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Calf diarrhea adversely a�ects growth and sometimes results in mortality, leading

to severe economic losses to the cattle industry. Antibiotics are useful in

the treatment against bacterial diarrhea, but not against viral, protozoan, and

antibiotic-resistant bacterial diarrhea. Therefore, there are growing requirements

for a novel control method for calf diarrhea. Probiotics have been considered

promising candidates for preventive and supportive therapy for calf diarrhea

for many years. A recent study has revealed that Lactiplantibacillus plantarum

HOKKAIDO strain (Lp-HKD) reduces intestinal pathology and the severity of

diarrhea in bovine rotavirus (BRV)-infected calves. Lp-HKD is known to enhance

the function of human immune cells and expected to be used as probiotics for

humans. Therefore, it is hypothesized that Lp-HKD modulates antiviral immune

response in cattle and provide the clinical benefits in BRV-infected calves.

However, the detailed mechanism of Lp-HKD-induced immunomodulation

remains unknown. Thus, this study aimed to elucidate the immunomodulatory and

antiviral e�ects of Lp-HKD in cattle. Cultivation assay of bovine peripheral blood

mononuclear cells (PBMCs) showed that live and heat-killed Lp-HKD stimulates

the production of interleukin-1β (IL-1β), IL-6, IL-10, and interferon-γ (IFN-γ) from

PBMCs. Stimulation by heat-killed Lp-HKD yielded stronger cytokine production

than stimulation by the live Lp-HKD. Additionally, CD14+ monocytes were

identified as major producers of IL-1β, IL-6, and IL-10 under Lp-HKD stimulation;

however, IFN-γ was mainly produced from immune cells other than CD14+

monocytes. Depletion of CD14+ monocytes from the PBMCs cultivation strongly

decreased cytokine production induced by heat-killed Lp-HKD. The inhibition of

toll-like receptor (TLR) 2/4 signaling decreased IL-1β and IL-6 production induced

by live Lp-HKD and IL-1β, IL-6, and IFN-γ production induced by heat-killed Lp-

HKD. Furthermore, live or heat-killed Lp-HKD also activated T cells and their

production of IFN-γ and tumor necrosis factor-α. Then, culture supernatants of

bovine PBMCs treated with heat-killed Lp-HKD demonstrated antiviral e�ects

against BRV in vitro. In conclusion, this study demonstrated that Lp-HKD activates

the functions of bovine immune cells via TLR2/4 signaling and exerts an
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antiviral e�ect against BRV through the induction of antiviral cytokines. Lp-HKD

could be useful for the prevention and treatment of calf diarrhea through its

immune activating e�ect.

KEYWORDS

Lactiplantibacillus plantarum HOKKAIDO strain, monocytes–cell, TLR2/4, antiviral

e�ects, rotavirus

Introduction

Lactic acid bacteria (LAB) such as Lactobacillus spp.,

Lactiplantibacillus spp., Lactococcus spp., and Streptococcus

spp. have been studied as probiotic bacteria (1, 2). A previous

report indicated the use of LAB to prevent infectious diseases

in newborn babies in rural India, where many children are still

dying from these diseases (3). Lactiplantibacillus plantarum

HOKKAIDO strain (Lp-HKD) is a probiotic LAB isolated

from well-pickled vegetables in Hokkaido, Japan (4). Lp-HKD

induces the production of interleukin (IL)-6, IL-10, IL-12, and

tumor necrosis factor-α (TNF-α) by human dendritic cells (5).

Furthermore, a previous study reported that heat-killed Lp-HKD

alleviated clinical symptoms of the common cold in humans (6).

Therefore, Lp-HKD is expected to improve antiviral immune

function in humans.

Diarrhea is a common disease observed in calves, which

is caused by viral, bacterial, and protozoan infections, as well

as non-infectious factors such as dietary and nervous factors.

Among these factors, bovine rotavirus (BRV) infection and

bovine cryptosporidiosis, which are prevalent among cattle in

Japan, cause severe diarrhea in calves (7). BRV infects cattle of

all ages; however, a higher incidence of enteritis, more severe

clinical signs, and higher mortality are observed in calves (8).

When calves develop diarrhea, growth retardation occurs even

if they survive, leading to severe economic losses (9). Although

antibiotics are useful to the treatment of bacterial diarrhea (10),

they have no direct effect on viral, protozoan, and antibiotic-

resistant bacterial diarrhea (11). Therefore, the development of

a novel alternative preventive strategy for bovine diarrhea is

required, and the use of probiotics has been considered as a

promising candidate. Indeed, feeding probiotics was reported to

reduce the incidence of diarrhea and have beneficial effects on calf

growth (12). Furthermore, a previous study reported that feeding

milk replacer (MR) supplemented with highly-concentrated Lp-

HKD reduced diarrhea induced by BRV challenge and tissue

damage to the intestinal tract in newborn calves (13). Although

the mechanism of the preventive effects of Lp-HKD remains

unknown, we hypothesized that Lp-HKD modulated bovine

immune responses to viral infections and reduced the severity

of diarrhea.

In this study, we investigated the immunostimulatory

and antiviral effects of Lp-HKD to elucidate the

mechanisms of immunomodulation by Lp-HKD

in cattle. We examined the immunomodulatory

mechanisms involving not only live Lp-HKD but also

heat-killed Lp-HKD.

Materials and methods

Blood samples

Peripheral blood samples of cattle were obtained from adult

female Holstein-breed cattle in dairy farms inHokkaido, Japan. The

animal experiments in this study were approved by the Institutional

Animal Care andUse Committee of HokkaidoUniversity (approval

numbers: 17-0024 and 18-0147) and performed in accordance with

the relevant guidelines and regulations of the Faculty of Veterinary

Medicine of Hokkaido University, which is fully accredited by

the Association for Assessment and Accreditation of Laboratory

Animal Care International.Written informed consent was obtained

from the owners for the participation of their animals in this study.

Preparation of Lp-HKD

Lp-HKD (Food Processing Research Center, Hokkaido

Research Organization, Ebetsu, Japan; Japanese patent No.

3925502) was cultured in MRS broth (BD Biosciences, San Jose,

CA, USA) at 37◦C for 24 h in a 1 L bottle and collected by

centrifugation at 5,800 × g for 15min at 10◦C. The bacteria were

washed twice with phosphate-buffered saline (PBS, pH 7.2) and

finally resuspended in PBS. The bacteria were plated on MRS

agar plate (BD Biosciences) and anaerobically incubated at 37◦C

for 17–24 h and colony-forming unit (CFU) were counted. The

live Lp-HKD was stored at 4◦C and used for further experiments

within 7 days. Heat-killed Lp-HKD was prepared by heating the

bacteria at 96◦C for 10min and stored at −30◦C until further

experiments. Successful heat-killing was confirmed by the absence

of bacterial growth on the MRS agar plate (BD Biosciences).

Cell preparation

Bovine peripheral blood mononuclear cells (PBMCs) were

purified from blood samples by density gradient centrifugation

using Percoll (GE Healthcare, Little Chalfont, UK). CD14+ cells

were freshly isolated from PBMCs using the autoMACS Pro System

(Miltenyi Biotec, Bergisch Gladbach, Germany) with anti-bovine

CD14 mAb (CAM36A, Washington State University Monoclonal

Antibody Center, Pullman, WA, USA), and anti-mouse IgG1

MicroBeads (Miltenyi Biotec) as described previously with some

modification (14). CD14− PBMCs were prepared from negative

fractions of CD14+ cell sorting. The purity of each cell fraction

was confirmed using FACS Verse (BD Biosciences) or FACS Lyric
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(BD Biosciences). Highly pure populations (>95%) were used

for experiments.

Cell cultivation assay

PBMCs (4 × 106 cells/mL), CD14+ cells (2 × 106 cells/mL), or

CD14− PBMCs (4× 106 cells/mL) were seeded into 96-well round-

bottom plate (Corning Inc., Corning, NY, USA) with the RPMI

1640 medium (Sigma-Aldrich) containing 10% heat-inactivated

FBS (Thermo Fisher Scientific, Waltham, MA, USA), 200 IU/mL

penicillin (Thermo Fisher Scientific), 200µg/mL streptomycin

(Thermo Fisher Scientific), and 0.01% L-glutamine (Thermo Fisher

Scientific). Then, the cells were cultured in the presence of live Lp-

HKD (PBMCs: 4 × 106 CFU/mL, CD14+ cells: 2 × 106 CFU/mL)

or heat-killed Lp-HKD (PBMCs and CD14− PBMCs: 4 × 106

CFU/mL, CD14+ cells: 2 × 106 CFU/mL) at 37◦C under 5% CO2

for 17 h.

To investigate the effects of blocking toll-like receptors

(TLR) 2/4 signaling, PBMCs (4 × 106 cells/mL) were incubated

with 10µM sparstolonin B (SsnB; Sigma-Aldrich), as described

previously with a slight modification in the concentration of SsnB

(15, 16), in the presence of live or heat-killed Lp-HKD (4 × 106

CFU/mL) in a 96-well plate (Corning Inc.) at 37◦C under 5% CO2

for 17 h. In this study, the optimal concentration of SsnB for the

stimulation of bovine PBMCs was determined as 10µM. Dimethyl

sulfoxide (DMSO; Nacali Tesque, Kyoto, Japan) was used as a

vehicle control of SsnB.

Quantification of cytokines by ELISA

To investigate whether the Lp-HKD stimulations and TLR2/4

signaling promote cytokine production, culture supernatants

of PBMCs, CD14+ cells, or CD14− PBMCs were collected,

and the concentrations of IL-1β, IL-6, and interferon (IFN)-

γ were measured using the Bovine IL-1β ELISA Reagent Kit

(Thermo Fisher Scientific), the Bovine IL-6 ELISA Reagent

Kit (Thermo Fisher Scientific), and the Bovine IFN-γ ELISA

Development Kit (Mabtech, Nacka Strand, Sweden), respectively,

according to the manufacturers’ protocols. The concentration

of IL-10 was measured as described previously (17). Briefly,

sandwich ELISA of IL-10 was performed using anti-bovine IL-

10 (CC318; Bio-Rad, Hercules, CA, USA) as a capture antibody

and biotinylated anti-bovine IL-10 (CC320; Bio-Rad) as a

detection antibody.

Flow cytometric analysis of T cells

To investigate whether the Lp-HKD stimulations activate

bovine T cells, PBMCs (4 × 106 cells/mL) were incubated with

live or heat-killed Lp-HKD as described above. To examine the

effects of Lp-HKD on T-cell activation in the cultivated PBMCs, the

expression of CD25 and CD69 were analyzed by flow cytometry.

The cultured PBMCs were harvested and blocked with PBS

containing 10% goat serum (Thermo Fisher Scientific) at 25◦C for

15min. After washing, the cells were stained with PerCp/Cy5.5-

conjugated anti-CD3 mAb (MM1A; Washington State University

Monoclonal Antibody Center), PE/Cy7-conjugated anti-CD4 mAb

(CC8; Bio-Rad), PE-conjugated anti-CD8 mAb (CC63; Bio-Rad),

Alexa Fluor 488-labeled anti-CD25mAb (IL-A111; Bio-Rad), Alexa

Fluor 647-labeled anti-CD69 mAb (KTSN7A; Washington State

University Monoclonal Antibody Center), and Fixable Viability

Dye eFluor 780 (Thermo Fisher Scientific) at 4◦C for 20min.

MM1A and CC8 were conjugated with PerCp/Cy5.5 and PE/Cy7,

respectively, using the Lightning-Link Conjugation Kits (Abcam,

Cambridge, UK). IL-A111 and KTSN7A were prelabeled using

the Zenon Alexa Fluor 488 and Zenon Alexa Fluor 647 Mouse

IgG1 Labeling Kits (Thermo Fisher Scientific), respectively. The

stained cells were washed and analyzed immediately using FACS

Verse (BD Biosciences). Antibody dilution and cell washing were

performed with PBS containing 1% bovine serum albumin (Sigma-

Aldrich) (BSA-PBS).

To examine the effect of Lp-HKD on cytokine production in T

cells, PBMCs were cultured for 17 h, and 10µg/mL of Brefeldin A

(Sigma-Aldrich) was added for last 5 h. The cells were collected and

the blocking was performed as described above. Then, the cells were

stained with PerCp/Cy5.5-conjugated anti-CD3 mAb (MM1A),

Alexa Flour 647-conjugated anti-CD4 mAb (CC8; Bio-Rad), FITC-

conjugated anti-CD8 mAb (CC63; Bio-Rad), and Fixable Viability

Dye eFluor 780 (Thermo Fisher Scientific) in 1% BSA-PBS at

4◦C for 20min. After washing, the cells were fixed using Fixation

Buffer (BioLegend, San Diego, CA, USA) at 4◦C for 20min and

permeabilized using Perm/Wash Buffer (BioLegend) at 4◦C for

15min. After washing, the cells were stained with PE-conjugated

anti-IFN-γ mAb (CC302; Bio-Rad) and biotinylated anti-bovine

TNF-α mAb (CC328; Bio-Rad) in Perm/Wash Buffer (BioLegend)

at 4◦C for 20min. Then, the cells were washed and labeled

with PE/Cy7-conjugated streptavidin (Thermo Fisher Scientific)

at 4◦C for 20min. The stained cells were washed and analyzed

immediately using FACS Lyric (BD Biosciences).

Viral titer assay

To assess the antiviral effect of soluble factors produced from

PBMCs, PBMCs were incubated with or without heat-killed Lp-

HKD for 17 h as described above, and culture supernatants were

collected and filtrated through a 0.22-µm syringe filter (Merck

Millipore, Burlington, MA, USA) to remove bacteria and cells.

BRV (Lincoln strain) was activated at 37◦C under 5% CO2 for

1 h in E-MEM (FUJIFILM Wako Pure Chemical, Osaka, Japan)

containing 0.02% acetylated trypsin (Sigma-Aldrish). MA104 cells,

which are a monkey kidney epithelial cell line and are highly

susceptible to rotavirus including BRV (18), were seeded in 24-well

plates (Corning Inc.) and infected with 200 µL of the activated

BRV, which contains 4.31 copies of the virus, with shaking at

37◦C under 5% CO2 for 1 h. After absorption, 300 µL of E-

MEM (FUJIFILM Wako Pure Chemical) containing 200 IU/mL

penicillin (Thermo Fisher Scientific), 200µg/mL streptomycin

(Thermo Fisher Scientific), and 0.01% L-glutamine (Thermo Fisher

Scientific), and 300 µL of the culture supernatants of PBMCs

collected as described above were added on the infected cell
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monolayers and the cells were cultured at 37◦C under 5% CO2

for five days. The cell-free culture supernatants were collected

every day. Four independent culture wells were incubated for

each sample.

To measure BRV titer, viral RNA (vRNA) was extracted from

the culture supernatants using the QIAamp Viral RNA Mini

Kit (Qiagen, Hilden, Germany) according to the manufacturer’s

instructions. The quantitative reverse transcription polymerase

chain reaction (qRT-PCR) assay was performed as previously

described, with slight modifications (19). NSP5 gene of rotavirus A

in each RNA sample was quantified in duplicate using SuperScript

III Platinum One-Step qRT-PCR Kit (Thermo Fisher Scientific),

gene specific primers (5’-TTCTGCTTCAAACGAYCCACTC-3’

and 5’-GAGAAATCYACTTGRTCGCA-3’), and a probe (5’-FAM-

TCCATAGAYACRCCAGYRTCTGCRTTTGTC-BHQ-3’) with a

LightCycler 480 System II (Roche Diagnostics, Mannheim,

Germany). The PCR condition was 50◦C for 40min (for RT),

followed by the amplification of the template by PCR for 45 cycles

at 95◦C for 15 s and 60◦C for 60 s. 108-102 copies of NSP5 RNA of

Lincoln strain were used to generate calibration curves in duplicate

and reported values are the average numbers of viral copies per

1mL of culture supernatant.

Statistical analysis

Differences were determined using the Wilcoxon signed-rank

test and Welch’s t-test for two-group comparisons, and the Steel-

Dwass test for multiple-group comparisons using JMP Pro 16.2.0

(SAS Institute, Cary, NC, USA). A p < 0.05 was considered

statistically significant.

Results

Activation of immune responses by Lp-HKD

To examine whether Lp-HKD activates immune responses in

cattle, bovine PBMCs were cultured either with live or heat-killed

Lp-HKD or without stimulation, and the levels of IL-1β, IL-6, IL-

10, and IFN-γ in culture supernatants were measured by ELISA.

Stimulation with live Lp-HKD increased the production of IL-1β,

IL-10, and IFN-γ (Figures 1A, C, D). Stimulation with heat-killed

Lp-HKD increased the production of IL-1β, IL-6, IL-10, and IFN-

γ (Figures 1A–D). Additionally, heat-killed Lp-HKD significantly

induced the production of IL-1β, IL-6, and IFN-γ compared with

live Lp-HKD (Figures 1A, B, D). These results suggest that Lp-

HKD, especially heat-killed bacteria, activates cytokine production

in bovine immune cells.

Induction of immune responses by Lp-HKD
in CD14+ monocytes

To examine whether Lp-HKD stimulates CD14+ monocytes,

CD14+ monocytes were cultured either with live or heat-killed

Lp-HKD or without stimulation, and the cytokine productions

in culture supernatants were measured by ELISA. Stimulation

with live Lp-HKD increased the production of IL-1β and

IL-10 (Figures 2A, C). Stimulation with heat-killed Lp-HKD

increased the production of IL-1β, IL-6, and IL-10 (Figures 2A–C).

Additionally, heat-killed Lp-HKD significantly induced the

production of IL-6 compared with live Lp-HKD (Figure 2B). In

contrast, the production of IFN-γ was below the detection limit in

all groups, and there was no significant difference between groups

(Figure 2D).

Furthermore, to examine whether CD14+ monocyte is

responsible for the activation of immune responses against Lp-

HKD in bovine PBMCs, CD14− PBMCs were cultured with or

without heat-killed Lp-HKD, and the cytokine productions in

culture supernatants were measured by ELISA. The production of

IL-1β, IL-6, IL-10, and IFN-γ by CD14− PBMCs was significantly

decreased when compared with those from PBMCs containing

CD14+ monocytes (Figures 3A–D). Collectively, these results

indicate that CD14+ monocytes could be a major cell type

producing IL-1β, IL-6, and IL-10 against Lp-HKD. On the other

hand, IFN-γ is produced by immune cells other than CD14+

monocytes although CD14+ monocytes are required to produce

IFN-γ by these immune cells in response to Lp-HKD.

Induction of immune responses by TLR2/4

To determine whether Lp-HKD stimulates TLR2/4 signaling,

PBMCs were incubated with a selective antagonist of TLR2/4

(SsnB) in the presence of live or heat-killed Lp-HKD, and the

cytokine productions in culture supernatants were measured

by ELISA. The inhibition of TLR2/4 signaling decreased the

production of IL-1β and IL-6 induced by live Lp-HKD (Figures 4A,

C). However, no significant difference in the production of

IL-10 and IFN-γ was observed in the TLR2/4 inhibition in

PBMCs stimulated with live Lp-HKD (Figures 4E, G). In PBMCs

stimulated with heat-killed Lp-HKD, the inhibition of TLR2/4

signaling decreased the production of IL-1β, IL-6, and IFN-γ

(Figures 4B, D, H). On the other hand, no significant difference

was observed in the production of IL-10 by the TLR2/4

inhibition (Figure 4F). These results suggest that Lp-HKD induces

cytokine production mainly via the TLR2/4 signaling on bovine

immune cells.

T-cell activation by Lp-HKD

Because Lp-HKD induced IFN-γ production from immune

cells other than CD14+ monocytes (Figures 2B, D), we

hypothesized that Lp-HKD also activated T-cell responses.

We examined the effects of Lp-HKD on the activation of T-cell

responses by the PBMC cultivation assays. PBMCs were cultured

either with live or heat-killed Lp-HKD, and the expression of

activation markers CD25 and CD69 was analyzed on T cells by

flow cytometry. As shown in Supplementary Figure S1, CD3+,

CD3+CD4+, CD3+CD8+ T cells were gated in live lymphocytes

and then analyzed for expression of CD25 and CD69. The

percentages of CD25+, CD69+, and CD25+CD69+ cells in CD3+

T cells were higher in PBMCs cultured with live or heat-killed
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FIGURE 1

Lp-HKD-induced cytokine production by PBMCs. (A–D) Bovine PBMCs were incubated with either live or heat-killed Lp-HKD (4 × 106 CFU/mL) or

without stimulation for 17h. The concentrations of IL-1β [(A), n = 13], IL-6 [(B), n = 13], IL-10 [(C), n = 13], and IFN-γ [(D), n = 13] in culture

supernatants were determined by ELISA. Statistical significance was determined by the Steel-Dwass test. *p < 0.05, **p < 0.01, ***p < 0.001.

Lp-HKD than without Lp-HKD (Figures 5A–C). Furthermore,

stimulation with live and heat-killed Lp-HKD increased the

percentages of CD25+, CD69+, and CD25+CD69+ cells in both

CD3+CD4+ and CD3+CD8+ T cells (Figures 5D–I).

To confirm whether Lp-HKD stimulation enhance Th1

responses, PBMCs were cultured either with live or heat-killed Lp-

HKD, and the expression levels of Th1-related cytokines IFN-γ

and TNF-α were analyzed in T cells by flow cytometry. As shown

in Supplementary Figure S2, CD3+, CD3+CD4+, CD3+CD8+ T

cells were gated in live lymphocytes and then analyzed for the

expression of IFN-γ and TNF-α. TNF-α expression in CD3+ T

cells was upregulated by treatment with live or heat-killed Lp-HKD

(Figure 6B). The percentages of IFN-γ+ and IFN-γ+ TNF-α+ cells

in CD3+ T cells were tended to be higher in PBMCs stimulated

with live or heat-killed Lp-HKD than without Lp-HKD, although

no significant differences were found (Figures 6A, C). Additionally,

the percentages of IFN-γ+, TNF-α+, and IFN-γ+TNF-α+ cells

in CD4+ T cells were increased when cultured with heat-killed

Lp-HKD (Figures 6D–F). The expression of IFN-γ and TNF-α

in CD8+ T cells was upregulated in PBMCs stimulated with

live or heat-killed Lp-HKD (Figures 6G, H). Furthermore, the

percentage of IFN-γ+TNF-α+CD8+ T cells was increased by the

treatment with heat-killed Lp-HKD (Figure 6I). Taken together,

Lp-HKD activates T cells and induces the production of Th1-

related cytokines.

Induction of antiviral e�ects by Lp-HKD

To investigate whether the cytokines induced by Lp-HKD

stimulation have antiviral effects against BRV, PBMCs were

cultured with or without heat-killed Lp-HKD and the culture

supernatants were added to BRV-infected MA104 cells. The

culture supernatants of PBMCs stimulated with heat-killed Lp-

HKD inhibited the proliferation of BRV at 2 and 3 days after

BRV infection when compared to that of unstimulated PBMCs

(Figure 7). These data suggest that cytokines produced by Lp-HKD-

stimulated PBMCs had antiviral effects against BRV.
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FIGURE 2

Lp-HKD-induced cytokine production by CD14+ monocytes. (A–D) CD14+ monocytes were incubated with either live or heat-killed Lp-HKD (2 ×

106 CFU/mL) or without stimulation for 17h. The concentrations of IL-1β [(A), n = 12], IL-6 [(B), n = 12], IL-10 [(C), n = 6], and IFN-γ [(D), n = 6] in

culture supernatants were determined by ELISA. Statistical significance was determined by the Steel-Dwass test. *p < 0.05, **p < 0.01, ***p < 0.001.

Discussion

Calf diarrhea is a serious problem that increases economic

losses in the dairy industry as a result of weight loss in surviving

calves and sometimes calf mortality worldwide. Several probiotics

have been used as preventive or supportive therapy for dairy cattle

and neonatal calves for many years, and previous reports have

indicated that they reduce the incidence and clinical signs of calf

diarrhea (12, 20–30). A previous report indicated that Lp-HKD,

a probiotic whose clinical study is ongoing in humans, decreased

the intestinal pathology and the clinical sign of diarrhea in BRV-

challenged calves (13). However, the mechanism by which Lp-

HKD prevents severe diarrhea in BRV-infected calves remains to

be elucidated. In humans, previous researches have demonstrated

that probiotics treatment is effective against diarrhea caused

by rotavirus in human. The rationale for using probiotics in

acute infectious diarrhea is based on the assumption that they

act against intestinal pathogens. Possible mechanisms of their

effects include the stimulation of nonspecific and specific immune

responses to pathogens (31, 32). Therefore, we hypothesized that

Lp-HKD modulated bovine immune responses to viral infections

including BRV infection in cattle. In this study, we revealed

that Lp-HKD induced the production of IL-1β, IL-6, and IL-

10 by CD14+ monocytes via the stimulation of TLR2 and

TLR4. Since these cytokines have T-cell activating effects (33–

36), it is suggested that cytokines produced by CD14+ monocytes

stimulated by Lp-HKD could increase T-cell activation, leading to

Th1 cytokine production.

Lipoteichoic acid (LTA) and peptidoglycan (PGN), which are

components of the LAB cell wall, are recognized by TLR2, and

the former is also recognized by TLR4 (37–39). Although the

basic structure of cell walls is maintained in LAB, subtle structural

differences between species and strains have been reported to

result in different activations of TLR signaling pathways (40–42).

A previous study on L. plantarum, K8, K88, K5-5, and K55-5

strains, which investigated the relationship between LTAs and their

receptors, reported that the four strains of L. plantarum have

different LTA structures, which contributed to different binding
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FIGURE 3

Lp-HKD-induced cytokine production by CD14− PBMCs. (A–D) CD14− PBMCs were incubated with or without heat-killed Lp-HKD (4 × 106

CFU/mL) for 17h. The concentrations of IL-1β [(A), n = 12], IL-6 [(B), n = 12], IL-10 [(C), n = 12], and IFN-γ [(D), n = 12] in culture supernatants were

determined by ELISA. Statistical significance was determined by the Steel-Dwass test. *p < 0.05,**p < 0.01,***p < 0.001.

abilities with TLR2 and different immune activities in immune

cells (43). Our current study demonstrated that the inhibition of

TLR2 and TLR4 signaling by SsnB decreased the Lp-HKD-induced

production of IL-1β and IL-6 but not of IL-10 (Figures 4A–F).

Taken together, the results of this study suggest that Lp-HKD

could predominantly induce IL-1β and IL-6 production by TLR2

and TLR4 signaling and IL-10 production by receptors other

than TLR2 and TLR4. TLR9 recognizes unmethylated CpG DNA

of bacteria (44, 45), and one of the TLR9 signaling pathways

induces IL-10 production (46). Therefore, the induction of IL-10

production by Lp-HKD might be mediated by a TLR9 signaling

pathway. Furthermore, in the current study, the TLR2/4 inhibition

did not completely suppress the production of IL-1β and IL-

6 (Figures 4A–D). These results indicate that Lp-HKD might be

recognized by other receptors such as TLR9 which also promotes

IL-1β and IL-6 expression (47). Further studies using extracts of cell

wall components of Lp-HKD and the inhibitors of other receptors

are warranted to confirmwhich signaling pathways in immune cells

are activated by Lp-HKD.

The effect of immunomodulation by viable cells of probiotics is

also obtained from the populations of dead cells (48). Taverniti and

Guglielmetti (49) proposed the term “paraprobiotics” to indicate

the use of inactivated microbial cells or cell fractions to confer

health benefits. The emerging concern regarding safety problems

arising from the use of live microorganisms in neonates and

vulnerable populations is enhancing the interest in non-viable

microorganisms (50, 51). For example, heat-killed Lactobacillus

acidophilus LB strain is effective in the treatment of children
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FIGURE 4

Lp-HKD-induced cytokine production by PBMCs treated with the TLR2/4 antagonist. PBMCs were incubated with live Lp-HKD (4 × 106 CFU/mL) (A,

C, E, G) or heat-killed Lp-HKD (4 × 106 CFU/mL) (B, D, F, H) or without stimulation under the inhibition of TLR2/4 signaling by SsnB. The

concentrations of IL-1β [(A, B), n = 8], IL-6 [(C, D), n = 8], IL-10 [(E, F), n = 7], and IFN-γ [(G, H), n = 6] in culture supernatants were determined by

ELISA. Statistical significance was determined by the Wilcoxon signed-rank test. *p < 0.05, **p < 0.01.
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FIGURE 5

T-cell activation by Lp-HKD. (A–I) PBMCs were incubated with live or heat-killed Lp-HKD (4 × 106 CFU/mL) or without stimulation for 17h. The

expression of CD25 and CD69 in CD3+ T cells [(A–C), n = 7], CD3+CD4+ cells [(D–F), n = 7] and CD3+CD8+ T cells [(G–I), n = 7] was assayed by

flow cytometry. Statistical significance was determined by the Steel-Dwass test. *p < 0.05, **p < 0.01.

Frontiers in Veterinary Science 09 frontiersin.org

https://doi.org/10.3389/fvets.2023.1145445
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Ikehata et al. 10.3389/fvets.2023.1145445

FIGURE 6

Upregulation of Th1 cytokine production in T cells by Lp-HKD. (A–I) PBMCs were incubated with live or heat-killed Lp-HKD (4 × 106 CFU/mL) or

without stimulation for 17h. The expression of IFN-γ and TNF-α in CD3+ T cells [(A–C), n = 7], CD3+CD4+ cells [(D–F), n = 7], and CD3+CD8+ T

cells [(G–I), n = 7] was assayed by flow cytometry. Statistical significance was determined by the Steel-Dwass test. *p < 0.05, **p < 0.01.

with acute diarrhea and chronic diarrhea (52, 53). In the present

study, the production of IL-1β, IL-6, and IFN-γ was significantly

more induced by heat-killed Lp-HKD than by live Lp-HKD

(Figures 1A, B, D). The microscopic examination of heat-killed

Lp-HKD revealed no morphological change (data not shown).

Abedi et al. (54) revealed that heat treatment altered the cell

surface hydrophobicity of LAB and anticipated that the alternation

influences the PGN structure in the cell wall. Therefore, structural

changes of cell walls in Lp-HKD induced by heat treatment

may lead to its better immune stimulating effect in heat-killed
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FIGURE 7

Induction of antiviral e�ects by Lp-HKD. MA104 cells were exposed to BRV and cultured in the presence of culture supernatants of PBMCs stimulated

with or without heat-killed Lp-HKD (4 × 106 CFU/mL). vRNA in the culture supernatants was quantitated by one-step qRT-PCR. Four independent

wells were incubated for each sample, and the results were presented as the average of BRV copy numbers per 1mL of culture supernatant.

Statistical significance was determined by Welch’s t-test. *p < 0.05.

bacteria. Further research is required to evaluate the potential of the

treatment of heat-killed Lp-HKD as paraprobiotics for calf diarrhea

caused by BRV infection.

Previous studies have demonstrated that the regulation of

antiviral cytokine pathways by probiotic administration is an

important mechanism for the regulation of rotavirus (55). In

this study, the Lp-HKD-induced production of antiviral cytokines

suppressed the proliferation of BRV in vitro (Figure 7). Several

reports demonstrated that IL-1 and IFN-γ inhibited the entry and

replication of rotavirus in vitro (56, 57) and TNF-α induced an

anti-rotavirus effect by the activation of classical nuclear factor-κB

signaling (58). Hence, the present study suggests that the antiviral

effect of Lp-HKD is presumably caused by the induction of IL-1β,

IFN-γ, and TNF-α.

In this study, we evaluated the immune activating effects

of Lp-HKD using PBMC cultivation assays in vitro. A previous

paper reported the immune-stimulating effects of Lactobacillus

rhamnosus GG strain and the correlation of the results of the

immunological analyses in vivo and in vitro (59). Because we

have not conducted the analysis of cytokine kinetics in blood

and intestine after Lp-HKD treatment in BRV-challenged calves,

further validation is needed to determine how immune responses

are modulated in the intestinal tract of the Lp-HKD-treated calves.

Large amounts of macrophages and dendritic cells were located at

lamina propria in small intestine and have a potential to recognize

the component of Lp-HKD via TLR pathways and induce the

production of antiviral cytokines.

In conclusion, we found that Lp-HKD can induce the

production of several cytokines, such as IL-1β, IL-6, and IL-10, by

monocytes via TLR2 and TLR4, and these cytokines can activate

T cells and the production of Th1 cytokines, such as IFN-γ and

TNF-α. Thus, Lp-HKD has both immunostimulatory and antiviral

effects, and Lp-HKD is expected to be applied as a preventive and

therapeutic method against various infectious diseases including

calf diarrhea.
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