
TYPE Original Research
PUBLISHED 21 March 2023
DOI 10.3389/fvets.2023.1143986

OPEN ACCESS

EDITED BY

Tommaso Banzato,
University of Padua, Italy

REVIEWED BY

Takehiko Kakizaki,
Kitasato University, Japan
Silvia Burti,
University of Padua, Italy

*CORRESPONDENCE

Cecilia Marie Futsaether
cecilia.futsaether@nmbu.no

†PRESENT ADDRESS

Åste Søvik,
Under Pelsen AS, Ås, Norway

SPECIALTY SECTION

This article was submitted to
Veterinary Imaging,
a section of the journal
Frontiers in Veterinary Science

RECEIVED 13 January 2023
ACCEPTED 01 March 2023
PUBLISHED 21 March 2023

CITATION

Groendahl AR, Huynh BN, Tomic O, Søvik Å,
Dale E, Malinen E, Skogmo HK and
Futsaether CM (2023) Automatic gross tumor
segmentation of canine head and neck cancer
using deep learning and cross-species transfer
learning. Front. Vet. Sci. 10:1143986.
doi: 10.3389/fvets.2023.1143986

COPYRIGHT

© 2023 Groendahl, Huynh, Tomic, Søvik, Dale,
Malinen, Skogmo and Futsaether. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted which
does not comply with these terms.

Automatic gross tumor
segmentation of canine head and
neck cancer using deep learning
and cross-species transfer
learning

Aurora Rosvoll Groendahl1, Bao Ngoc Huynh1, Oliver Tomic2,
Åste Søvik3†, Einar Dale4, Eirik Malinen5,6, Hege Kippenes Skogmo3

and Cecilia Marie Futsaether1*
1Faculty of Science and Technology, Department of Physics, Norwegian University of Life Sciences, Ås,
Norway, 2Faculty of Science and Technology, Department of Data Science, Norwegian University of Life
Sciences, Ås, Norway, 3Faculty of Veterinary Medicine, Department of Companion Animal Clinical
Sciences, Norwegian University of Life Sciences, Ås, Norway, 4Department of Oncology, Oslo University
Hospital, Oslo, Norway, 5Department of Physics, University of Oslo, Oslo, Norway, 6Department of
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Background: Radiotherapy (RT) is increasingly being used on dogs with
spontaneous head and neck cancer (HNC), which account for a large percentage
of veterinary patients treated with RT. Accurate definition of the gross tumor
volume (GTV) is a vital part of RT planning, ensuring adequate dose coverage of
the tumor while limiting the radiation dose to surrounding tissues. Currently the
GTV is contoured manually in medical images, which is a time-consuming and
challenging task.

Purpose: The purpose of this study was to evaluate the applicability of deep
learning-based automatic segmentation of the GTV in canine patients with HNC.

Materials andmethods: Contrast-enhanced computed tomography (CT) images
and corresponding manual GTV contours of 36 canine HNC patients and 197
human HNC patients were included. A 3D U-Net convolutional neural network
(CNN) was trained to automatically segment the GTV in canine patients using
two main approaches: (i) training models from scratch based solely on canine
CT images, and (ii) using cross-species transfer learning where models were
pretrained on CT images of human patients and then fine-tuned on CT images of
canine patients. For the canine patients, automatic segmentations were assessed
using the Dice similarity coe�cient (Dice), the positive predictive value, the
true positive rate, and surface distance metrics, calculated from a four-fold
cross-validation strategy where each fold was used as a validation set and test
set once in independent model runs.

Results: CNN models trained from scratch on canine data or by using transfer
learning obtained mean test set Dice scores of 0.55 and 0.52, respectively,
indicating acceptable auto-segmentations, similar to themeanDice performances
reported for CT-based automatic segmentation in human HNC studies. Automatic
segmentation of nasal cavity tumors appeared particularly promising, resulting in
mean test set Dice scores of 0.69 for both approaches.

Conclusion: In conclusion, deep learning-based automatic segmentation of
the GTV using CNN models based on canine data only or a cross-species
transfer learning approach shows promise for future application in RT of canine
HNC patients.
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1. Introduction

Head and neck cancer (HNC) is a heterogeneous group of
malignant neoplasms originating from the different anatomical
sites of the upper aerodigestive tract (1) and is relatively frequent
in both humans and dogs. For humans, HNC is the seventh leading
cancer by incidence worldwide (2), of which 90 % are squamous cell
carcinomas (SCCs) of the oral cavity, oropharynx, hypopharynx,
and larynx (3). The incidence rate of HNC in dogs is similar to that
of humans, but canine HNC patients present a greater variety of
cancer subtypes and SCCs are less predominant than in humans (4–
6). For the same cancer subtypes, however, dogs with spontaneous
tumors have been used as a comparative species in cancer research,
taking advantage of the relative similarity of tumor biology and
anatomic size between human and canine patients (7–9).

In humans, the main curative treatment modalities for HNC
are surgery, radiotherapy (RT), chemotherapy, or a combination of
these. Treatment decisions are typically based on primary tumor
site and stage. However, most human HNC patients receive RT as
an integral part of treatment (1). At present, the most frequently
used RT technique for HNC in humans is intensity-modulated RT
(IMRT) (1). IMRT is a high-precision technique, offering highly
conformal radiation doses to the target and improved sparing of
surrounding critical normal tissue structures, known as organs
at risk (OARs), compared to conventional and three-dimensional
(3D) conformal RT (10–12). These advantages are highly relevant
for the treatment of HNC due to the complex anatomy of the
head and neck region with immediate proximity between irradiated
target volumes (TVs) and OARs.

In dogs, surgery is the primary treatment for most HNCs, but
RT is indicated as the primary treatment for sinonasal tumors
where full surgical resection is challenging (4, 13, 14). Multimodal
treatment with surgery, RT and chemotherapy may also be
considered for canine HNC patients, particularly for cancers with
significant risk of metastatic spread (13). Though veterinary RT
facilities are small in size and number compared to human facilities,
RT has increasingly become available for veterinary patients (15).
Tumors of the head and neck in dogs and cats account for a
large percentage of the neoplasms treated with RT in veterinary
patients (15, 16). Recently, more precise RT techniques such as
image guided RT and IMRT have also been used for many patients
in veterinary medicine (14, 17).

Accurate definition of TVs and OARs is required for successful
high precision RT (18), regardless of species. Tumor and/or
organ volume contours can also be required for extraction of
quantitative image-based features used in radiomics studies (19),
where the primary aim is to identify imaging biomarkers. In clinical
practice, TV and OAR definition is typically performed manually
by clinical experts who contour the given structures on axial
anatomical images, usually RT planning computed tomography
(CT) images, using functional images as support if available.
Manual contouring is, however, inherently subject to intra-
and interobserver variability, introducing significant geometric
uncertainties in RT planning and delivery (18). Inaccurate contour
definitions can severely affect treatment outcome, potentially
leading to underdosing of TVs and associated increased risk
of locoregional failure or too high dose to normal tissues and

subsequent increased RT toxicity (20–22). Furthermore, manual
contouring is time and labor-intensive, particularly for HNC where
the complexity and number of structures are considerable (23).

Recognizing the limitations of manual contouring, various
automatic segmentation (auto-segmentation) methods and their
potential application in the RT planning workflow have received
significant attention. Over the past decade, deep learning methods
have rapidly gained a central position within medical image
analysis, particularly for semantic segmentation tasks such as
contouring of RT structures. Many studies have shown that deep
learning with convolutional neural networks (CNNs) can provide
highly accurate auto-segmentations in human subjects, surpassing
alternative segmentation methods (24–30). Moreover, the use of
CNNs to guide manual contouring can decrease both contouring
time and interobserver variability (31, 32). Several studies have
evaluated the use of CNNs for segmentation of the gross tumor
volume (GTV) or OARs in human HNC subjects, achieving high-
quality segmentations based on RT planning CT, positron emission
tomography (PET) and/or magnetic resonance (MR) images (29–
31, 33–41). Even though there is increased focus on various deep
learning applications in veterinary medicine, as exemplified by
(42–46), few studies have evaluated the use of CNNs for semantic
segmentation tasks in veterinary patients (47–49). Only two studies
(48, 49) have focused on RT structures. Park et al. (48) used CNNs
to contour various OARs in canine HNC patients (n = 90) based
on CT images, obtaining similar segmentation performance as
reported for humans, whereas Schmid et al. (49) applied CNNs to
contour the medial retropharyngeal lymph nodes in CT images of
canine HNC patients (n = 40) obtaining acceptable performance.
Auto-segmentation of the GTV or any other TV has, to the best of
our knowledge, not previously been explored for veterinary patients
including dogs. Given the increased use of RT for canine HNC
patients, it is highly warranted to investigate the applicability of
automatic GTV segmentation in this group of patients.

One challenge for machine learning (in general) and deep
learning (in particular) in the medical domain is that the number
of available samples is often limited. Supervised CNN algorithms
generally require large, labeled training sets. As the contouring
process is laborious and must be done by a clinical expert to
ensure satisfactory contour quality, it might not be feasible to label
numerous images if this is not done prospectively at the time of
treatment. Moreover, in the case of relatively rare diseases the
number of available subjects will be low. Transfer learning has been
proposed as a strategy to tackle limited training data (50).

The essence of transfer learning is to apply knowledge gained
from solving one problem, referred to as the source problem, to
solving a novel, separate problem, referred to as the target problem
(50, 51). This approach has also been applied to deep learning-
based medical segmentation tasks [for a summary, see (52)]. In
veterinary science, transfer learning has been used successfully
to segment acutely injured lungs in a limited number of CT
images of dogs, pigs and sheep using a CNN model pretrained
on a larger number of CT images of humans (47). These findings
suggest that cross-species transfer learning from humans to dogs
could potentially be used to increase the performance of other
segmentation tasks such as GTV segmentation, particularly when
the number of canine subjects is low (50).
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The objective of the present study was to evaluate the
applicability of CNNs for fully automatic segmentation of the GTV
in canine HNC based on CT images. In addition, the impact of
transfer learning from a larger cohort of human HNC patients
on auto-segmentation performance was investigated. Two main
approaches to model training were assessed: (i) training CNN
models from scratch based solely on CT images of canine patients
(n = 36), and (ii) using a transfer learning approach where CNN
models were pretrained on CT images of humanHNCpatients (n=
197) and subsequently fine-tuned on CT images of canine patients.
These two approaches were compared to a reference approach (iii)
where CNN models trained solely on human data were applied
directly to canine data, without transfer learning.

2. Materials and methods

In the present work, two different datasets consisting of
contrast-enhanced CT images of canine and human patients,
referred to as the canine and human datasets, respectively, were
used to train CNN auto-segmentation models. Characteristics of
the patients in the canine and human datasets can be found in
Tables 1, 2, respectively. CT imaging and reconstruction parameters
are summarized in Table 3.

2.1. Patients and imaging

2.1.1. Canine dataset
The canine data was collected retrospectively by reviewing

the imaging database and the patient record system of the
University Animal Hospital at the Norwegian University of Life
Sciences (NMBU). Potential patients were identified by searching
the imaging database over the years 2004–2019, resulting in
1,304 small animal cases that were reviewed using the following
inclusion criteria: canine patients with confirmed malignant
neoplasia of the head or cervical region with a complete imaging
examination including contrast-enhanced CT. A total of 36
canine cases met these criteria and were included in the canine
HNC dataset. As these data were generated as part of routine
patient workup, approval from the animal welfare committee
was not required. Baseline CT imaging was performed pre
and 1min post intravenous contrast administration, using a GE
BrightSpeed S CT scanner (GE Healthcare, Chicago, Illinois,
USA). The animals were scanned in sternal recumbency under
general anesthesia.

2.1.2. Human dataset
The human data used in this study was obtained from

a retrospective study of HNC patients with SCC of the oral
cavity, oropharynx, hypopharynx, and larynx, treated with
curative radio(chemo)therapy at Oslo University Hospital
between 2007 and 2013 (53). The study was approved by
the Regional Ethics Committee and the Institutional Review
Board. 18F-fluorodeoxyglucose (FDG) PET/CT imaging was
performed at baseline on a Siemens Biograph 16 (Siemens
Healthineers GmbH, Erlangen, Germany) with a RT compatible

flat table and RT fixation mask. Only the RT planning
contrast-enhanced CT images were included in our present
work and patients who did not receive contrast agent were
excluded from the analysis, resulting in a dataset of 197
patients. This set of patients has previously been described
and analyzed in two separate auto-segmentation studies
(29, 34). Further details on the imaging protocol can be found
in (29).

2.2. Manual GTV contouring

Manual GTV contours were used as the ground truth for
training and evaluation of auto-segmentation models. For both
datasets, manual contouring was performed in axial image slices
and the GTV was defined to encompass the gross primary
tumor volume (GTV-T) and any involved nodal volume (GTV-N)
if present.

For the human patients, manual GTV contouring was done
prospectively in the treatment planning system at the time of initial
RT planning and in accordance with the previous DAHANCA
Radiotherapy Guidelines (54). The manual contouring was based
on both FDG PET and contrast-enhanced CT images. First, the
GTV was contoured by an experienced nuclear medicine physician
based on FDG PET findings. Next, one or two oncology residents
refined the delineations based on contrast-enhanced CT images and
clinical information. Finally, the delineations were quality assured
by a senior oncologist.

Contouring of the canine GTVs was performed retrospectively
by a board-certified veterinary radiologist (H.K.S.) with radiation
oncology residency training. Contours were defined based solely on
contrast-enhanced CT images using the 3D Slicer software (https://
www.slicer.org) (55). The resulting delineations were smoothed in
3D Slicer using an in-plane median filter (5 × 5 kernel) before
further image pre-processing. This was done to minimize the
differences between the canine GTVs and the human GTVs, as
the latter were smoothed by default in the hospital treatment
planning system.

2.3. Image pre-processing

All CT images and corresponding manual GTV delineations
were resampled to an isotropic voxel size of 1.0× 1.0× 1.0 mm3 to
achieve a consistent voxel size and retain the actual anatomical size
ratio between patients/species. Details regarding the resampling of
the human HNC dataset can be found in (29). All other image
pre-processing was performed using Python and SimpleITK (56).

The images of the human dataset were first cropped to a
volume of interest (VOI) of size 191 × 265 × 173 mm3, defined
to encompass the head and neck region. Subsequently, the canine
images were cropped and/or padded symmetrically about each axis
to obtain the same image dimensions as the above VOI while
keeping the patient in the center of each 3D image stack. If padding
was applied, added voxels were given a value corresponding
to background/air.
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TABLE 1 Patient characteristics of the canine dataset.

Characteristicsa All patients
(n = 36)

Fold 1
(n = 9)

Fold 2
(n = 9)

Fold 3
(n = 9)

Fold 4
(n = 9)

Age (years)

Mean (range) 7.7 (1.1–13.6) 8.3 (4.6–13.6) 7.9 (1.1–11.1) 8.2 (4.4–10.1) 6.2 (2.0–10.0)

Sex

Female 13 (36 %) 2 (22 %) 4 (44 %) 4 (44 %) 3 (33 %)

Male 23 (64 %) 7 (78 %) 5 (56 %) 5 (55 %) 6 (67 %)

Weight (kg)

Mean (range) 32.1 (8.2–74.5) 26.9 (13.0–38.9) 35.3 (8.8–74.5) 30.9 (8.2–45.4) 35.4 (14.8–52.0)

Tumor site

Oral cavity 5 (14 %) 3 (33 %) 1 (11 %) 0 (0 %) 1 (11 %)

Nasal cavity 14 (39 %) 2 (22 %) 5 (56 %) 5 (56 %) 2 (22 %)

Nasopharynx 1 (3 %) 0 (0 %) 0 (0 %) 0 (0 %) 1 (11 %)

Other 16 (44 %) 4 (44 %) 3 (33 %) 4 (44 %) 5 (56 %)

Nodal status

Node involvement 4 (11 %) 2 (22 %) 1 (11 %) 1 (11 %) 0 (0 %)

GTV-T (cm3)

Mean (range) 69.7 (4.5–358.7) 50.0 (8.8–123.9) 57.0 (4.5–195.0) 48.3 (8.5–91.5) 123.4 (12.4–358.7)

GTV-N (cm3)

Mean (range) 9.8 (0.002–38.1) 0.5 (0.03–1.1) 38.1 (NA) 0.002 (NA) NA (NA)

aPercentages may not sum to exactly 100 due to rounding.
GTV-T, gross primary tumor volume; GTV-N, involved nodal volume (for patients with node involvement); NA, not applicable.

2.4. Deep learning architecture and model
training

Canine auto-segmentations were obtained using two main
approaches, namely (i) by training CNNmodels from scratch based
on the canine dataset only, and (ii) a transfer learning approach
where CNN models were pretrained on the human dataset and
subsequently fine-tuned on the canine dataset. As a comparison
to the above approaches, the CNN models trained on the human
dataset only were evaluated directly on the canine dataset (i.e.,
without transfer learning). A schematic overview of the analysis is
given in Figure 1. Note that all CNN models were based only on
contrast-enhanced CT images, as no PET images had been acquired
for the canine patients.

A 3D U-Net CNN architecture (57) with the Dice loss
function (58) was used throughout this study. All models were
trained using the Adam optimizer with an initial learning rate
of 10−4 (59). Further details about the CNN architecture are
outlined in Figure 1C. Experiments were run on the Orion High
Performance Computing resource at NMBU using deoxys, our
in-house developed Python framework for running deep learning
experiments with emphasis on TV auto-segmentation (https://
deoxys.readthedocs.io/en/latest/).

We assessed the impact of varying the following: (1) the
complexity of the U-Net architecture, (2) the CT window settings
of the input images, and (3) the training set image augmentation
configurations. First, for the models trained from scratch on

canine data, different U-Net complexities were assessed using
network depths of 3, 4 and 5 with a corresponding number of
filters in the first network layer of 32, 64 and 64. Second, we
explored using CT window settings with a window center equal
to the median Hounsfield unit (HU) value within the ground
truth GTV voxels of the relevant training data (human training
set: 65 HU; canine training sets: 93 HU (folds 1 and 2) and
96 HU (folds 3 and 4)) and a window width of either 200 HU
or 400 HU. CNN models were trained using either one single
input channel with windowed CT images, two separate input
channels consisting of CT images with and without windowing,
or three input channels where two were with different window
settings according to the canine and human training data, and
the third channel consisted of CT images without windowing.
Third, the following image augmentation configurations were
evaluated: no image augmentation, image augmentation in the
form of 3D rotation, zooming, and flipping, or 3D elastic
deformations. Code for running the experiments, including the
above image augmentation schemes, is available at https://github.
com/argrondahl/canine.

To train models and evaluate model performance, the datasets
were divided as follows: patients in the human dataset were split
into a training (n = 126), validation (n = 31) and test (n = 40) set
(Figure 1A) using randomly stratified sampling to obtain similar
primary tumor stage distributions in each set (cf. Table 2; staging
according to the 7th edition AJCC/UICC tumor-node-metastasis
system). Patients in the canine dataset were randomly divided into
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TABLE 2 Patient characteristics of the human dataset.

Characteristica All patients
(n = 197)

Training set
(n = 126)

Validation set
(n = 31)

Test set
(n = 40)

Age (years)

Mean (range) 60.3 (39.9–79.1) 60.5 (39.9–78.9) 60.7 (48.4–79.1) 59.4 (43.0–77.0)

Sex

Female 49 (25 %) 28 (22 %) 10 (32 %) 11 (28 %)

Male 148 (75 %) 98 (78 %) 21 (68 %) 29 (72 %)

Tumor stageb

T1/T2 96 (49 %) 61 (48 %) 15 (48 %) 20 (50 %)

T3/T4 101 (51 %) 65 (52 %) 16 (52 %) 20 (50 %)

Nodal stageb

N0 47 (24 %) 29 (23 %) 8 (26 %) 10 (25 %)

N1 23 (12 %) 15 (12 %) 4 (13 %) 4 (10 %)

N2 120 (61 %) 78 (62 %) 17 (55 %) 25 (62 %)

N3 7 (4 %) 4 (3 %) 2 (6 %) 1 (3 %)

Tumor site

Oral cavity 17 (9 %) 10 (8 %) 4 (13 %) 3 (7 %)

Oropharynx 143 (73 %) 91 (72 %) 22 (71 %) 30 (75 %)

Hypopharynx 16 (8 %) 12 (10 %) 3 (10 %) 1 (3 %)

Larynx 21 (11 %) 13 (10 %) 2 (6 %) 6 (15 %)

GTV-T (cm3)

Mean (range) 25.0 (0.8–285.0) 26.0 (0.8–285.0) 21.8 (0.8–78.2) 24.3 (1.4–157.6)

GTV-N (cm3)

Mean (range) 24.3 (0.5–276.7) 27.5 (0.5–276.7) 17.7 (0.9–77.8) 19.5 (0.5–76.4)

aPercentages may not sum to exactly 100 due to rounding.
bStaging according to the 7th edition AJCC/UICC tumor-node-metastasis system.
GTV-T, gross primary tumor volume; GTV-N, involved nodal volume (for patients with nodal stage ≥ N1).

four equally sized folds (n = 9). Following the cross-validation
and test set evaluation strategy outlined in Figure 1B, each of these
folds was used twice for model training (cyan), once as a validation
set (orange) and once as a test set (purple). With this strategy,
each canine model configuration was trained four times, and each
patient was twice in the training set, once in the validation set and
once in the test set. Thus, the validation and test set performances
could be calculated for each of the 36 patients. This procedure
was chosen to acquire a robust estimate of the auto-segmentation
performance despite a limited number of canine patients, taking
individual differences across patients into account and making the
validation and test set performances less dependent on how the data
was split.

Most models were trained for 100 epochs, savingmodel weights
(checkpointing) to disc every epoch. However, for the pretraining
of models on human data, early stopping with patience 30 (i.e.,
stop training if validation loss does not improve for 30 consecutive
epochs) was used to avoid overfitting to the source domain.
For continued training (fine-tuning) of pretrained models, we
compared initializing the Adam optimizer with an initial epoch set
to 50 vs. 100. After training of one model, the optimal epoch was

identified as the epoch maximizing the mean per patient Sørensen-
Dice similarity coefficient (60, 61) (Dice; cf. Section 2.5 below) on
validation data.

2.5. Performance evaluation

The quality of the CNN-generated auto-segmentations were
first assessed using Dice (60, 61), which is a volumetric overlap
metric quantifying the degree of spatial overlap between the set of
voxels in the ground truth G and the predicted auto-segmentation
P (Figure 1D). Dice is defined as:

Dice =
2 |P ∩ G|

|P| + |G|
=

2TP

2TP + FP + FN
, (1)

where TP, FP and FN refer to the true positive, false positive, and
false negative voxels, respectively. Dice ranges from 0 to 1, where
0 corresponds to no overlap and 1 corresponds to perfect overlap
between the sets. Based on theDice performances on validation and
test data, we selected onemodel trained from scratch on canine data
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TABLE 3 CT imaging and reconstruction parameters.

Human dataset (n = 197)

Scanner Siemens Biograph 16, Siemens
Healthineers GmbH, Erlangen,
Germany

Scan mode Helical (rotation time 0.5 s, pitch 0.75)

Peak tube voltage 120 kV

Reconstructed slice thickness 2.00 mm

Reconstruction kernel B30f/B30s

Matrix size 512× 512

Pixel size 0.98× 0.98 mm2 (n= 161)

1.37× 1. 37 mm2 (n= 30)

0.89× 0.89 mm2 (n= 2)

0.96× 0.96 mm2 (n= 1)

0.92× 0.92 mm2 (n = 1)

0.88× 0.88 mm2 (n= 1)

0.82× 0.82 mm2 (n= 1)

Contrast agent Visipaque 320mg iodine/ml

Canine dataset (n = 36)

Scanner GE BrightSpeed S, GE Healthcare,
Chicago, Illinois, USA

Scan mode Helical (rotation time 1.0 s, pitch 0.75)

Peak tube voltage 120 kV

Reconstructed slice thickness 1.25mm (n= 3)

2.00mm (n= 3)

2.50mm (n= 24)

3.00mm (n= 4)

3.75mm (n= 2)

Reconstruction kernel Standard

Matrix size 512× 512

Pixel size (range) 0.22× 0.22 mm2 – 0.49× 0.49 mm2

Contrast agent Omnipaque 300mg iodine/ml

and one model trained with transfer learning for more in-depth
performance evaluation and comparison.

As Dice does not separate between FP and FN voxels
and is known to be volume-dependent, the auto-segmentation
performance of the two selected models were further assessed using
the positive predictive value (PPV), the true positive rate (TPR),
the 95th percentile Hausdorff distance (HD95) (62) and the average
surface distance (ASD) (63).

PPV and TPR, commonly also referred to as precision and
recall, are defined as:

PPV =
TP

TP + FP
, (2)

and

TPR =
TP

TP + FN
. (3)

As seen from Equations (2) and (3), PPV is the fraction of the
predicted auto-segmentation P that overlaps with G, while TPR

is the fraction of the ground truth G that overlaps with P. In the
context of TVs used for RT, PPV measures the degree of avoiding
inclusion of normal tissue voxels in the auto-segmentation, while
TPRmeasures the degree of target coverage.

The distance metrics were calculated from the two sets of
directed Euclidian distances between the surface voxels of P and
G (set 1: all distances from P to G; set 2: all distances from G to P).
TheHD95 and ASD were then defined as the maximum value of the
95th percentiles and averages, respectively, of the above two sets of
surface distances. HD95 reflects the largest mismatch between the
surfaces of P and G, whereas ASD is used to quantify the typical
displacement between the two surfaces. These metrics should both
be as small as possible.

The above performance metrics were calculated per patient,
based on all voxels in the pre-defined 3D VOI (cf. Section
2.3). The Python deepmind library was used for calculation
of surface-distance-based metrics (https://github.com/deepmind/
surface-distance).

3. Results

The validation and test set Dice performances of canine models
trained with varying network complexity, CT window settings,
number of input channels, and image augmentation schemes are
summarized in Figure 2. Models trained from scratch (Figures 2A,
B) resulted in mean validation and test set Dice scores in the range
0.45–0.62 and 0.39–0.55, whereas models trained with transfer
learning (Figures 2C, D) resulted in validation and test set Dice
scores ranging from 0.52 to 0.57 and 0.46 to 0.52. In comparison,
when evaluated on human data the pretrained human-based
models resulted in mean validation and test set Dice scores of
0.46–0.55 and 0.48–0.54. Models trained on human data only and
evaluated directly on canine data resulted in unacceptably low
mean Dice test scores of 0.02–0.08, even though some models
achieved relatively high Dice scores for some patients (range of
maximum Dice per model: 0.16–0.67) (data not shown).

For models trained from scratch on canine data, the highest
mean validation Dice score (0.62) was observed for models S4
and S8 (Figure 2A), which both used one input channel with a
narrow CT window width (200 HU), standard image augmentation
(flipping, rotation, zooming) and a high model complexity (depth
of 4 and 5, respectively, and 64 filters in the first layer). On the other
hand, the less complexmodel S9 (depth of 3 and 32 filters in the first
layer), which was otherwise identical to models S4 and S8, showed
comparable mean validation Dice performance (0.60) and the
highest median Dice (0.72). Moreover, models S8 and S9 resulted
in similar overall test set Dice performances, whereas model S4 had
poorer performance on test data (Figure 2B). As model S9 was the
least complex and, therefore, the least resource-demanding to train,
while at the same time providing competitive Dice performance, it
was selected for further performance evaluation (Figure 3) and the
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FIGURE 1

Schematic overview of the analysis. The human (A) and canine (B) datasets consisted of CT images and corresponding manual GTV delineations
(green contours) cropped to a volume of interest of 191 × 265 × 173 mm3. The human dataset was divided into a training, validation, and test set,
whereas the canine dataset was divided into four folds used for model training and evaluation. (C) GTV auto-segmentations were generated using a
3D U-Net architecture with input image patches of size 112 × 112 × 112 mm3 [shown U-Net: depth of 3 (3 max pooling operations) and F filters in
the first convolutional layer]. Auto-segmentation models were trained on either human or canine data, where the model trained on human data was
further used for transfer learning (fine-tuning with canine data). (D) Model performances were first assessed using the Dice similarity coe�cient
[Dice; cf. Equation (1), Section 2.5], measuring the overlap between manual ground truth delineations (G) and predicted auto-segmentations (P). The
models with superior Dice characteristics were selected for further performance evaluation. CT, computed tomography; GTV, gross tumor volume;
Conv, Convolution; BN, Batch Normalization; ReLU, Rectified Linear Unit; Up-conv, Up-convolution.
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FIGURE 2

Combined box and swarm plots of per patient Dice scores for di�erent model configurations, showing each patient as a separate data point (black).
Top: (A) validation and (B) test results for models S1–S9 trained from scratch on canine data. Bottom: (C) validation and (D) test result for models
T1–T4 trained using the transfer learning approach. Model configurations (S1–S9 and T1–T4) are as follows: Model complexity given by U-Net depth
D and number of filters F in the first layer; CT window setting with window width W in HU; Image augmentation settings (Std aug: zooming, rotation
and flipping; Elastic aug: elastic deformation on a proportion (0.53 or 1.00) of the training set images); Number of input channels (chan), default 1
channel unless otherwise stated; Initial epoch setting S, either 50 or 100 epochs (transfer learning only). SD, standard deviation.

given complexity and CT window width was used for the transfer
learning experiments.

For the transfer learning models, the highest mean validation
Dice score (0.57) was observed for model T4 (Figure 2C; depth of
3 with 32 filters in the first layer, CT window width of 200 HU, 2

input channels with window center derived from (1) human and
(2) canine training data, standard image augmentation and initial
epoch set to 50). However, model T2, which included an additional
CT channel with no windowing, but was otherwise the same as
model T4, displayed the highest test set mean Dice (0.52) and a
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FIGURE 3

Combined box and swarm plots of per patient auto-segmentation performance metrics for the two selected models trained from scratch on canine
data (S9, Figures 2A, B) and trained using the transfer learning approach (T2, Figures 2C, D). Each patient is shown as a separate data point (black).
Performance metrics: (A) Dice similarity coe�cient (Dice), (B) positive predictive value (PPV), (C) true positive rate (TPR), (D) 95th percentile
Hausdor� distance (HD95), (E) average surface distance (ASD). The exact positioning of individual data points in (A) may di�er from the respective
plots in Figures 2B, D, due to randomness in the swarm plots. SD, standard deviation; IQR, interquartile range. One patient without any predicted
auto-segmentation was excluded from calculations of HD95 (D) and ASD (E).

favorable test set Dice interquartile range (Figure 2D), indicating a
moderately better ability to generalize to previously unseen data.

Thus, among the transfer learning models, model T2 was selected
for computation of additional performance metrics (Figure 3).
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The two selectedmodels (S9 and T2, Figure 2) generally showed
similar auto-segmentation performances on test data, as indicated
by the plots and summary statistics of Figure 3. For both models,
there was substantial inter-patient variation in the resulting auto-
segmentation quality. The model trained from scratch on canine
data resulted in the best mean performances for all included
metrics. In general, the canine-only model had larger tumor
coverage (higher mean and median TPR) but tended to include
more normal tissue (lower median PPV) than the transfer learning
model. The transfer learning model did, however, achieve the
highest per patient overlap with ground truth contours (maximum
Dice: 0.89) and the lowest per patient ASD (minimum ASD:
1.3mm). In addition, the transfer learning model resulted in a
higher number of very high-quality auto-segmentations (Dice ≥

0.85; n = 5) than themodel trained from scratch (n = 2). However,
the transfer learning model tended to perform the poorest on more
difficult-to-segment canine patients, as reflected by the poorer first
quartile Dice, TPR, PPV and HD95 values.

Example auto-segmentations are shown in Figures 4–6. In
general, the two selected models achieved the highest quality auto-
segmentations for patients with nasal cavity tumors, which was
the most frequently occurring tumor site in the canine dataset.
The canine-only and transfer learning models both achieved a
mean test set Dice of 0.69 for nasal cavity tumors, compared
to the corresponding Dice scores of 0.55 and 0.52 for all tumor
sites. As exemplified in Figure 4, tumor regions with relatively
homogeneous HU values within the ground truth were generally
easier to segment correctly. High quality auto-segmentations were
also seen for other tumor sites where the tumor was distinct
from the surrounding normal tissues and clearly affected the
anatomical shape/boundary of the animal (Figure 5). Peripheral
parts of the GTV were often more difficult to segment than
central parts (Figure 5; bottom row). In some cases, the auto-
segmentations included substantial normal tissue regions due to
over-estimation of the GTV boundaries or prediction of separate
smaller false positive structures. False positive structures and
inclusion of particularly brain and eye tissues in the predicted auto-
segmentation were more pronounced for the model trained only on
canine data (S9). An example is shown in Figure 6.

Both models resulted in poor auto-segmentations for patients
with atypical tumor sites, atypical GTV shapes and/or a substantial
number of image slices with atypical/very heterogeneous HU values
inside the ground truth GTV. Neither of the models was able to
successfully segment the smaller canine GTV-N structures. The
above patterns indicate that the auto-segmentation performance
was dependent on the number of representative canine training
samples, regardless of model training approach.

4. Discussion

This is the first study to evaluate deep learning-based auto-
segmentation of TVs for RT in veterinary patients. Although dogs
display breed-related variation in the head and neck anatomy and
size, which could potentially complicate the auto-segmentation
task, our results show that CNNs can provide high-quality GTV
auto-segmentations for this group of patients, despite a limited

number of training samples. Our two main approaches, namely
(i) CNN models trained from scratch on canine data or (ii)
CNN models pretrained on human HNC patients and fine-
tuned using canine patients (transfer learning), generally gave
similar results. In both cases the mean overlap with the expert
ground truth contours was similar to what is obtained for human
HNC patients.

Previous studies on human HNC subjects report mean
validation and/or test set Dice scores in the range of 0.31–0.66
for CNN-generated auto-segmentations of the GTV based on
CT images (29, 33, 34, 64). The relatively large variation in
reported performances is likely related to differences in image pre-
processing, such as CT window settings and VOI dimensions, the
composition of the datasets and/or CNN architecture. Of the above
studies, the highest mean Dice [0.66; cross-validation result (29)]
was obtained using a 2-dimensional (2D) U-Net architecture and
a considerably smaller pre-defined VOI than in our present work.
Moe et al. (34) obtained a mean test set Dice of 0.56 using the
same 2D U-Net architecture on larger image VOIs encompassing
the entire head and neck region but excluding image slices without
any ground truth delineation. Both Groendahl et al. (29) and Moe
et al. (34) used the same single-center HNC patients as in our
present study. The lowest mean Dice scores [0.31 (33) and 0.49
(64)] were reported for auto-segmentation in multi-center patient
cohorts, which is generally more challenging than single-center
segmentation, using wider CT window widths. Both latter studies
used similarly sized image VOIs and 3D architectures, which are
generally superior to their 2D counterparts, as in or present work.
In comparison to the above human studies, our best-performing
canine models trained from scratch or with transfer learning, both
using a 3D U-Net architecture and a narrow CT window, resulted
in similar or higher mean validation (test)Dice scores of 0.62 (0.55)
and 0.57 (0.52), respectively, compared to the above studies. The
Dice performances of our CNN models were also comparable to
the reported Dice agreement (0.56–0.57) between clinical experts
performing manual GTV contouring in human HNC patients
based solely on CT images (65, 66).

Human cancer patients normally undergo several imaging
procedures as part of diagnosis and treatment planning. It is
also common to base contouring of the GTV on multimodal
image information. Thus, most of the recent studies on
GTV segmentation in human HNC patients investigate using
multimodality images as input to the network for increased
performance. As PET/CT imaging is becoming more common
in veterinary medicine (67), it is worth noting that all the above
human HNC studies reported significant increases (range: 12–129
%; median: 25 %) in mean Dice scores when using both FDG PET
and CT images as CNN model input. Similar improvements are
likely possible for canine patients, provided that the lesions are
comparably FDG PET avid. PET imaging is, however, not likely to
become widely available for veterinary patients in the near future.
A more realistic approach at present would be to investigate the
potential added benefit of including both pre and post contrast CT
images as input to CNN models trained from scratch on canine
data. In the present work, however, we chose to focus solely on
post contrast CT images as these images were also available for the
human patients.
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FIGURE 4

Manual ground truth and automatic deep learning generated gross tumor volume contours in four CT image slices from one canine test set patient
(nasal cavity tumor). (Left column) Manual ground truth contours (green). (Middle column) Auto-segmentation generated by model S9 (magenta;
model trained from scratch on canine data only). (Right column) Auto-segmentation generated by model T2 (blue; model trained using transfer
learning). The two models resulted in Sørensen-Dice similarity coe�cients of 0.85 (model S9) and 0.89 (model T2) for the given patient (calculated
over all 173 image slices).

As HNC is a heterogeneous group of cancers, many studies
on human HNC subjects focus only on one anatomical
primary tumor site. Specifically oropharyngeal cancer which
is one of the most frequently occurring HNC sites in
humans worldwide (2), or nasopharyngeal cancer which
display very distinctive properties, are commonly analyzed
separately (31, 36, 41, 64, 68–72). A similar approach could
be beneficial for further analyses of auto-segmentation of
the GTV in canine HNC subjects. In our present work, the
highest quality auto-segmentations were generally obtained
in patients with nasal cavity tumors. This is likely influenced
by the tumor site distribution in our dataset, where this was
the most frequent site. However, nasal cavity tumors display
distinctive characteristics in terms of shape and location and
generally have high contrast between tumor tissue and normal
tissues/background, all of which could aid auto-segmentation.
GTV segmentation is also particularly relevant for this group of
canine HNC patients, as RT is indicated as the primary treatment
(4, 13, 14).

Even though our results show that deep learning can provide
high-quality GTV auto-segmentations in canine HNC patients,
there are currently several limitations to this approach that must
be resolved to increase its potential clinical usefulness. First,
regardless of model training approach, the auto-segmentation
quality was variable between patients. The poorest performance
was seen for patients with rare tumor sites and GTVs with
atypical shapes or heterogeneous HU intensity values. This could
be alleviated by having a larger training set where all tumor
sites are represented to a greater extent. Another possibility, as
outlined in the previous paragraph, is to focus on each tumor
site separately. Furthermore, inclusion of both pre and post
contrast CT images as model input may mitigate the issue of
heterogeneous tumor intensities in some cases, as it can be
relevant whether the heterogeneity is due to inherent anatomical
factors or heterogeneous contrast enhancement. However, GTVs
with very heterogeneous HU intensity values including relatively
large proportions of bone and/or air might still be difficult
to automatically segment correctly and would likely require
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FIGURE 5

Manual ground truth and automatic deep learning generated gross tumor volume contours in four CT image slices from one canine test set patient
(sarcoma). (Left column) Manual ground truth contours (green). (Middle column) Auto-segmentation generated by model S9 (magenta; model
trained from scratch on canine data only). (Right column) Auto-segmentation generated by model T2 (blue; model trained using transfer learning).
The two models resulted in Sørensen-Dice similarity coe�cients of 0.86 (model S9) and 0.84 (model T2) for the given patient (calculated over all 173
image slices).

intervention by a human expert. Secondly, the auto-segmentations
could encompass false positive regions including OARs such
as the eye and brain. To limit the need for human revision,
smaller false positive structures could be removed in a post-
processing step, using for example morphologic operations,
whereas inclusion of OAR regions due to over-estimation of
GTV boundaries could be reduced by combining OAR and
TV segmentation. Segmentation of normal tissue structures
such as OARs typically achieve higher Dice scores than TV
segmentation, as organ shapes, locations and intensities generally
are less variable between patients than tumors, though some
OARs are more difficult to segment than others due to, e.g.,
poor CT contrast. Reported mean Dice scores of CT-based OAR
segmentation using deep learning are 0.78–0.87 (30, 38–40) and
0.83 (48) for human and canine HNC patients, respectively, when
averaged over various organ structures. Deep learning-based OAR
segmentation may be considered clinically applicable for several
OARs (37, 73) and is currently commercially available for RT
in humans.

Transfer learning provided high performance but did not
improve the mean performance metrics compared to training
canine models from scratch. There are several potential factors
that can contribute to why transfer learning did not outperform
training from scratch, specifically related to the differences between
the human and canine datasets. First, there are obvious anatomical
differences between the human and canine head and neck region
that might not be overcome by the use of image augmentation and
fine-tuning of the pretrained human model. Second, the presence
and degree of nodal involvement was significantly higher for the
human patients. The majority of the human patients (76%) had
known nodal involvement and the mean GTV-N size was similar
to the mean GTV-T size, whereas few canine patients (11%) had
known nodal involvement and the GTV-N structures were all small
in size compared to the GTV-T. Third, the anatomical tumor site
and cancer subtype distributions were not comparable between
the two species. Fourth, the ground truth GTV contours were
delineated under different conditions. Fifth, the CT imaging was
conducted using different scanners with different imaging and

Frontiers in Veterinary Science 12 frontiersin.org

https://doi.org/10.3389/fvets.2023.1143986
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Groendahl et al. 10.3389/fvets.2023.1143986

FIGURE 6

Manual ground truth and automatic deep learning generated gross tumor volume contours in four CT image slices from one canine test set patient
(nasal cavity tumor). (Left column) Manual ground truth contours (green). (Middle column) Auto-segmentation generated by model S9 (magenta;
model trained from scratch on canine data only). (Right column) Auto-segmentation generated by model T2 (blue; model trained using transfer
learning). The two models resulted in Sørensen-Dice similarity coe�cients of 0.72 (model S9) and 0.85 (model T2) for the given patient (calculated
over all 173 image slices).

reconstruction parameters. Regardless of the above differences
between source and target domains, the transfer learning approach
resulted in the highest per patient Dice score and to a greater
extent avoidance of OARs. Thus, there is reason to assume that
some features learned in the source domain were useful in the
target domain, but that the usefulness was variable among the
canine subjects.

A recent thorough investigation of transfer learning for
different deep learning-based medical image segmentation tasks
in humans, conducted by Karimi et al. (50), shows that transfer
learning in general primarily decreased the training time for
the target task and that improvements in auto-segmentation
performance often was marginal and largely relied on the data and
task. According to their results, statistically significant effects of
transfer learning only occurred when the number of target training

samples was low (∼3–15 subjects). In other cases, models trained
from scratch and transfer learning models were comparable in
terms of auto-segmentation quality. Cross-species transfer learning
was not evaluated in Karimi et al. (50) but our results are in line with
their findings for transfer learning between human domains and
tasks. Gerard et al. (47) applied transfer learning to segment acutely
injured lungs in CT images of dogs, pigs, and sheep, obtaining
median Jaccard index scores ≥0.90, which corresponds to Dice

scores ≥0.95, using a multi-resolution CNN model pretrained
on CT images of humans without acutely injured lungs. Their
proposed transfer learning method was, however, not compared to
training models from scratch on the target domain. Thus, the effect
of transfer learning was not quantified, and the high performance
could be related to the task or influenced by the CNN configuration
rather than the transfer learning approach.
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To summarize, segmentation of the GTV in canine and human
HNC patients is an inherently challenging task. In this study, CNN
models for auto-segmentation of the GTV in canine HNC patients,
trained either from scratch on canine data or by using a cross-
species transfer learning approach, provided promising results with
high performancemetrics comparable to results achieved in human
HNC auto-segmentation studies. Our results show that transfer
learning has the potential to increase segmentation performance for
some patients, but differences between source and target domains
as well as the heterogeneity of the disease within species can
complicate the modeling. Therefore, care must be taken when
transferring auto-segmentation models between species.
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