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Prevalence and risk factors of
Klebsiella spp. in milk samples
from dairy cows with mastitis—A
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Tian Tian1, Qizhu Yang1, Meng Zhang1, Guiyang Ge1,

Jianming Li2, Naichao Diao2, Fei Liu1, Kun Shi2, Ruopeng Cai1*,

Rui Du1,2* and Qinglong Gong1*

1College of Animal Science and Technology, Jilin Agricultural University, Changchun, China, 2College of

Chinese Medicine Materials, Jilin Agricultural University, Changchun, China

Introduction: The overall prevalence of Klebsiella spp., a group of important

zoonotic pathogens, in the global dairy herds and the risk of cross-species

transmission between humans and dairy cows remain to be clarified. This

systematic review aimed to determine the prevalence of Klebsiella spp. in milk

samples from dairy cows with mastitis worldwide and to assess the factors

influencing the prevalence of these strains.

Methods: Qualified studies published from 2007 to 2021 were retrieved from

ScienceDirect, Web of Science, PubMed, WanFang Database, China National

Knowledge Infrastructure (CNKI), and VIP Chinese Journal Database. Calculations

of prevalence and their 95% confidence intervals (CIs) were performed for all the

studies using the Freeman-Tukey double arcsine transformation (PFT).

Results: A total of 79,852milk samples from 55manuscripts were examined in this

meta-analysis, and 2,478 samples were found to be positive for Klebsiella spp. The

pooled prevalence estimates worldwide were 7.95% (95% CI: 6.07%–10.06%), with

significant heterogeneity (I2 = 98.8%, p = 0). The sampling period of 2013–2020

had a higher (p < 0.05) Klebsiella-positive proportion of milk samples (12.16%,

95% CI: 8.08%–16.90%) than that of 2007–2012 (3.85%, 95% CI: 2.67%–5.21%),

indicating that bovine mastitis caused by Klebsiella may become increasingly

prevalent. The risk factors for the high prevalence of Klebsiella in milk samples

mainly included: economic development level (developing countries; 11.76%,

95% CI: 8.25%–15.77%), mastitis type (CM; 11.99%, 95% CI: 8.62%–15.79%), and

population density (>500 per sq km; 10.28%, 95% CI: 2.73%–21.58%). Additionally,

a bivariate meta-regression analysis revealed that the multidrug-resistance (MDR)

rate of the epidemic strains was also closely related to economic development

level (R2 = 78.87%) and population density (R2 = 87.51%).

Discussion: Due to the potential risk of cross-species transmission between

humans and cows, the prevalence of mastitis milk-derived Klebsiella and its high

MDR rate need to be monitored, especially in developing countries with high

population densities.
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Introduction

As one of the common diseases in dairy farming, bovine

mastitis can lead to decreased milk production, poor milk quality,

reproductive barriers and even culling of dairy cows, causing great

economic losses to the global dairy industry (1). Bovine mastitis is

classified as clinical mastitis (CM) and subclinical mastitis (SCM)

according to symptoms and milk characteristics. In general, CM

is defined as a condition showing swelling of the infected quarter

and in some cases systemic signs such as fever and anorexia.

However, it is difficult to detect SCM visually unless through

diagnostic techniques such as the California Mastitis Test (CMT),

Wisconsin Mastitis Test (WMT) or Somatic Cell Count (SCC) (2).

Due to the complexity of the bacteria that cause intramammary

infection (IMI) in dairy cows, the control of bacterial infection

is mainly performed with antibiotic management and assisted by

the treatment of some bacteriophages and natural compounds at

present. Moreover, some vaccines have been developed to prevent

bovine mastitis (1).

As a common zoonotic pathogen that is widely prevalent in

hospitals and communities, Klebsiella pneumoniae mainly causes

pneumonia, liver abscess, urinary diseases, toxemia, septicaemia

and other infection symptoms (3). Due to the long-term irrational

use of antibiotics in the medical field, a wide variety of

carbapenemase [such as K. pneumoniae carbapenemase (KPC),

New Delhi metallo-β-lactamase (NDM) and oxacillinase (OXA)]-

producing and extended spectrum β-lactamase (ESBL, such as

CTX-M, SHV and TEM)-producing multidrug-resistant (MDR)

Klebsiella have emerged in an endless number of cases (4).Klebsiella

spp., as vehicles of multiple drug-resistance genes, are monitored

by the World Health Organization (WHO) (5). Under the pressure

of antibiotic selection, drug-resistance genes are transferred to

other strains through mobile genetic elements (MGEs) such as

plasmids, transposons, and insertion elements, thus increasing the

challenge of mitigating bacterial infections (6). Klebsiella spp. is

also an important cause of bovine mastitis, with K. pneumoniae

and K. oxytoca as the most prevalent species (7, 8). In dairy cattle,

Klebsiella spp. are transmitted by contact with teats, mainly through

manure, bedding and other farm equipment, and invade mammary

epithelial cells and persist for a long time (9). Moreover, these

strains not only seriously affect the milk quality and performance

of adult cows, but also pose a fatal threat to the survival of newborn

calves (10). To the best of our knowledge, bovine mastitis caused

by K. pneumoniae was first publicly reported in 1954 (11), but in

the following decades, the prevalence of Klebsiella in milk samples

appeared to be nonsignificant compared to that of Staphylococcus

aureus, Streptococcus agalactiae, and Escherichia coli. However,

over the past decade or so, the number of cases of Klebsiella spp.

detected in milk samples has risen dramatically worldwide. In some

countries, these bacteria are second only to E. coli in the incidence

of gram-negative bacteria in dairy cow udders (8).

The global spread and distribution of carbapenemase-

producing and hypervirulent Klebsiella spp. from human sources

in the past decade have been revealed (12, 13). During the same

period, reports ofKlebsiella spp. being detected in rawmilk samples

from dairy farming regions (especially Holstein-Friesian dairy

farms) around the world have increased. Although K. pneumoniae

isolated from companion animals shows zoonotic potential

(14, 15), there is currently no assessment of risk factors for cross-

species transmission of these strains in humans and dairy herds

due to the lack of systematic analysis of the global distribution of

milk-derived Klebsiella spp. To fully evaluate the global prevalence

of Klebsiella spp. in milk samples from dairy cows with mastitis

and to assess risk factors for influencing the prevalence of these

strains, this systematic review and meta-analysis was conducted

on the prevalence of Klebsiella spp. in milk samples from major

Holstein dairy farming regions using articles published from 2007

to 2021 based on subgroups (sampling years, detection methods,

geographic information, level of economic development, mastitis

type, population density, Klebsiella species, and MDR rate of

Klebsiella isolates).

Materials and methods

Study design and search strategies

We conducted a systematic literature search for studies that

examined the prevalence of Klebsiella spp. in milk samples from

dairy cows worldwide following the Preferred Reporting Items for

Systematic Reviews and Meta-Analyses (PRISMA) guidelines (16).

On January 12, 2022, six databases were searched: ScienceDirect,

Web of Science (all databases), PubMed,WanFangDatabase, China

National Knowledge Infrastructure (CNKI), and VIP Chinese

Journal Database. We found that the search items “Klebsiella” and

“Mastitis” produced the most qualified studies by presearch.

The keywords “Klebsiella” and “Mastitis” were used in the

process of screening ScienceDirect, and “Research articles” was

chosen as the article type. Web of Science was searched by

combining two queries #1 “TS = (Mastitis)” and #2 “TS =

(Klebsiella)” with “AND”. In PubMed, we used the MeSH terms

“Klebsiella” and “Mastitis” in an advanced search to generate

the search formula (Klebsiella) AND (Mastitis). In the WanFang

database, CNKI, and the VIP Chinese Journal database, the topics

were defined as “Mastitis” AND “Klebsiella” in Chinese in the

advanced search. Considering that some qualified studies may

have not been included in the electronic database we built, all

the references cited in relevant studies were carefully checked.

Subsequently, the supplementary search was conducted using

Google Scholar, which allowed those missing articles with available

data to be included in this meta-analysis. In addition to English

and Chinese studies, a Spanish study and a Korean study (both

with English abstracts) were included through a supplementary

search. Records identified in the search process were uploaded into

EndNote (version X 9.3.3).

Selection criteria

We preliminarily screened articles based on duplication, and

those with duplicate titles and abstracts were excluded with the

help of Endnote. After title/abstract screening, full texts were

screened afterwards. Qualified studies were selected according to

the following criterion: articles which were published between 2007
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and 2021 that examined the prevalence of Klebsiella spp. in milk

samples. Studies were excluded if they met the following criteria:

(1) the full text was unavailable, (2) sample totals or prevalence

were not provided, (3) the sampling time was unclear, and (4) the

samples collected were not milk.

Two authors (JS and WX) performed the selection process

according to the eligibility criteria.

Data extraction

Standardized forms generated byMicrosoft Excel 2019 (version

2203) were used to extract the following information from the

eligible studies: first author, publication year, sampling years,

sample size, number of Klebsiella-positive milk samples, detection

methods, geographic information, mastitis type, economic

development level and population density of the country where the

study was conducted, and the MDR rate of Klebsiella spp. isolated

from milk samples. The milk samples included were all individual

quarter samples.

In 2013, MDR K. pneumoniae was listed by the Centers

for Disease Control and Prevention (CDC) as an urgent

threat to public health, along with other carbapenem-resistant

Enterobacteriaceae (CRE) (17). Therefore, we chose 2013 as a time

point to divide the timeline into two parts to conduct a systematic

review and meta-analysis.

The economic development levels of the countries were

established according to World Economic Situation and Prospects

2022—UN (18). A list of countries by population density was

derived fromWorld Population Prospects 2022—UN (19).

Quality assessment

The quality of each eligible article was estimated by scoring (20,

21). In brief, the following items were given 1 point when they were

present in a study: random sampling; explicit detection method;

detailed sampling procedures; sampling year; and risk factors ≥4.

The articles were scored with a range of 0 to 5, and they were

divided into three intervals: 0–1 points, 2–3 points, and 4–5 points.

The scoring criteria were only applicable to this meta-analysis and

did not represent the research level of the included studies.

Statistical analysis

All the data were analyzed by the package “meta” (version

4.0.0) in R software version 4.0.0 (R Foundation for Statistical

Computing, Vienna, Austria). The prevalence of Klebsiella-positive

milk samples was estimated as the number of milk samples in which

Klebsiella spp. was detected divided by the number of total tested

milk samples. Calculations of prevalence and their 95% confidence

intervals (CIs) were performed for all the studies. The Freeman-

Tukey double arcsine transformation (PFT) showed better variance

stabilization performance by normalizing the data with different

meta packages previously. Therefore, to make the distribution

in accordance with Gaussian distribution, we performed rate

FIGURE 1

Flow diagram of search and selection process of eligible studies.
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conversion with PFT. The formulates for PFT were as follows (22):

t = arc sin

(

sqrt

(

r

n+1

))

+arc sin

(

sqrt

(

r+1

n+1

))

se (t) = sqrt (
1

n+0.5
)

p = ( sin
t

2
)
2

Note: t = transformed prevalence; n = sample size; r = positive

number; se= standard error.

The transformed summary proportion and its confidence

interval were reconverted for better readability. The I2, Cochran’s

Q, andχ2 tests were used to quantify the variation (23, 24). Because

of the high degree of heterogeneity, we conducted the meta-

analysis using a random effects model. Publication bias (indicated

by symmetry of the funnel plot) was evaluated by performing a

funnel plot, trim and fill method, and Egger’s test. A p < 0.05

FIGURE 2

Forest plot of the prevalence of Klebsiella spp. in milk samples among studies conducted worldwide. The length of the horizontal line represents the

95% confidence interval, and the diamond represents the summarized e�ect.
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was considered to be the statistical significance threshold (25, 26).

Funnel plots were generated to further assess every subgroup. To

determine the stability of the study, we also conducted sensitivity

analysis, which evaluated the effect of each study on the overall

results by sequentially excluding single studies. The R code for this

meta-analysis is shown in Supplementary Table 1.

Subgroup analysis and univariate meta-regression analysis

were used to reveal factors that may contribute to heterogeneity

among studies. The independent factors that we selected were

sampling years (comparison of 2013 or later with before 2013),

detection methods (comparison of automatic analysis systems

with other methods), continents (comparison of Oceania with

other continents), longitude (comparison of 0–20◦E with other

intervals), latitude (comparison of 20–30◦N with other intervals),

economic development level (comparison of developing countries

with developed countries), mastitis type (comparison of CM with

SCM), population density (comparison of “<50 per sq km” with

other groups), andKlebsiella species (comparison ofK. pneumoniae

with K. oxytoca). In addition, we performed a bivariate meta-

regression analysis to analyze the correlation of the MDR rate of

Klebsiella spp. isolated from milk samples with population density

and economic development level, and R2 was used to explain the

heterogeneity of each term by indicating the proportion (27).

Results

Search results and eligible studies

A total of 1,319 records were identified by searching the

databases. First, 316 duplicate studies were removed. According

to the previously established inclusion criterion, 936 studies were

excluded because failed to meet publication years (2007–2021) or

targeted objectives (Klebsiella spp. in milk samples from dairy cows

with mastitis) through screening of the titles and abstracts. After

that, the full texts of the remaining 84 studies were derived for

further assessment based on the inclusion criterion. Finally, we

included 55 studies in this meta-analysis (Figures 1, 2). In terms of

quality, 14 studies scored 2 or 3 points, and 41 studies scored 4 or 5

points (Supplementary Table 2).

Publication bias and sensitivity analysis

The rate was converted using PFT to ensure that the

distribution was more similar to a normal distribution (Table 1).

The forest plot revealed a high heterogeneity among the included

studies (I2 = 98.8%, p = 0; Figure 2). The funnel plot was not

symmetrical, indicating publication bias or small sample size bias

in the studies (Figure 3). Egger’s test was used to further test the

sources of funnel plot asymmetry and provided a p-value of<0.001

(Figure 4, Supplementary Table 3), indicating that publication bias

did exist. The publication bias disappeared after adding 26 studies

(the point estimate was 0%) when evaluating publication bias by

the trim and fill method (Figure 5). Furthermore, we performed

a sensitivity analysis to determine the effect of each study on the

pooled prevalence ofKlebsiella spp. There was no significant change

TABLE 1 Normal distribution test for the normal rate and the di�erent

conversions of the normal rate.

Conversion form W P

PRAWa 0.77945 1.12e-07

PLNb 0.96893 0.1648

PLOGITc 0.98594 0.7657

PASd 0.90654 0.0004236

PFTe 0.90207 0.0002939

aPRAW: original rate.
bPLN: logarithmic conversion.
cPLOGIT: logit transformation.
dPAS: arcsine transformation.
ePFT: double-arcsine transformation.

FIGURE 3

Funnel plot with pseudo 95% confidence interval limits for the

examination of publication bias.

in the result after excluding individual studies, which indicated the

stability of our meta-analysis (Figure 6).

Themeta-analysis results and publication bias of each subgroup

are shown in Supplementary Figures 1–8.

Pooled prevalence of Klebsiella spp. in milk
samples

There were 79,852 milk samples tested in our meta-analysis,

and 2,478 of them were found to contain Klebsiella spp. The

majority of Klebsiella species isolated from the milk of cows

with mastitis is K. pneumoniae (25/55), followed by K. oxytoca

(6/55), and only one case of K. ozaenae has been reported

(Supplementary Table 4). At the global level, the random effect

estimated pooled prevalence was 7.95% (95% CI: 6.07%−10.06%),

and there was substantial heterogeneity (x2 = 4584.55, I2 = 98.8%,

p= 0). The prevalence of Klebsiella-positive milk samples is shown

in Figure 2.
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FIGURE 4

Egger’s test for publication bias.

FIGURE 5

The trim and fill method for publication bias.

The pooledKlebsiella spp. prevalence estimates and the 95%CIs

for corresponding subgroups are all reported in Table 2. The pooled

prevalence of Klebsiella-positive samples detected in 2013 or later

was 12.16% (95% CI: 8.08%−16.90%), which was higher (p < 0.05)

than that obtained before 2013 (3.85%, 95% CI: 2.67%−5.21%).

By comparing various detection methods, automatic analysis

systems (including the API 20E System and VITEK 2 Automated

Identification System) showed the highest prevalence (17.14%,

95% CI: 10.33%−25.17%). The pooled prevalence estimates of K.

oxytoca (3.22%, 95% CI: 0.73%−7.15%) in milk samples were lower

than that of K. pneumoniae (11.51%, 95% CI: 6.72%−17.31%).

However, considering p > 0.05 and small number of studies and

samples of K. oxytoca, there existed a small sample size bias which

indicated the results of this subgroup were not robust.

The 55 eligible studies were from 25 countries on six continents

(Asia: 24; Europe: 9; Africa: 7; North America: 7; South America:

6; Oceania: 2). The prevalence of Klebsiella spp. in Asia was the

highest (14.26%, 95% CI: 10.49%−18.48%), particularly in the

longitude interval 40–100◦E. The 0–20◦E interval, where most

European countries included in this meta-analysis were located,

had the lowest positive proportion. In regard to latitude, there was

a low Klebsiella prevalence at high latitudes. Almost all countries in

the European (0.73%, 95% CI: 0.20–1.49%) and Oceanian (0.67%,

95% CI: 0.38–1.03%) regions are developed countries, which

indicates that the distribution of the Klebsiella-positive proportion

may be related to the level of national economic development.

The pooled prevalence of Klebsiella spp. samples detected in

developing countries was 11.76% (95% CI: 8.25–15.77%), which

was higher (p < 0.05) than that in developed countries (3.31%,

95% CI: 1.89–5.08%). There were more (p < 0.05) Klebsiella-

positive samples found in clinical mastitis samples (11.99%, 95%

CI: 8.62–15.79%) than in subclinical mastitis samples (6.42%, 95%

CI: 2.97–10.98%).

In addition, the prevalence of Klebsiella spp. was related to

population density. The analysis of population density in different

countries showed that the lowest Klebsiella spp. prevalence was

in countries where there were <50 per sq km (4.13%, 95% CI:

2.70–5.83%) and revealed that the higher the population density of

the sampling area, the higher the prevalence of Klebsiella spp. in

milk samples.

To further explore theMDR rate ofKlebsiella spp. isolated from

milk samples, an MDR rate correlation analysis was conducted for

economic development level and population density. The R2 values

were 78.87 and 87.51% (Table 3), respectively, which revealed

that the MDR rate was closely related to the level of economic

development and population density.

Discussion

This study investigated the prevalence of Klebsiella spp. in milk

samples from dairy cows with mastitis worldwide by analyzing

articles published from 2007 to 2021 to assess risk factors for

influencing the prevalence of these strains and to improve solutions

for bovine intramammary infections. The studies included in this

analysis from 2007 to 2013 mostly came from European and

North American developed countries. However, the prevalence of

Klebsiella-positive milk samples from the European Union (EU)

has decreased dramatically after 2013 (Table 4). For example, the

prevalence of Klebsiella in CM milk samples from the Netherlands

during 2017–2018 was lower than that in 2006–2009 (28, 29), which

might be due to strict health management regulations by the EU

member countries (30). Because Klebsiella spp. in bovine mastitis

mostly originates from the manure attached to the surrounding

bedding and farming equipment, especially the organic bedding

materials such as sawdust (31, 32). In developed countries, frequent

changes in bedding, along with cow cleanliness and the hygiene

of housing facilities greatly reduce the contact transmission of

these bacteria (33). Although the Klebsiella-positive rate of CM

milk samples from the United States and Japan was comparatively
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FIGURE 6

Sensitivity analysis. After removing one study at a time, the remaining studies were recombined using a random e�ects model to verify the e�ect of a

single study on the overall results.
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TABLE 2 Pooled prevalence of Klebsiella spp. in milk samples from dairy cows with mastitis worldwide including risk factors and meta-regression.

No.
studies

No.
tested

No.
positive

Positive percentage
(95% CIa)

Heterogeneity Univariate meta-regression

χ² p-

valueb
I² (%) p-value Coe�cient (95% CI)

Sampling years 0.0004 0.1339 (0.0599–0.2079)

Before 2013 25 26,171 536 3.85% (2.67–5.21%) 505.76 <0.01 94.9%

2013 or later 28 24,752 1,735 12.16% (8.08–16.90%) 2,725.28 0 99.0%

Detection methods 0.0099 0.1565 (0.0376–0.2754)

Biochemical tests 32 64,699 1,626 6.97% (4.93–9.31%) 2,705.81 0 98.9%

16SrDNA identification 9 12,770 806 11.04% (4.01–20.82%) 1,550.65 0 99.5%

MALDI-TOF MS 8 4,154 315 4.56% (1.51–9.01%) 188.45 <0.01 96.3%

Automatic analysis

systems

6 5,090 615 17.14% (10.33–25.17%) 126.76 <0.01 96.1%

Continents 0.00240 −0.2169 (−0.4053 to−0.0285)

Africa 7 2,251 139 8.72% (3.75–15.32%) 67.02 <0.01 91.0%

Asia 24 12,616 1,581 14.26% (10.49–18.48%) 789.51 <0.01 97.1%

Europe 9 40,651 257 0.73% (0.20–1.49%) 159.78 <0.01 95.0%

North America 7 3,145 159 7.52% (2.99–13.73%) 160.46 <0.01 96.3%

South America 6 18,383 321 4.48% (2.14–7.61%) 325.69 <0.01 98.5%

Oceania 2 2,806 21 0.67% (0.38–1.03%) 0.10 0.76 0.0%

Longitude <0.0001 −0.2229 (−0.3097 to−0.1362)

0–20◦E 7 35,955 167 0.70% (0.28–1.26%) 64.72 <0.01 90.7%

20–40◦E 10 7,174 262 7.72% (4.00–12.42%) 199.63 <0.01 95.5%

40–60◦E 1 200 80 40.00% (33.30–46.89%) 0.00 — —

80–100◦E 1 48 30 62.50% (48.27–75.75%) 0.00 — —

100–120◦E 18 7,580 649 10.11% (7.43–13.13%) 209.11 <0.01 91.9%

140–160◦E 1 2,572 20 0.78% (0.47–1.16%) 0.00 — —

0–20◦W 2 447 65 15.23% (0.00–50.98%) 67.24 <0.01 98.5%

40–60◦W 3 6,075 61 2.60% (0.15–7.67%) 113.26 <0.01 98.2%

60–80◦W 4 8,516 166 12.59% (2.29–28.79%) 168.56 <0.01 98.2%

80–100◦W 2 953 21 6.22% (0.00–29.58%) 6.81 <0.01 85.3%

(Continued)
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TABLE 2 (Continued)

No.
studies

No.
tested

No.
positive

Positive percentage
(95% CIa)

Heterogeneity Univariate meta-regression

χ² p-

valueb
I² (%) p-value Coe�cient (95% CI)

Latitude 0.0001 0.2421 (0.1189–0.3652)

0–10◦S 3 1,870 132 13.37% (1.30–34.48%) 78.94 <0.01 97.5%

10–20◦S 1 1,547 28 1.81% (1.20–2.54%) 0.00 — —

20–30◦S 2 4,528 33 3.23% (0.00–20.37%) 83.49 <0.01 98.8%

30–40◦S 1 2,454 19 0.77% (0.46–1.16%) 0.00 — —

40–50◦S 1 118 1 0.85% (0.00–3.60%) 0.00 — —

0–10◦N 4 8,260 115 2.33% (0.63–4.86%) 9.52 0.02 68.5%

10–20◦N 1 174 11 6.32% (3.12–10.48%) 0.00 — —

20–30◦N 4 415 84 24.13% (6.02–48.96%) 73.14 <0.01 95.9%

30–40◦N 16 7,375 719 12.91% (8.93–17.46%) 349.68 <0.01 95.7%

40–50◦N 10 6,918 155 6.20% (2.81–10.68%) 299.14 <0.01 97.0%

50–60◦N 6 35,106 207 0.60% (0.01–1.73%) 122.70 <0.01 95.9%

Economic development level <0.0001 0.1561 (0.0840–0.2282)

Developed countries 21 51,658 838 3.31% (1.89–5.08%) 1,296.66 <0.01 98.5%

Developing countries 34 28,194 1,640 11.76% (8.25–15.77%) 2,596.12 0 98.7%

Mastitis type 0.0447 0.0987 (0.0023–0.1951)

Clinical 31 16,990 1,233 11.99% (8.62–15.79%) 1,222.44 <0.01 97.5%

Subclinical 13 14,627 420 6.42% (2.97–10.98%) 770.04 <0.01 98.4%

Population density 0.0141 −0.1021 (−0.1837 to−0.0206)

<50 17 29,768 610 4.13% (2.70–5.83%) 595.21 <0.01 97.3%

50–100 2 1,848 159 19.00% (0.00–62.04%) 153.85 <0.01 99.4%

100–250 24 12,121 968 9.58% (5.64–14.37%) 1,222.15 <0.01 98.1%

250–500 6 33,479 563 8.88% (2.18–19.07%) 1,336.36 <0.01 99.6%

>500 6 2,636 178 10.28% (2.73–21.58%) 149.23 <0.01 96.6%

(Continued)
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TABLE 2 (Continued)

No.
studies

No.
tested

No.
positive

Positive percentage
(95% CIa)

Heterogeneity Univariate meta-regression

χ² p-

valueb
I² (%) p-value Coe�cient (95% CI)

Klebsiella species 0.0628 0.1614 (−0.0086 to 0.3314)

K.pneumoniae 25 15,724 934 11.51% (6.72–17.31%) 1,822.41 0 98.7%

K. oxytoca 6 2,688 62 3.22% (0.73–7.15%) 84.99 <0.01 94.1%

Scores of study quality 0.8368 −0.0087 (−0.0920 to 0.0745)

2–3 14 39,846 572 8.20% (4.72–12.49%) 1,222.17 <0.01 98.9%

4–5 41 40,006 1,906 7.88% (5.67–10.39%) 2,643.54 0 98.5%

Total 55 79,852 2,478 7.95% (6.07–10.06%) 4,584.55 0 98.8%

aCI, confidence interval.
bp-value: p < 0.05 is statistically significant.

TABLE 3 The MDR rate of Klebsiella spp. isolated frommilk samples: a bivariate meta-regression analysis.

No.
studies

No.
isolatesa

No.
MDRb

Positive
percentage
(95% CI)

Heterogeneity Univariate meta-regression Bivariate meta-regression

χ² p-value I² p-valuec Coe�cient
(95% CI)

R2–economic
development

level

R2–population
density

MDR rate 0.0214 −0.5828

(-1.0793 to−0.0863)

78.87% 87.51%

0 4 33 0 0.00% (0.00–0.00%) 0.89 0.83 0.0%

>0, <0.5 8 860 129 15.02% (5.85–26.97%) 103.38 <0.01 93.2%

> 0.5, <1 2 112 73 63.13% (46.19–78.61%) 2.76 0.10 63.8%

1 6 81 81 100.0% (100.0–100.0%) 1.38 0.93 0.0%

aNo. isolates: the number of Klebsiella isolates.
bNo. MDR: the number of MDR Klebsiella isolates.
cp-value: p < 0.05 is statistically significant.
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prominent after 2013, cases were mainly reported in developing

countries and showed a global distribution, especially in Asia. For

instance, the prevalence of K. pneumoniae in mastitis milk samples

in West Bengal, Jharkhand and Mizoram in India was 45.29%

(95% CI: 40.03–50.61%) (34). Random sampling of free-range

dairy herds in northwestern Iran revealed that the K. pneumoniae-

positive proportion was 40.00% (95% CI: 33.30–46.89%) (35). The

prevalence in CM milk samples in Rangpur Division, Bangladesh

was up to 62.50% (95% CI: 48.27–75.75%) (36). One distinguishing

feature of these regions is that they have extremely high population

densities, and Bangladesh and some regions in India each have

a population density of over 1,000 per sq km (19). In addition,

in these regions, milk is usually produced in rural settings where

the majority of the population resides (37). We also noted a surge

in cases from China in the past decade, which may be partly

related to the selection of three Chinese databases for this study

and the increasing attention to bovine mastitis in this country. As

fecal shedding of K. pneumoniae plays a critical role in pathogen

dissemination (38), fecal-oral transmission cycles may perpetuate

and amplify the presence of such pathogens (32). Human feces are

recognized as a reservoir of reverse transmission (39). Although the

evidence for its role in the transmission of Klebsiella from humans

to dairy herds is unclear, some latrines in close proximity to dairy

herds should be considered a risk factor that can promote human-

derived Klebsiella transmission, and this risk may be increased by

excessive population density.

Although Klebsiella spp. were occasionally detected in milk

samples from EU member countries (Table 5), the drug-resistance

rate of these bacteria has declined since 2009 (40), and the

occurrence of MDR strains is very rare. This may be attributed

to the EU’s policy of a total ban on the use of antibiotic growth

promoters (AGPs) in animal feeding since 2006 (41), which

substantially reduced the probability of Klebsiella carrying drug-

resistance genes in the dairy farm environment. In this meta-

analysis, China had the highest number of reports of MDR

Klebsiella in milk samples, which included seven studies from

different regions of the country. In July 2019, Announcement No.

194 was issued by the Chinese Ministry of Agriculture and Rural

Affairs to prohibit all antimicrobials from being used as AGPs

and was implemented in on July 1, 2020 (42). However, whether

this will achieve the desired governance results is pending further

investigations in the future.

We found that reports of MDR Klebsiella spp. in milk

samples were also mainly from densely populated developing

countries (189/283, 66.78%). Similar to the human carbapenemase-

resistant Klebsiella species (12), the studies we included suggest

that carbapenemase-resistant Klebsiella spp. in milk samples

are also harbor blaKPC, blaNDM or blaOXA. KPC-producing

K. pneumoniae has caused serious nosocomial and community

infections worldwide, but there are few reports of their detection

in milk samples. Among the articles screened in this study, KPC-

producing strains were only reported from bulk tank milk in

Indonesia (43). Discovered in 2008 (44), the endemic scope of

human NDM-producing K. pneumoniae was mainly concentrated

in India, Pakistan and Bangladesh. There is also a high prevalence

of MDR K. pneumoniae in milk samples from some regions of

South Asia, but the detection of blaNDM was ignored by some local

reports (36). Accordingly, we recommend that dairy farms in South

Asia promote blaNDM detection and strengthen environmental

management to take effective measures to constrain the global

spread of blaNDM-harboring strains. Although China is not a

major epidemic region for NDM-producing K. pneumoniae among

humans, the presence of blaNDM−5-positive K. pneumoniae in both

milk and fecal samples was reported in Jiangsu Province. Notably,

blaNDM−5 plasmids carried by these strains are almost identical to

the human K. pneumoniae plasmid (pNDM-MGR194) previously

reported in India (45), which may be a molecular epidemiological

clue of cross-species transmission of blaNDM−5 plasmids between

humans and cows. Therefore, we need to be alert to the risk of

cross-species transmission of the blaNDM−5 gene. OXAs commonly

hydrolyze isoxazolylpenicillins (oxacillin, cloxacillin, dicloxacillin,

etc.), but the hydrolysis of carbapenems by OXA-48 should not

be underestimated (46). OXA-48-producing K. pneumoniae was

first identified in Turkey in 2001 (47), and its presence has been

reported in Mediterranean countries (12). In this study, we found

that milk-derived OXA-48-producing K. pneumoniae also mainly

occurred in Mediterranean countries, where their epidemic scope

overlaps with that of human strains. According to sampling data

from 2008, blaOXA-harboring K. oxytoca strains were detected in

milk samples from Egypt (48). Similar reports were subsequently

reported in Lebanon, where there was a substantial risk of OXA-

48-producing K. pneumoniae being transmitted back to humans

due to the local practice of selling raw milk (49). In addition,

the endemic scope of these strains has been seen in India and

other South Asian countries, and milk-derived variants with both

blaOXA−1 and blaNDM−5 genes have been identified in China (45).

Therefore, to prevent the emergence of more resistant strains due

to the combination of drug-resistance genes, the genetic evolution

and integration of blaOXA in dairy herds deserves further study.

Among the selected articles, there were only two reports

on virulence genes of milk-derived Klebsiella, and both of them

were from China (Table 4), a region with a high incidence of

hypervirulent K. pneumoniae (hvKP) infection (13). Klebsiella spp.

frommilk samples also have virulence-related genes associated with

siderophore biosynthesis, fimbria proteins, adhesion, and secretion

systems, but they are far less abundant than human-derived K.

pneumoniae strains in terms of gene variety (94). The ferric uptake

operon kfuABC carried by human-derivedK. pneumoniae is closely

related to colonization and tissue invasion (95). kfuABC of the

milk-derived strains also has similar functions, and the gene cluster

was more prevalent in CM cases than in SCM cases (94), which

explained why the prevalence of Klebsiella in CM milk samples

was significantly higher than that in SCM milk samples. Capsular

polysaccharides (CPSs) have been identified as the most important

virulence factor of K. pneumoniae for assisting bacteria in evading

host immune surveillance, and their synthesis is mainly regulated

by CPS-regulated genes such as regulator of mucoid phenotype

A (rmpA) (96, 97). However, rmpA was detected only in milk-

derived K. pneumoniae from China according to this analysis (85).

It was found that K. pneumoniae was more likely to generate

capsules in milk than in LB medium (98), which may indicate

that the nutrient-rich environment reduces the dependence of

Klebsiella capsule synthesis on CPS regulatory genes such as

rmpA. Despite the extremely low incidence of rmpA in milk-

derived Klebsiella strains, this gene can be transferred with pLVPK-

like plasmids to MDR K. pneumoniae (especially serotype K47),
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TABLE 4 Characteristics of the included studies.

References Sampling
time

No.
positive/No.

testeda

Prevalence Mastitis
type

Country Population

densityb
Detection
methodsc

Klebsiella
speciesd

Genotyping
methods

Gene
detectione

MDR
ratef

Munoz et al. (50) 2006.04 10/24 41.67% Clinical The

United States

36.39 — Kpn RAPD — —

Liu (51) 2008 1/120 0.83% Clinical China 153.8 Biochem Unknown

Species

— — 0/1

Botrel et al. (52) 2007.01–2008.03 17/1,770 0.96% Bothg France 119.5 Biochem Unknown

Species

— — —

Mekibib et al. (53) 2008.11–2009.04 5/161 3.11% Subclinical Ethiopia 117.9 Biochem Kpn — — —

Zanella et al. (54) 2006.01–2007.06 27/260 10.38% — Brazil 25.6 Biochem Kpn, Kox,

and Koz

— — —

Ahmed and

Shimamoto (48)

2008 31/99 31.31% — Egypt 104.7 Biochem and

Auto

Kpn and Kox — Drug

resistance

14/31

Guo (55) 2010 18/141 12.77% Both China 153.8 Biochem Unknown

Species

— — —

Kalmus et al. (56) 2007–2009 87/4,679 1.86% Both Estonia 31.26 Biochem Unknown

Species

— — —

Kamphuis et al. (28) 2011 4/140 2.86% Clinical The

Netherlands

509.3 Biochem Unknown

Species

— — —

Verbist et al. (31) 2008.05–2009.05 2/2,644 0.08% Clinical Belgium 384.2 Biochem Unknown

Species

— — —

Abera et al. (57) 2008.10–2009.05 1/48 2.08% — Ethiopia 117.9 — Unknown

Species

— — —

Ba and Li (58) 2011.07–2011.08 9/64 14.06% — China 153.8 Biochem Unknown

Species

— — 0/9

Haftu et al. (59) 2009.10–2010.05 11/174 6.32% Both Ethiopia 117.9 Biochem Kpn — — —

Liu (60) 2009.01–2009.12 3/50 6.00% Subclinical China 153.8 Biochem Unknown

Species

— — —

Wang et al. (61) 2011.03–2011.04 3/76 3.95% Subclinical China 153.8 Biochem Unknown

Species

— — —

Kateete et al. (62) 2010.02–2011.03 5/97 5.15% Clinical Uganda 235.8 Biochem Kox — — 2/5

Nam et al. (63) 2012.01–2012.11 107/2,041 5.24% — Korea 527.7 Biochem Unknown

Species

— — —

(Continued)

F
ro
n
tie

rs
in

V
e
te
rin

a
ry

S
c
ie
n
c
e

1
2

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fvets.2023.1143257
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


S
o
n
g
e
t
a
l.

1
0
.3
3
8
9
/fv

e
ts.2

0
2
3
.1
1
4
3
2
5
7

TABLE 4 (Continued)

References Sampling
time

No.
positive/No.

testeda

Prevalence Mastitis
type

Country Population

densityb
Detection
methodsc

Klebsiella
speciesd

Genotyping
methods

Gene
detectione

MDR
ratef

Thompson et al.

(64)

2007.06–2008.08 4/198 2.02% Clinical Canada 4.168 — Unknown

Species

— — —

Ramírez et al. (65) 2009.01–2010.12 104/7,954 1.31% Subclinical Colombia 46.21 Biochem Unknown

Species

— — —

Supre et al. (66) 2012.09–2013.09 110/27,463 0.40% — Belgium 384.2 Biochem Unknown

Species

— — 0/59

Timofte et al. (67) 2010 3/17 17.65% Clinical The United

Kingdom

281.9 Auto Kpn — Drug

resistance

3/3

Fuenzalida et al.

(68)

2011.05–2013.11 11/279 3.94% Clinical The

United States

36.39 Biochem Unknown

Species

— — —

Langoni et al. (69) 2013 6/4,268 0.14% — Brazil 25.6 16S rDNA Kpn — — —

Sudarwanto et al.

(43)

2011.11–2011.12 7/80 8.75% — Indonesia 152.6 — Kpn PFGE Drug

resistance

8/8

Xie et al. (70) 2013 35/593 5.90% — China 153.8 Biochem Kox — — —

Koovapra et al. (34) 2016 154/340 45.29% Both India 468.7 — Unknown

Species

— Drug

resistance

23/291

Levison et al. (71) 2011.04–2012.05 18/936 1.92% Clinical Canada 4.168 Biochem Unknown

Species

— — —

Rodríguez (72) 2015.09–2015.12 46/142 32.39% — Peru 26.06 — Unknown

Species

— — —

Diab et al. (49) 2015.09–2015.11 35/154 22.73% — Lebanon 661.7 MALDI-TOF Kpn PFGE Drug

resistance

36/36

Gao et al. (73) 2014.03–2016.09 426/3,288 12.96% Clinical China 153.8 Biochem, 16S

rDNA, and

Auto

Unknown

Species

— — —

He et al. (45) 2015 2/65 3.08% Clinical China 153.8 MALDI-TOF Kpn PFGE Drug

resistance

2/2

Schabauer et al. (74) 2015.10–2016.09 11/3,020 0.36% — Austria 109.7 16S rDNA Kpn — — —

Suleiman et al. (75) 2014.01–2014.07 79/1,648 4.79% Subclinical Tanzania 69.43 Biochem Unknown

Species

— — —

Tomazi et al. (76) 2014.03–2016.01 110/4,212 2.61% Clinical Brazil 25.6 Biochem Unknown

Species

— — —

Wang (77) 2017.04 13/57 22.81% Clinical China 153.8 Biochem Kpn — — —

(Continued)
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TABLE 4 (Continued)

References Sampling
time

No.
positive/No.

testeda

Prevalence Mastitis
type

Country Population

densityb
Detection
methodsc

Klebsiella
speciesd

Genotyping
methods

Gene
detectione

MDR
ratef

Bach et al. (78) 2017.02–2017.05 6/396 1.52% — The

United States

36.39 Biochem Unknown

Species

— — —

Feng et al. (79) 2017 32/200 16.00% Clinical China 153.8 16S rDNA Unknown

Species

— — 17/32

Hozyen et al. (80) 2017.09–2017.12 7/24 29.17% Clinical Egypt 104.7 Biochem Kpn — — —

Salauddin et al. (36) 2019 30/48 62.50% Clinical Bangladesh 1278 Biochem Unknown

Species

— — 30/30

Zhou et al. (81) 2018.06 13/50 26.00% Subclinical China 153.8 Biochem and

16S rDNA

Kpn — — —

Fuenzalida and

Ruegg (82)

2016.06–2016.12 54/168 32.14% Clinical The

United States

36.39 — Kpn PFGE — —

Griffioen et al. (29) 2017.05–2018.07 1/163 0.61% Clinical The

Netherlands

509.3 MALDI-TOF Kpn — — —

Jiang et al. (83) 2019.06–2019.10 2/31 6.45% Clinical China 153.8 16S rDNA Kpn — — 2/2

Abboud et al. (84) 2019.03–2019.04 1/90 1.11% — Lebanon 661.7 MALDI-TOF Kox — — 0/1

Cheng et al. (85) 2019 206/916 22.49% Both China 153.8 Biochem and

16S rDNA

Kpn — Virulence —

Chung et al. (86) 2020.04–2020.09 1/234 0.43% Both Australia 3.357 MALDI-TOF Kpn — — —

Deng et al. (87) 2019.09–2019.12 51/140 36.43% Clinical China 153.8 16S rDNA and

Auto

Kpn — Virulence 51/130

Duse et al. (88) 2013.08–2018.12 22/755 2.91% Clinical Sweden 24.76 MALDI-TOF Unknown

Species

— — 0/22

Enferad and

Mahdavi (35)

2018.04–2018.10 80/200 40.00% — Iran 52.21 Biochem Kpn — Drug

resistance

56/80

Fréchette et al. (89) 2018–2019 56/1,144 4.90% Clinical Canada 4.168 MALDI-TOF Unknown

Species

— — —

Nobrega et al. (90) 2009.12–2011.07 28/1,547 1.81% — Brazil 25.6 Biochem Kpn — Drug

resistance

13/81

Taniguchi et al. (8) 2016.08–2017.07 197/1,549 12.72% — Japan 345.8 MALDI-TOF Kpn and Kox RAPD Drug

resistance

22/197

Tsuka et al. (91) 2012.10–2014.12 97/1,466 6.62% Clinical Japan 345.8 Auto Kpn PFGE Drug

resistance

—

(Continued)
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leading to the emergence of carbapenem-resistant hypervirulent K.

pneumoniae (CR-hvKP), which has become a more troublesome

pathogen of nosocomial infections than MDR KP and hvKP in

recent years (99). A study included in our meta-analysis showed

that K47 serotype K. pneumoniae had been detected in milk

samples from Jiangsu, China (92). Therefore, it is necessary to

strengthen the monitoring of the genetic evolution of milk-derived

Klebsiella to prevent the emergence and spread of CR-hvKP in

dairy herds.

The advantages of this meta-analysis are its wide geographical

coverage, long time span and clear analysis methods, but we have

to acknowledge that this study has some limitations. First, the

55 articles in this study were derived from six large databases

(three English databases and three Chinese databases), which may

have led to the omission of eligible articles from other databases.

Due to the constraints of the databases, the majority of the

selected articles were in English or Chinese, with only two in

other languages (Korean and Spanish), which may have resulted

in studies in other languages being omitted. Possibly due to the

language, the studies we have included only covered 25 countries.

In addition to one case of K. ozaenae, only six studies reported

Klebsiella mastitis caused by K. oxytoca with a relatively small

sample which may have led to small sample size bias. About half of

the included studies did not identify specific Klebsiella species, so

this meta-analysis mainly focused on Klebsiella spp. in dairy milk

of cattle with mastitis. Moreover, data was unevenly distributed

across countries due to the factors such as research conditions,

government attention and trade protection. Unfortunately, we

did not find data applicable to this meta-analysis for large milk

producing countries such as Russia or New Zealand. However,

it is certain that the data cover the characteristics of most dairy

farming regions worldwide and can reflect the global distribution

and variation trends of Klebsiella in milk samples. Second, bovine

mastitis generally occurs in multiparous cows (100), but we were

unable to extract available data on the parity of cows to find its

correlation with the positive rate of Klebsiella in milk samples.

Third, among the studies collected in this meta-analysis, pathogen

identificationmethods for milk samples included biochemical tests,

16S rDNA identification, MALDI-TOFMS, and automatic analysis

systems that were widely adopted to identify the pathogen of the

milk samples. It is generally accepted that MALDI-TOF MS or

automatic analysis systems are considered to have a lower detection

error than conventional biochemical tests (101). Reports from

developed economies typically involve 2–3 laboratory tests that

provide accurate calibration of pathogen incidence inmilk samples.

In some developing countries, however, only biochemical tests are

usually available, which is likely to result in a small number of

missed cases. Therefore, we need to prepare for the worsening

outbreaks of Klebsiella in dairy herds in some developing countries,

and call on local authorities to put more effective measures

in place.

Conclusions

This meta-analysis revealed that the prevalence of Klebsiella-

positivemilk samples andMDRKlebsiella spp. are highly correlated

with the economic development level and population density of
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TABLE 5 Estimated pooled prevalence of Klebsiella-positive milk samples by country.

Country Klebsiella species∗

(No. studies)
Continent No.

tested
No.

positive
Positive

percentage
95% CI

Australia Kpn (1); Unknown Species (1) Oceania 2,806 21 0.67% 0.38–1.03%

Austria Kpn (1) Europe 3,020 11 0.36% 0.18–0.62%

Bangladesh Unknown Species (1) Asia 48 30 62.50% 48.27–75.75%

Belgium Unknown Species (2) Europe 30,107 112 0.22% 0.02–0.64%

Brazil Kpn (3); Kox (1); Koz (1) South America 10,287 171 2.56% 0.56–5.89%

Canada Unknown Species (3) North America 2,278 78 2.90% 1.14–5.39%

China Kpn (7); Kox (1); Unknown Species (7) Asia 6,648 873 11.67% 8.00–15.89%

Colombia Unknown Species (1) South America 7,954 104 1.31% 1.07–1.57%

Egypt Kpn (2); Kox (1) Africa 123 38 30.72% 22.70–39.33%

Estonia Unknown Species (1) Europe 4,679 87 1.86% 1.49–2.27%

Ethiopia Kpn (2); Unknown Species (1) Africa 383 17 4.13% 2.12–6.68%

France Unknown Species (1) Europe 1,770 17 0.96% 0.55–1.47%

India Unknown Species (1) Asia 340 154 45.29% 40.03–50.61%

Indonesia Kpn (1) Asia 80 7 8.75% 3.39–16.08%

Iran Kpn (1) Asia 200 80 40.00% 33.30–46.89%

Japan Kpn (2); Kox (1) Asia 3,015 294 9.45% 4.35–16.24%

Korea Unknown Species (1) Asia 2,041 107 5.24% 4.32–6.25%

Lebanon Kpn (1); Kox (1) Asia 244 36 9.22% 0.00–39.36%

Peru Unknown Species (1) South America 142 46 32.39% 24.92–40.34%

Sweden Unknown Species (1) Europe 755 22 2.91% 1.82–4.25%

Tanzania Unknown Species (1) Africa 1,648 79 4.79% 3.81–5.88%

The Netherlands Kpn (1); Unknown Species (1) Europe 303 5 1.52% 0.04–4.41%

The

United Kingdom

Kpn (1) Europe 17 3 17.65% 2.57–39.97%

The United States Kpn (2); Unknown Species (2) North America 867 81 14.61% 1.94–35.23%

Uganda Kox (1) Africa 97 5 5.15% 1.48–10.61%

Total — — 79,852 2,478 7.95% 6.07–10.06%

∗Klebsiella species: Kpn, Klebsiella pneumoniae; Kox, Klebsiella oxytoca; Koz, Klebsiella ozaenae.

the country or region. These two factors are often prerequisites

for banning AGPs and enforcing environmental management. The

milk-derivedMDR strains fromAsia and theMediterranean region

suggest that these strains may have the potential for interspecies

transmission between humans and dairy cows, and that MDR

strains in Chinese dairy herdsmay evolve into CR-hvKP. Ourmeta-

analysis provides a reference for the prevention and treatment of

bacterial mastitis in dairy cows and the blocking of the global

transmission of zoonotic pathogens.
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