation,

primary bile acid biosynthesis, purine metabolism and steroid

hormone biosynthesis) involved in hepatotoxicity induced

by thiram (Figure 3). Among above-mentioned differential

pathways, 5 pathways with highest pathway impact value were

the glycosylphosphatidylinositol (GPI)-anchor biosynthesis,

porphyrin and chlorophyll metabolism, glycerophospholipid

metabolism, primary bile acid biosynthesis and steroid hormone

biosynthesis. The metabolic diagram in the intestine is shown in

Figure 4.

Discussion

Thiram is widely used in agricultural production and is

likely to accumulate in plants (43–45). Some plant-sourced

feeds that accumulate pesticides are likely to enter poultry

farming through the food chain, posing a serious threat to

the health of poultry (18, 38, 39). At present, the harm of

thiram exposure to various species such as mice, chickens

and fish has been widely confirmed. For instance, thiram has

been shown to dramatically affect the respiratory tract, central

nervous system, stimulate skin and restrain the formation of

white blood cells (34, 46, 47). Furthermore, some studies

have also demonstrated the role of thiram exposure in the

induction of lipid metabolism (18). The liver is an important

metabolic and detoxifying organ in animals and humans, which

is regarded as one of the main target organs for multiple

stimulations including pesticides, heavy metals and various

environmental pollutants (48–50). Therefore, pesticide residues

in feed are likely to affect liver health, which will cause

great damage to poultry production. However, study on thiram

toxicities to liver of chicken is still lacking. In this study, we

explored the effect of thiram exposure on liver metabolism

in chickens.

In this study, 97 differential metabolites were totally recognized,

which was closely related to multiple metabolic pathways including

glycerophospholipid metabolism, porphyrin and chlorophyll

metabolism, primary bile acid biosynthesis, steroid hormone

biosynthesis and glycosylphosphatidylinositol (GPI)-anchor

biosynthesis. These metabolic pathways may play an important

role in the hepatotoxicity induced by thiram. Remarkably, some

of the decreased metabolites including ginsenosides, arbekacin,

coproporphyrinogen III, Fusidic acid, marmesin and fluorouracil

play important roles in antioxidant capacity, anti-cancer and

oxygen transport. Ginsenosides were widely recognized because

Frontiers in Veterinary Science 03 frontiersin.org

https://doi.org/10.3389/fvets.2023.1139815
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Wang et al. 10.3389/fvets.2023.1139815

TABLE 1 Statistical analysis of di�erential metabolites between

thiram-exposed and control groups.

Metabolites Fold
change

VIP Trend

Isofumonisin B1 9.33 1.21 Down

3-Hydroxyquinine 5.86 1.20 Down

16b-Hydroxystanozolol 2.87 1.19 Down

9E,11E-Octadecadienoic acid 3.70 1.19 Down

Melleolide B 6.80 1.19 Down

Naphazoline 2.64 1.19 Down

Marmesin 3.32 1.19 Down

Dibenzyl ether 3.72 1.19 Down

Ginsenoside F5 11.28 1.19 Down

Imazamethabenz-methyl 4.93 1.18 Down

Darifenacin 30.79 1.18 Down

7-Aminonitrazepam 2.87 1.18 Down

Cer(d18:0/20:0) 7.18 1.17 Down

CPA(16:0/0:0) 2.67 1.17 Down

Momordicoside D 4.69 1.17 Down

Sintaxanthin 2.80 1.17 Down

Valero-1,5-lactam 2.13 1.17 Down

Tacrolimus 14.95 1.17 Down

Tetrabromodiphenyl ethers 3.69 1.17 Up

Pubescenol 3.28 1.16 Down

Sorbitan stearate 2.13 1.16 Down

[6]-Gingerdiol

4’-O-beta-D-glucopyranoside

2.68 1.16 Down

Allixin 2.19 1.16 Down

Fentanyl 3.74 1.16 Down

trans-2-Dodecenoylcarnitine 2.92 1.16 Down

PC(DiMe(11,3)/MonoMe(13,5)) 3.65 1.16 Down

Pyrrhoxanthinol 3.14 1.16 Down

Bufotenine O-glucoside 3.60 1.15 Down

Hesperaline 4.72 1.15 Down

Momordin Ia 5.63 1.15 Down

Fluorouracil 3.66 1.15 Down

Deoxycholic acid glycine

conjugate

2.07 1.15 Up

Coproporphyrinogen III 6.16 1.14 Down

Furcogenin 3-[2′′-glucosyl-6′′-

arabinosylglucoside]

9.88 1.14 Down

Clionasterol 3.77 1.14 Down

L-Palmitoylcarnitine 2.70 1.14 Up

trans-Zeatin-O-glucoside

riboside

2.40 1.14 Down

(Continued)

TABLE 1 (Continued)

Metabolites Fold
change

VIP Trend

Myricetin

7-(6′′-galloylglucoside)

2.80 1.14 Down

2-Methylbutyroylcarnitine 2.06 1.13 Down

Austalide K 4.74 1.13 Up

Glutamyl-Threonine 3.68 1.13 Down

25-Acetyl-6,7-

didehydrofevicordin F

3-glucoside

5.65 1.12 Down

Adenosine diphosphate ribose 5.37 1.12 Up

N-Stearoyl GABA 2.04 1.12 Down

Lc3Cer 4.74 1.12 Up

(S)-Pterosin K 3.00 1.12 Down

Pentacosanoylglycine 3.96 1.11 Up

Ethanolamine Oleate 4.42 1.11 Up

Agavoside A 26.93 1.10 Down

Hericene B 3.19 1.10 Up

Pentadecanoylcarnitine 3.82 1.10 Up

Glyceryl palmitostearate 10.38 1.10 Up

Oseltamivir 4.65 1.10 Down

MG(18:0/0:0/0:0) 2.80 1.09 Up

Physapruin B 3.92 1.09 Down

N-Methoxyspirobrassinol 10.02 1.09 Up

Mactraxanthin 7.83 1.09 Down

Deoxycorticosterone 8.73 1.08 Down

2-Oxo-3-hydroxy-4-

phosphobutanoic

acid

2.23 1.08 Up

4,8 Dimethylnonanoyl carnitine 3.36 1.08 Down

Tridemorph 2.56 1.08 Up

PE([14:0/16:1(9Z)))] 3.31 1.07 Up

1-

Palmitoylglycerophosphoinositol

3.02 1.07 Down

45-Hydroxyyessotoxin 2.37 1.07 Up

PS([18:2(9Z,12Z)/22:6(4Z,7Z,10Z,

13Z,16Z,19Z)))]

3.55 1.07 Up

Rose bengal 3.62 1.06 Up

Remikiren 2.58 1.06 Up

Hydrocortamate 2.05 1.06 Down

DG[18:4(6Z,9Z,12Z,15Z)/18:4

(6Z,9Z,12Z,15Z)/0:0]

2.53 1.06 Down

Dehydrocarpaine I 2.28 1.06 Down

2-

Stearoylglycerophosphoinositol

2.50 1.05 Up

Torvoside C 2.06 1.04 Down

(Continued)
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TABLE 1 (Continued)

Metabolites Fold
change

VIP Trend

Orange B 10.70 1.04 Down

7-Ketocholesterol 5.39 1.04 Up

MG(0:0/16:1(9Z)/0:0) 2.48 1.04 Up

Pergolide 8.78 1.03 Down

PGP[16:0/22:4(7Z,10Z,

13Z,16Z)]

3.33 1.03 Down

3-O-Protocatechuoylceanothic

acid

3.37 1.02 Down

3’-N-Acetyl-4’-O-(9-

octadecenoyl)fusarochromanone

2.12 1.01 Up

PC[18:0/22:6(4Z,7Z,10Z,

13Z,16Z,19Z)]

3.38 1.01 Up

Mifepristone 2.14 1.00 Down

Quinestrol 3.48 1.00 Up

(E)-2-Tridecene-4,6,8-triyn-1-ol 26.33 1.48 Down

PC[16:0/22:6(4Z,7Z,10Z,13Z,

16Z,19Z)]

6.05 1.28 Up

Arbekacin 8.07 1.25 Down

7-(4-Hydroxyphenyl)-1-phenyl-

4-hepten-3-one

11.68 1.24 Down

Sulfolithocholylglycine 4.91 1.23 Up

Taurocholic acid 7.22 1.23 Up

12S-HHT 7.82 1.16 Up

SM[d18:1/24:1(15Z)] 18.06 1.16 Up

N-Stearoylsphingosine 2.96 1.07 Up

PC(18:3(9Z,12Z,15Z)/20:0) 4.09 1.07 Up

Mifepristone 14.97 1.05 Up

PC[15:0/20:3(5Z,8Z,11Z)] 4.33 1.04 Up

Mianserin 4.37 1.04 Down

3-keto Fusidic acid 4.16 1.01 Down

13-L-Hydroperoxylinoleic acid 4.59 1.00 Down

of multiple beneficial effects, such as inhibiting the growth

of cancer cells, inducing tumor cell apoptosis, reversing the

abnormal differentiation of tumor cells, and anti-tumor metastasis

(51). Moreover, ginsenoside has been demonstrated to improve

immunity and antioxidant capacity of host (52). Zhang et al.

revealed that the concentrations of aspartate aminotransferase

and alanine aminotransferase in thiram-induced chickens

significantly increased, but antioxidant enzyme dramatically

decreased, suggesting liver injury and antioxidant dysfunction

(53). Therefore, we speculated that the decreased ginsenoside may

be one of the important pathways for thiram exerts its toxic effects

and cause antioxidant dysfunction. Previous research indicated

that arbekacin have an inhibitory effect on multiple pathogens

such as Pseudomonas aeruginosa, Klebsiella pneumonia and

Acinetobacter baumannii (54). Moreover, arbekacin can be used for

treating multiple drug resistant pneumonia and septicemia as well

as infections caused by resistant Staphylococcus Aureus (55, 56).

Coproporphyrinogen III play a key role in the production of heme

(57, 58). Heme is also an important component of hemoglobin,

which plays a key role in the transport of oxygen. Oxygen has

been demonstrated to play key roles in blood vessel development

and bone formation (59). Previous studies indicated that the

chickens exposed to thiram showed weight loss, accompanied

by angiogenesis disorder and tibial dyschondroplasia (60, 61).

Therefore, decreased coproporphyrinogen III may be one of the

causes of angiogenesis disorder and abnormal bone development

of chickens.

Fusidic acid can treat infections induced by methicillin-

susceptible and methicillin-resistant Staphylococcus aureus (62).

Marmesinpossess multiple pharmacological functions including

anti-inflammatory, antihepatotoxic and antitumor activities (63,

64). Fluorouracil has anti-cancer effects (65). Moreover, we

observed increased levels of L-palmitoylcarnitine, quinestrol, 7-

ketocholesterol, and tetrabromodiphenyl ether during thiram

exposure. L-palmitoylcarnitine is an ester derivative of carnitine,

which participated in fatty acids metabolism and its abundance

increased during hepatic lipid accumulation (66, 67). Consistent

with this study, Sheng et al. indicated that the abundance of L-

palmitoylcarnitine increased significantly in zebrafish exposed to

organic pollutants (68). Moreover, increased L-palmitoylcarnitine

was closely related to poorer prognosis in patients with chronic

heart failure (69). Quinestrol can disrupt internal secretion and

cause fertility disorders by inducing testicular damage (70).

Moreover, quinestrol can increase the levels of serum MDA

and aggravate the oxidative damage of cells (71). As a pro-

oxidant and pro-inflammatory molecule, 7-ketocholesterol not

only induces inflammation and nerve cell damage, but also

affects membrane permeability and causes oxidative stress (72).

Tetrabromodiphenyl ether is known to possess reproductive

toxicity, which weaken sperm activity and increase the quantity of

abnormal sperm (73). Moreover, tetrabromodiphenyl ether has also

been demonstrated to induce liver inflammation and promote the

expression of inflammatory genes including IL-6, TNF-α and IL-l

β (74). Increasing evidence demonstrated that long-term pesticide

exposure can result in cancer and reproductive disorders. In this

study, we observed significant changes in metabolites associated

with anti-cancer, oxidative stress and reproductive function,

indicating that thiram may also be a potential cancer-inducing

factor. Previous study indicated that thiram exposure could induce

liver autophagy and apoptosis. Notably, some studies also showed

that oxidative stress could cause the initiation and development of

apoptosis and autophagy. Therefore, thiram induced liver apoptosis

and autophagy may be mediated by differential metabolites related

to oxidative stress.

In conclusion, this study investigated the effect of thiram

exposure on liver metabolism in chickens. Results showed

that thiram exposure can significantly alter liver metabolism,

characterized by significant changes in some metabolites and

metabolic pathways. These results filled in the blank of thiram

exposure on liver metabolism characteristics of chickens, and

conveyed an important message that hepatic metabolic disorder

may be one of the important ways thiram affects broiler liver

metabolism. Moreover, this study will help prevent and control
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FIGURE 2

Heatmap revealed the di�erential metabolites in liver exposed to thiram. The color in the heatmap indicates the normalized relative abundance of

each metabolite.
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FIGURE 3

Di�erential metabolic pathway analysis based on the positive-ion mode (A) and the negative-ion mode (B). Each circle represents a metabolic

pathway.

FIGURE 4

The representative schematic diagram of liver metabolic exposed to thiram. (A) Glycerophospholipid metabolism. (B) Primary bile acid biosynthesis.

(C) Glycosylphosphatidylinositol (GPI)-anchor biosynthesis. (D) Porphyrin and chlorophyll metabolism. (E) Steroid hormone biosynthesis. The red

boxes represent the di�erential metabolites associated with thiram exposure.
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the effects of thiram on liver metabolism in chickens from the

perspective of liver metabolism.
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