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Oxidative stress is due to an unbalance between pro-oxidants, such as reactive

oxygen (ROS) and nitrogen (RNS) species, and antioxidants/antioxidant system.

Under physiological conditions these species are involved in di�erent cellular

processes such as cellular homeostasis and immune response, while an excessive

production of ROS/RNS has been linked to the development of various diseases

such as cancer, diabetes, and Alzheimer’s disease. In this context, the naturally

occurring dipeptide carnosine has shown the ability to scavenge ROS, counteract

lipid peroxidation, and inhibit proteins oxidation. Titanium dioxide nanoparticles

(TiO2-NPs) have beenwidely used to produce cosmetics, inwastewater treatment,

in food industry, and in healthcare product. As consequence, these NPs are

often released into aquatic environments. The Danio rerio (commonly called

zebrafish) embryos exposure to TiO2-NPs did not a�ect the hatching rate, but

induced oxidative stress. According to this scenario, in the present study, we first

investigated the e�ects of carnosine exposure and of a sub-toxic administration

of TiO2-NPs on the development and survival of zebrafish embryos/larvae

measured through the acute embryo toxicity test (FET-Test). Zebrafish larvae

represent a useful model to study oxidative stress-linked disorders and to test

antioxidant molecules, while carnosine was selected based on its well-known

multimodal mechanism of action that includes a strong antioxidant activity. Once

the basal e�ects of carnosine were assessed, we then evaluated its e�ects on

TiO2-NPs-induced oxidative stress in zebrafish larvae, measured in terms of total

ROS production (measured with 2,7-dichlorodihydrofluorescein diacetate probe)

and protein expression by immunohistochemistry of two cellular stress markers,

70 kDa-heat shock protein (Hsp70) and metallothioneins (MTs). We demonstrated

that carnosine did not alter the phenotypes of both embryos and larvae of

zebrafish at di�erent hours post fertilization. Carnosine was instead able to

significantly decrease the enhancement of ROS levels in zebrafish larvae exposed
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to TiO2-NPs and its antioxidant e�ect was paralleled by the rescue of the

protein expression levels of Hsp70 and MTs. Our results suggest a therapeutic

potential of carnosine as a new pharmacological tool in the context of pathologies

characterized by oxidative stress such as neurodegenerative disorders.

KEYWORDS

carnosine, oxidative stress, reactive oxygen species, heat shock proteins,

metallothioneins, zebrafish

1. Introduction

Carnosine is a naturally occurring peptide composed of

β-alanine and L-histidine and synthesized through an ATP-

dependent reaction by carnosine synthetase 1 (CARNS1) enzyme.

This peptide can be found at very high concentrations in

mammalian tissues, particularly in the brain, where it reaches

concentrations ranging between 0.7 and 2.0mM (up to 5mM in

some areas), as well as in cardiac and skeletal muscles (up to

20mM), and also in the tissues of some species of invertebrates

(1, 2). Different studies have also shown the presence of carnosine

in numerous other classes of Vertebrates including fish (3, 4), while

plants do not contain it at all (5).

Many beneficial activities have been attributed to carnosine,

such as pH-buffering activity (6), heavy metal chelating activity (7),

antioxidant, anti-glycating, and ion-chelating capacity (8), along

with the ability to scavenge free-radicals (9). When the synthesis of

reactive and pro-oxidant species overtakes the antioxidant defense

system, oxidative stress occurs (10, 11). In this context, carnosine

has shown the ability to scavenge reactive oxygen species (ROS)

and alpha–beta-unsaturated aldehydes formed from peroxidation

of cell membrane fatty acids during oxidative stress (12), also

inhibiting the oxidative modifications of proteins exposed to

hydroxyl radicals (13, 14).

The over-production of ROS and the related oxidative stress

have been shown to disrupt cellular proteins (15), requiring their

subsequent refolding; in this context, the activity exerted by heat

shock proteins (HSPs) represents the most effectively protective

mechanism (16). HSPs are a group of molecular chaperones able

to revert or inhibit denaturation or unfolding of cellular proteins

in response to stress and/or high temperature. Recent studies

have been focused on the regulatory role of HSPs in several

redox processes as well as on their protection of antioxidant

mediators (17). In particular, the 70 kDa-HSP (Hsp70) family

promotes the proteolytic removal of oxidatively damaged proteins

by the proteasome (18) and closely interact with the nitric oxide

generation systems (19). Hsp70 is represents a marker of oxidative

response in different experimental models, including Danio rerio

(commonly called zebrafish) (20–22).

Metallothioneins (MTs) are a group of low molecular weight

metal-binding proteins with high affinity for divalent metal ions.

MTs have been widely considered for their protective role that is

mediated by their ability to exert metal detoxification (23) and

counteract oxidative stress-induced damage (24).

Among xenobiotic, nanoparticles (NPs) could have a significant

role in the development of oxidative stress phenomena owing

to their small surface-area-to-volume ratio, physical size, and

relatively high biopersistence. In particular, metal oxide NPs lead

to ROS generation directly or indirectly, with an extent that

depends on dose, metal speciation, and exposure route (25).

The NPs-induced ROS formation, and in general ROS over-

production, has been linked to lipid and protein peroxidation

as well as to DNA fragmentation and reduced antioxidant

ability (26, 27). Titanium dioxide NPs (TiO2−NPs) are widely

used to produce cosmetics, wastewater treatment, food, and

healthcare products. It has been demonstrated that exposure

to TiO2-NPs does not affect the hatching rate of zebrafish

embryos, and does not cause malformation on the larvae

(28), even if it can lead to oxidative stress in embryos

(29). Thus, considering the oxidative capacity of TiO2-NPs

and the multimodal mechanism of action of carnosine (30),

including the well-known antioxidant activity also demonstrated

in zebrafish embryos (31), we investigated whether carnosine

could inhibit the oxidative stress induced by TiO2-NPs in

this model.

Zebrafish is a teleost fish widely used in translational research

(32), allowing to investigate the molecular mechanisms related

to numerous diseases including neurodegenerative and immune

diseases (33–36); in particular, this animal model is considered

of utmost importance in the case of (eco)toxicological studies.

Zebrafish possesses several advantages over rodent models in

the study of vertebrate development and disease, including high

fecundity rate (37, 38). Zebrafish eggs are transparent, allowing the

observation of morphogenetic changes and organogenesis in real

time (39). In particular, embryos have been shown to represent a

valuable tool to study both pro-oxidant (40) and pro-inflammatory

(41) phenomena, as well as to investigate the therapeutic potential

of nutraceuticals (42) and natural products (43). Additionally,

embryos have rapid development with embryogenesis being

complete by 72 hours post fertilization (hpf) and most organs fully

developed by 96 hpf.

Zebrafish model represents the perfect bridge in preclinical

toxicology between in vitro assays and mammalian in vivo studies

(44). It has also been established as a valuable animal model to

study oxidative stress phenomena in different diseases, including

diabetic retinopathy and nephropathy (45, 46). In this context,

carnosine treatment has shown to be able to rescue pancreas

disruption (31) and microvascular alterations (46). With regard

to zebrafish development, carnosine has been linked to olfactory

and visual function (47), while the effects of carnosine exposure

during zebrafish embryonic development have not yet been

completely elucidated.
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In the present study, we first investigated the effects of

carnosine exposure and of a sub-toxic administration of TiO2-NPs

on the development and survival of zebrafish embryos/larvae. Once

the safety of carnosine was assessed, we investigated its effects

on the TiO2-NPs-induced oxidative stress in zebrafish, measured

in terms of total ROS production and protein expression of two

well-known markers of cellular stress, Hsp70 and MTs.

2. Materials and methods

2.1. Materials and reagents

All chemicals were of analytical grade and purchased from

Sigma-Aldrich (St. Louis, MO, USA) or Thermo Fisher Scientific

Inc. (Pittsburgh, PA, USA) unless specified otherwise.

2.2. Preparation of work solutions

A stock solution of carnosine at the concentration of 1M was

prepared by dissolving the powder in osmosis water, which is

optimal for housing zebrafish (48). Working solutions of 0.1, 1, 10,

and 20mMwere prepared by diluting the stock solution in osmosis

water. TiO2-NPs, kindly supplied by the CNR-IMM of Catania,

characterized by a crystalline phase mix of anatase (86%) and rutile

(14%), and with an average size of about 50 nm, were diluted to

0.1 mg/mL (working solution) in osmosis water. In order to avoid

the formation of NP aggregates, it was necessary to carry out 4

cycles of 10min (with 3min of break) of sonication by using a probe

sonicator (Sonopuls, DeMarco S.r.l., Milan, Italy), with a frequency

of 40 kHz (49).

2.3. Acute toxicity experiment of zebrafish
embryos

Fertilized eggs from the same spawning event and collected

within 4 hpf were provided by the Fish Pathology and Experimental

Center of Sicily (CISS) of the Department of Veterinary Science

(University of Messina). Only eggs at the blastula stage were used,

while the infertile eggs or eggs with alterations on the chorion were

discarded. According to OECD Test Guidelines for Chemicals (50)

we used the 24-well plates to distribute the eggs (1 embryo/well, 2

mL solution/well).

The first set of experiments was carried out to investigate

the effects of increasing concentrations of carnosine (0.1, 1,

10, and 20mM) as well as of TiO2-NPs (0.1 mg/mL) on

zebrafish embryonic development. We set up 24-well plates for

each concentration of carnosine selected and TiO2-NPs (0.1

mg/mL). We performed three replicates for each multi-well

plates prepared.

In particular, in all 24-well plates set up, 20 embryos were

exposed to test concentration and 4 embryos were exposed

to dilution water as internal plate control. A total number

of 60 embryos were used for each experimental condition. As

recommended by the protocol procedure, 24-well plates of positive

controls and negative controls have been made; for the negative

controls, embryos were exposed to water dilution, while in positive

controls, embryos were exposed to 3,4-dichloroaniline (DCA) at

the concentration of 0.004 mg/mL in water (51).

During the experiments, the temperature within the wells was

maintained constant (26 ± 1◦C) and the solution in each well was

replaced every 24 h (semi-static renewal) (50).

Since neither carnosine nor TiO2-NPs induced toxic effects,

we selected a starting concentration of 20mM carnosine which

represents the highest concentration of carnosine found at the

tissue level. The 24-well plates of 20mM carnosine solutions were

prepared as a pre-treatment for embryos (1 h of pre-treatment),

subsequently TiO2-NPs solution was added until the end of the

test. Three replicates were performed, therefore a total number of

60 embryos was used.

A binocular microscope (E200 MV-R LED, Nikon Instruments

S.p.A., Florence, Italy) equipped with a camera (CMOS, Nikon

Instruments S.p.A.) was used to observe and photograph the

embryos every 24 h (until the end of the test: 96 hpf).

The acute toxicological endpoints (coagulated embryos, lack

of somite formation, non-detachment of the tail, and lack

of heartbeat) were assessed and quantified as “observed” or

“not observed”. A DanioScopeTM software (Noldus Information

Technology bv, Wageningen, Netherlands) was used to evaluate

heartbeat, body length of larvae, and possible malformations.

According to OECD, the acute embryo toxicity test

(FET-Test; Fish Embryo Toxicity-Test) was considered valid

only if overall survival of embryos was ≥90% in the negative

control (dilution-water) and ≤70% (minimum mortality

of 30%) in the positive control (0.004 mg/mL of DCA for

zebrafish) until the end of the 96 h exposure. After hatching,

the larvae of each experimental group were used to evaluate

intracellular ROS and protein expression of Hsp70 and MTs

through immunohistochemical analysis.

2.4. Evaluation of intracellular ROS

2,7-dichlorodihydrofluorescein diacetate (H2DCFDA) was

used to detect intracellular ROS content. At the end of the exposure,

all larvae, including controls, were stained with a ROS detection

solution. The ROS detection solution (5µM) was prepared in

Hanks’ balanced salt solution (HBSS). Larvae were washed twice

with HBSS for 2min, then incubated with the ROS detection

solution for a total of 15min at 28◦C. At the end of the

incubation, the ROS detection solution was discarded, the larvae

were washed with HBSS (twice for 2min), and placed on a glass

slide. As a last step, larvae were examined by using a fluorescence

microscope (NIKON ECLIPSE Ci, Nikon Instruments S.p.A.),

equipped with a NIKON DS-Qi2 camera (Nikon Instruments

S.p.A.). Image J software was used to measure fluorescence

signals (52).

2.5. Immunohistochemical analysis

Immunohistochemical analysis was performed to evaluate

the expression of Hsp70 or MTs in the whole larvae as
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previously described by Pecoraro et al. (51). Briefly, the

larvae collected from each experimental group were washed

in phosphate buffered saline (PBS) and fixed with 4% (w/v)

paraformaldehyde. Next, the fixative was discarded and larvae

were washed twice in PBS. The permeabilization of larvae,

to improve antibody penetration, was obtained by using a

solution of PBS-Triton X-100 (for 15min). A blocking solution

containing bovine serum albumin was used to block non-

specific antibody binding. Larvae were placed on a glass

slide and incubated overnight at 4◦C with primary antibodies:

anti-HSP70 polyclonal antibody (GeneTex, 1:1,000; Cat. No.

GTX112963) or anti-MTs (GeneTex, 1:1,000; Cat. No. GTX12228).

Larvae were then washed twice with PBS-Tween 20 to remove

the excess of primary antibodies and incubated for 1 h at

4◦C in the dark with TRITC-conjugated anti-rabbit (1:1,000)

or FITC-conjugated anti-mouse (1:1,000) secondary antibodies.

Following a washing step in PBS-Tween 20, the larvae were

dehydrated employing increasing alcoholic solutions (70◦, 80◦,

and 95◦) and air dried. The larvae were mounted with 4
′

,6-

diamidino-2-phenylindole (DAPI) (Abcam, Cambridge, UK) and

sealed with rubber cement to be examined with a fluorescence

microscope (NIKON ECLIPSE Ci) equipped with a NIKON DS-

Qi2 camera. TRITC-conjugated anti-rabbit secondary antibody

exhibited a red fluorescence, while FITC-conjugated anti-mouse

secondary antibody exhibited a green fluorescence. The images

obtained by fluorescence microscope have been processed with

Image J software (52).

2.6. Statistical analysis

Statistical analysis was performed by using Graphpad Prism

software, version 8.0 (Graphpad software, San Diego, CA, USA).

Data are always reported as the mean ± standard deviation (SD).

One-way analysis of variance (ANOVA), followed by Tukey’s post

hoc test, was used for multiple comparisons. The assumptions

for performing the parametric tests were confirmed by applying

the Brown–Forsythe test. Only p-values of <0.05 were considered

statistically significant.

3. Results

3.1. Carnosine and TiO2-NPs do not alter
the development of zebrafish larvae

The first set of experiments was carried out to investigate

the effects of increasing concentrations of carnosine (0.1, 1, 10,

and 20mM) on zebrafish embryonic development. As shown in

Figure 1, none of the carnosine concentrations tested altered the

development of zebrafish larvae compared to CTRL (untreated

zebrafish larvae). We also performed a DanioScopeTM analysis

showing no alterations in the heartbeat of the embryos/larvae

(Figure 2) as well as in the body length of the larvae (Figure 3).

Beats per minute (BPM) values ranged from 161.7 to 167.9,

with the highest values observed in embryos exposed to 20mM

carnosine. All the measured BPM values are to be considered

physiological; in fact, in zebrafish the physiological heart rate

FIGURE 1

E�ects of increasing concentrations of carnosine (0.1, 1, 10, and

20mM) on the phenotypes of both embryos and larvae at di�erent

(4, 24, 48, and 72) hpf. Car, carnosine.

FIGURE 2

Beats per minute (BPM) of unexposed larvae and larvae exposed to

increasing concentrations of carnosine (0.1, 1, 10, and 20mM). SD is

represented by vertical bars. Car, carnosine; n.s., not significant.

is about 120–180 BPM (53, 54). With regard to the body

length of the larvae, the measured values ranged from 3,433 to

3,653µm. Once again, the highest values were observed in the

case of embryos exposed to 20mM carnosine. As in the case

of BPM measurements, the body length of the larvae are to be

considered physiological (39). As previously mentioned, it has

been demonstrated that exposure to TiO2-NPs does not affect

the hatching rate of embryos and does not cause malformation

on the larvae, even if it can lead to oxidative stress in embryos.

In order to confirm the absence of acute toxicity, the effect of
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FIGURE 3

Body length (µm) of unexposed larvae and larvae exposed to

increasing concentrations of carnosine (0.1, 1, 10, and 20mM). SD is

represented by vertical bars. Car, carnosine; n.s., not significant.

TiO2-NPs treatment (0.1 mg/mL) on the phenotypes of both

embryos and larvae at different hpf was also evaluated. As

expected, the embryos completed their embryonic development,

thus no toxicological endpoints have been recorded (Figure 4).

The hatching rate was not altered, neither statistically significant

differences in the survival rate were observed in the experimental

groups compared to the control group. Hatching occurred 72 hpf

in all experimental groups, and the larvae exhibited a good shape

of body.

FIGURE 4

E�ects of TiO2-NPs on the phenotypes of both embryos and larvae

at di�erent (4, 24, 48, and 72) hpf.

3.2. Carnosine decreases ROS production
in TiO2-NPs-treated larvae

With regard to the evaluation of ROS production under our

experimental conditions, it was found a significant increase of

these reactive species in TiO2-NPs-treated larvae compared to

CTRL (p < 0.001) (Figure 5). The pre-treatment with carnosine

at the concentration of 20mM was able to completely prevent

the production of ROS compared to TiO2-NPs-treated larvae

(p< 0.001), giving fluorescence values comparable to that observed

in untreated larvae. Despite a trend of decrease observed in

TiO2-NPs-treated larvae in the presence of carnosine compared to

untreated larvae, the difference was not statistically significant.

3.3. Carnosine decreases Hsp70 and MTs
oxidative stress response markers

Immunohistochemical analysis suggests the ability of TiO2-NPs

to induce Hsp70 protein expression in the yolk sac and at the

beginning of the tail (p < 0.001 vs. CTRL and p < 0.001 vs.

TiO2-NPs + Carnosine) (Figure 6). Of note, despite the ability of

carnosine to significantly decrease the inductive effect of TiO2-NPs,

a value still higher compared to untreated larvae was measured.

A similar trend was observed when analyzing MTs expression

levels. As depicted in Figure 7, the exposure of larvae to TiO2-NPs

led to a significant (p < 0.01) increase in MTs expression levels

compared to untreated larvae. Again, the pre-treatment of larvae

with carnosine led to MTs expression levels significantly lower

(p < 0.05) if compared larvae exposed to TiO2-NPs only. It is

worth mentioning that carnosine treatment led to fluorescence

vales comparable to that measured in untreated larvae, representing

the negative controls.

4. Discussion

Oxidative stress is due to an unbalance occurring between the

production of ROS and reactive nitrogen species (RNS) and the

diminished cellular antioxidant defenses (55, 56). It is well-known

that these reactive species, under basal/physiological conditions, are

involved in different cellular processes such as cellular homeostasis

and metabolism, signaling and redox state, being also extremely

important in the immune response and pathogen clearance (57).

On the other hand, the excess of ROS/RNS production can lead

to the damage of fundamental macromolecules including DNA
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FIGURE 5

Total ROS production in (A) untreated larvae, (B) TiO2-NPs-treated larvae, and (C) TiO2-NPs-treated larvae in the presence of carnosine 20mM (1h

pre-treatment). Carnosine was kept during the exposure to TiO2-NPs. The average fluorescence intensity (AU) of at least 5 values for fixed larva is

reported in (D). SD is represented by vertical bars. ***Significantly di�erent, p < 0.001. n.s., not significant.

FIGURE 6

Hsp70 expression levels in (A) untreated larvae, (B) TiO2-NPs-treated larvae, and (C) TiO2-NPs-treated larvae in the presence of carnosine 20mM (1h

pre-treatment). Carnosine was kept during the exposure to TiO2-NPs. The average fluorescence intensity (AU) of at least 5 values for fixed larva is

reported in (D). SD is represented by vertical bars. ***Significantly di�erent, p < 0.001.
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FIGURE 7

MTs expression levels in (A) untreated larvae, (B) TiO2-NPs-treated larvae, and (C) TiO2-NPs-treated larvae in the presence of carnosine 20mM (1h

pre-treatment). Carnosine was kept during the exposure to TiO2-NPs. The average fluorescence intensity (AU) of at least 4 values for fixed larva is

reported in (D). SD is represented by vertical bars. *Significantly di�erent, p < 0.05; **Significantly di�erent, p < 0.01; n.s., not significant.

and proteins and has been linked to the development of various

diseases such as cancer, cardiovascular disease, diabetes, PD, and

AD (58–61).

ROS can have an adverse impact on the embryo and fetal

development (62) and also play a key role in the pathophysiology

of different adverse effects, from cardiotoxicity to neurotoxicity

(63). Therefore, current studies in molecular toxicology and

nanotoxicology are directed to better identify the preclinical

toxicity of new drugs and/or NPs in order to prevent toxicity

in humans. Recent studies with zebrafish focused on new drug

discovery toxicology suggest that this tiny vertebrate represents the

ideal tool to better understand disease biology and drug toxicity

(44, 64). This becomes particularly relevant when considering the

field of NPs and their relevance for human toxicology (65).

Currently, the use of NPs in industry, biology, and medicine

is attracting a lot of attention. Numerous studies have been aimed

at evaluating their biosafety, toxicity, and/or possible side effects

both in vitro and in vivo (66, 67). Among thousands of different

NPs, metal oxide NPs, and in particular TiO2-NPs, have shown

different applications, including the production of solar cells, food

wraps, pharmaceuticals, lacquers, medical devices, gas sensing,

photocatalyst, and cosmetic, just to name a few (68). Despite this

enormous potential, in vitro cells’ studies have shown how these

NPs could induce oxidative stress (69), inhibit cell cycle (70), lead

to inflammatory responses (71) and dysregulated autophagy (72).

In vivo studies have highlighted how TiO2-NPs-induced oxidative

stress contributes to organ dysfunction (73). Additionally, as a

consequence of their intensive applications, TiO2-NPs are often

released into aquatic environments (74), increasing the exposure

of humans and ecosystems to NPs (75).

According to this scenario, in the present study we first

investigated the effects of carnosine or TiO2-NPs exposure on the

development and survival of zebrafish embryos/larvae. Zebrafish,

as discussed above, represents an excellent tool in drug discovery

toxicology to study oxidative stress-linked disorders (45, 46, 76)

and to test new drugs endowed with an antioxidant activity (77,

78), while the selection of carnosine is related to its well-known

multimodal mechanism of action in neurodegenerative disorders

(30), including a strong direct and indirect antioxidant activity

(79). With specific regards to zebrafish development, carnosine-like

peptides have been linked to olfactory and visual functions (47),

while the effects of carnosine exposure during zebrafish embryonic

development have not been fully elucidated.

In our study, carnosine did not alter, at none of the

concentrations considered, the development of zebrafish larvae

(Figure 1). The absence of toxic effects was expected since

both preclinical (80) and clinical (81, 82) studies have clearly

demonstrated that this dipeptide is essentially non-toxic and well-

tolerated, without known drug interactions and severe adverse

effects (83, 84). It is also worth mentioning that despite the

absence of significant deleterious effects of chronic exposure

to carnosine (0.01µM to 10mM) on embryonic development,

treatment with 100mM carnosine can result in developmental

delay and compromised larval survival (47).

According to previous studies carried out on zebrafish showing

that TiO2-NPs did not cause any toxicity to zebrafish embryos

and larvae (85), and confirmed by our results (Figure 4), the

exposure to TiO2-NPs did not affect the hatching rate of zebrafish

embryos and did not cause malformation on the larvae, despite

the well-recognized ability of these NPs to cause oxidative stress

phenomena (28).

Starting from this evidence, the subsequent experiments

described in the present study were purposely designed in

order to determine whether a non-toxic amount of TiO2-

NPs is capable to increase oxidative stress, measured in

terms of total ROS production and protein expression of
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two well-known markers of cellular stress (represented by

Hsp70 and MTs) in zebrafish larvae, as well as the therapeutic

potential of carnosine in counteracting the pro-oxidant effects

of NPs.

When evaluating the production of ROS under our

experimental conditions, it was found a massive increase of

these reactive species in larvae exposed to TiO2-NPs (Figure 5).

Notably, the presence of carnosine completely abolished the

pro-oxidant effects of NPs, giving ROS levels superimposable

to that measured in untreated larvae. These results are in

agreement with a multitude of in vitro and in vivo studies

showing carnosine antioxidant activity and its preclinical potential

as an antidote. In particular, the observed results could be

related to the ability of carnosine to directly interact with and

decrease different reactive species such as superoxide anion

and hydroxyl radicals (86, 87), nitric oxide (88), cytotoxic

carbonyl species (89), and aldehydes (1). Carnosine has also

been able to act indirectly through the enhancement of the

endogenous antioxidant machinery (90–93). As reported by

Chan et al., the dietary supplementation with carnosine was

able to decrease the formation of thiobarbituric acid reactive

substances in rats (94). The ability of carnosine to counteract

oxidative stress has also been demonstrated in astrocytes,

oligodendrocytes, and neuronal cultures (95–98). It is worth

pointing out that recent studies have shown carnosine ability to

decrease NPs-induced ROS formation in lung and microglial cells

(99), while this dipeptide was able to rescue 4-hydroxynonenal

(HNE)-induced retinal phenotype in aldh3a1 zebrafish larvae

mutants (31).

In the present study, we also demonstrated for the first time

that the ability of carnosine to counteract oxidative stress was,

at least in part, related to its modulatory activity on Hsp70

and MTs, two well-known biomarkers in translational medicine

of oxidative stress response (100, 101). The enhanced Hsp70

and MTs protein expression levels were detected in zebrafish

larvae following the treatment with TiO2-NPs (Figures 6, 7), in

accordance with previous studies showing the increased expression

of these markers after the exposure to metals (102–104), or other

pro-oxidant/pro-inflammatory stimuli such as ionizing radiation

(105), intracellular β-amyloid (106), lipopolysaccharides (107), and

interferons (108). Notably, Hsp70 and MTs protein expression

levels were down-regulated by the administration of carnosine

to zebrafish larvae. This negative regulation of Hsp70 and MTs

could be attributable to an indirect activity of carnosine able

to decrease ROS and then oxidative stress, an event strictly

connected to the over-expression of these proteins (17, 109–111)

and that can significantly contribute to the preclinical efficacy

and the therapeutic potential of carnosine as an antidote in

human toxicology.

5. Conclusion

In the present study we demonstrated that carnosine, when

used at physiological concentrations ranging from 0.1 to 20mM,

does not alter the phenotypes of both embryos and larvae

of zebrafish at different hpf in terms of coagulated embryos,

lack of somite formation, non-detachment of the tail, and lack

of heartbeat. When tested in a well-known oxidative stress

model represented by zebrafish larvae challenged with TiO2-NPs,

carnosine significantly decreased ROS levels and this antioxidant

activity was paralleled by its ability to rescue the protein expression

levels of two well-recognized oxidative stress response markers

represented by Hsp70 and MTs. Our results suggest a therapeutic

potential of carnosine as a new pharmacological tool in the

context of pathologies characterized by oxidative stress such as PD

and AD.
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