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Introduction: Ketosis is a predominant metabolic problem and a risk factor for 
several postpartum diseases. This retrospective study aimed to evaluate the 
complete blood count (CBC), plasma biochemistry, and osteocalcin and identify 
significant prepartum and early postpartum values expressed in ketotic cows.

Methods: In 135 Holstein Friesian cows, 210 parturitions of 114 primiparous and 
96 multiparous cows were examined. According to the plasma concentrations 
of β-hydroxybutyrate (BHB; ≥ 1.4 mmol/L) or non-esterified fatty acids (NEFA; 
≥ 0.7 mmol/L) in the postpartum period, cows were divided into healthy cows 
(CON) and ketotic cows (KET). Analyses of CBC and biochemistry profiles were 
performed from −6 to 4 weeks of parturition every 2 weeks (prepartum; BW–5, 
BW–3, and BW–1, postpartum; BW1 and BW3), and osteocalcin ELISA tests were 
performed using blood samples from −2 to 2 weeks of parturition (BW–1 and 
BW1).

Results: In primiparous KET (n = 114) before parturition, lower lymphocyte (Lym) in 
BW–5 and BW–3, lower red blood cell (RBC) in BW–5, higher mean corpuscular 
volume (MCV) in BW–1, and higher NEFA in BW–3 were significant compared with 
CON. Primiparous KET showed lower carboxylated osteocalcin (cOC) levels and a 
significant decrease after parturition. In multiparous KET (n = 96) before parturition, 
lower neutrophil (Neu) in BW–5, higher hemoglobin (HGB) in BW–5, higher MCV 
in BW–5 and BW–1, higher MCH in BW–5, lower total cholesterol (TC) in BW–5, 
higher triglyceride (TG) in BW–3, higher NEFA in BW–1, higher glucose (Glu) in 
BW–3, lower γ-glutamyl transferase (GGT) in BW–5, lower inorganic phosphate 
(iP) in BW–3, and higher body condition score (BCS) in BW–5 and BW–3 were 
significant compared with CON. Multiparous KET showed decreased cOC and 
uncarboxylated osteocalcin (ucOC) after parturition, which was lower than that 
in the CON group.

Discussion: The blood parameters expressing different values between CON and 
KET in prepartum or early postpartum periods are presumed to show individual 
nutrition and health states, liver function, and overweight status. These parameters 
could be valuable indicators that can be used to prevent the occurrence of ketosis 
and improve management practices by recognizing these differences in ketotic 
cows before calving.
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Introduction

The periparturient period of dairy cows, before and after 
parturition, involves various risks associated with metabolic disorders. 
Ketosis is one of the most prevalent diseases causing large economic 
losses in terms of milk production, reproductivity, culling rate, and 
occurrence of other related diseases (1). When a cow begins lactation, 
an increase in energy demand for milk production and recovery and 
a decrease in dry matter intake induce a negative energy balance 
(NEB) in the early postpartum period (2). Under conditions of 
insufficient energy, lipolysis of adipose tissue releases non-esterified 
fatty acids (NEFA) into the blood, which the liver can take up and 
convert into additional energy (3). Although this metabolic pathway 
is a compensatory response to insufficient energy, the excessive 
mobilization of adipose tissue and uncontrolled production of ketone 
bodies can induce ketosis (4).

Metabolites derived from periparturient lipomobilization under 
the NEB status may have a lipotoxic effect on liver function (5). 
Energy deficiency also causes the loss of hormonal responsiveness (6), 
and the increase in circulating β-hydroxybutyrate (BHB) 
concentration in the early postpartum period can decrease the 
probability of pregnancy (7). As a cut-off point to define ketosis, BHB 
levels above 1.2–1.4 mmol/L in serum or plasma are used to diagnose 
subclinical ketosis, which is defined as an elevated concentration of 
BHB without clinical signs, whereas levels above 3.0 mmol/l are 
diagnosed as clinical ketosis (8, 9). Increased BHB concentration is an 
obvious risk factor for increasing the prevalence of postpartum 
disease, and several studies have suggested that circulating NEFA or 
BHB levels in the prepartum period or at parturition are predictors of 
the displaced abomasum (DA) (10, 11), retained placenta (12), and 
other postpartum diseases (13, 14). In addition, changes in blood 
biochemical parameters on the calving date have been suggested as 
indicators associated with postpartum increase in NEFA or BHB 
concentrations (15). The management of transition dairy cows can 
be  challenging due to the various energy metabolism processes 
associated with ketosis. However, careful monitoring and analysis of 
blood indicators before calving can be highly beneficial in controlling 
the disease.

In the early lactation period, the production of colostrum and 
milk requires energy and a large amount of maternal Ca, and the 
consequent demand leads to a decrease in Ca concentration in the 
blood, which is a common factor in postpartum diseases (16). When 
Ca homeostasis is rigorously challenged, it affects energy metabolism 
as a result of overstimulation of lipolysis, reduction of feed intake, 
and suppression of immune functions (17, 18). Osteocalcin (OC) is 
a contextual factor that reflects the metabolic status of an individual 
or herd not only as a marker of bone growth and remodeling. OC is 
a protein hormone secreted by osteoblasts, and its carboxylated 
(cOC) form binds to Ca for bone mineralization (19, 20). 
Uncarboxylated OC (ucOC) regulates glucose and lipid metabolism 
by enhancing insulin secretion (19, 21). However, the precise 
mechanisms by which cOC and ucOC regulate glucose and lipid 
homeostasis remain unclear.

In this study, peripartum dairy cows with ketosis were defined and 
blood analysis results of both the prepartum and postpartum periods 
were compared retrospectively. Moreover, the OC concentrations in 
selected peripartum dairy cows were analyzed to evaluate the 
peripartum changes according to the ketosis occurrence.

Materials and methods

Animals

A total of 135 Holstein Friesian cows raised on a free-stall farm at 
Seoul National University, Pyeongchang, Republic of Korea, were used 
in this study. The cows were fed twice a day (Table 1) with a total 
mixed ration (TMR) and had free access to water. After parturition, 
participants voluntarily milked two or three times a day using a 
robotic milking system (VMS™, DeLaval, Tumba, Sweden). From 
April 2014 to December 2021, 210 parturitions of 114 primiparous 
and 96 multiparous cows were recorded. The primiparous cows had a 
mean age of 27.4 ± 5.0 months at parturition, and the multiparous 
cows had a mean age of 49.3 ± 12.8 (average ± S.D.) months at their 
2nd–5th parities, with an average of 2.5 ± 0.8.

Blood samples

Every 2 weeks during the periparturient period of cows, from 
approximately −60 d of expected parturition to 60 d of lactation to the 
maximum, coccygeal blood samples were collected in K2 EDTA and 
sodium heparin tubes and then stored in an insulated cooler box 
(2–8°C) until transportation. Due to the proximity of veins and 
arteries, some of the samples have been arterial blood draws. At the 
same time, the conditions of the fetus and uterus were confirmed in 
prepartum cows. Health status was examined in postpartum cows, and 
milk production and dry matter intake (DMI) were assessed. The body 
condition score (BCS) was also evaluated in both prepartum and 
postpartum cows. An injection of vitamin compound (Vigantol-E, 
Elanco Animal Health Incorporated, Indiana, United  States) was 
administered once a month during the prepartum period. During the 
whole periparturient period, time points from 6 weeks before calving 
to 4 weeks after calving were selected and divided into five groups 
(BW–5, −6 to −5 weeks; BW–3, −4 to −3 weeks; BW–1, −2 to 
−1 weeks; BW1, 1 to 2 weeks; and BW3, 3 to 4 weeks of parturition).

Blood analyses and group definition

The collected blood samples were transported to the laboratory of 
the hospital within 2 h, and complete blood count (CBC) tests were 
performed (Hemavet, Drew Scientific, Florida, USA). The blood in 
sodium heparin was centrifuged at 3,000 × g for 15 min, and the 
biochemical parameters of plasma were analyzed (BS-400, Mindray, 
Guangdong, China). The remaining plasma samples were stored at 
−80°C for further analysis. According to the plasma biochemistry 
results of BHB or NEFA in the postpartum period, the cows with 
either BHB ≥ 1.4 mmol/L or NEFA ≥0.7 mmol/L were defined as 
ketotic (KET, n = 116, 60 primiparous and 58 in multiparous) cows 
while those with lower levels were classified as non-ketotic (CON, 
n = 92, 54 primiparous and 38 multiparous) cows.

Plasma analyses for osteocalcin

Cows were randomly selected within KET and CON groups, 
respectively, for the analysis of cOC (n = 16  in KET and n = 15  in 

https://doi.org/10.3389/fvets.2023.1161596
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Choi et al. 10.3389/fvets.2023.1161596

Frontiers in Veterinary Science 03 frontiersin.org

CON) and ucOC (n = 17 in KET and n = 18 in CON) concentrations, 
and plasma samples from BW–1 and BW1 were used. The analysis was 
performed using cOC and ucOC ELISA kits (MK111 and MK118, 
Takara, Shiga, Japan), and the intra-and inter-assay coefficients of 
variation (CV) were 4.3 and 3.6% for cOC and 5.9 and 7.8% for ucOC, 
respectively.

Statistical analyses

At each time point and for each blood parameter, an independent 
t-test was performed to compare the KET and CON cows using blood 
analysis data (SPSS Statistics 26, IBM, New York, United States). The 
Mann–Whitney test was used to detect differences when the data were 
not normally distributed by the Shapiro–Wilk test. To compare the 
results of OC concentrations, an independent t-test was performed 
between KET and CON at each time point, and a paired t-test or a 
Wilcoxon signed-rank test was used between BW–1 and BW1 to 
analyze parturition-related changes in each group.

Results

Hematological and plasma biochemical 
analyses in prepartum periods

The results of the CBC and the plasma biochemical analyses were 
presented from 6 weeks before (Tables 2–4 and Supplementary Table S1) 
to 4 weeks after (Tables 5, 6 and Supplementary Table S2) parturition 
in the primiparous and multiparous cows. Supplementary data in our 
study refers to the parameters that did not exhibit significant 
differences during the prepartum or postpartum period. In the 
prepartum period (Tables 2–4), primiparous KET showed lower 
numbers of lymphocytes (Lym) and red blood cells (RBC) in BW–5 
(Table 2, p = 0.015 and 0.017, respectively) and Lym in BW–3 (Table 3, 
p = 0.024), while multiparous KET showed lower neutrophil (Neu) 
numbers in BW–5 (Table  2, p = 0.020). The concentration of 
hemoglobin (HGB) and the percentage of hematocrit (HCT) were 
higher in the prepartum KET, and the differences in HGB were 
significant in multiparous cows in BW–5 (Table 2, p = 0.023). The 

mean corpuscular volume (MCV) and mean corpuscular hemoglobin 
(MCH) were higher in the KET of both primiparous and multiparous 
cows, and these differences were observed throughout the 
prepartum period.

Among the biochemical parameters, the plasma concentrations 
of total cholesterol (TC), triglyceride (TG), NEFA, and glucose (Glu) 
were different depending on the parity and parturition. TC gradually 
decreased until BW1 in all groups except primiparous CON, but 
there was no statistical analysis performed (Tables 2–4). The 
multiparous KET cows showed lower TC from BW–5 (Table  2, 
p = 0.037) and higher TG from BW–3 (Table 3, p = 0.005) compared 
with CON. There were prepartum increases in NEFA in primiparous 
(Table 3, p = 0.048) and multiparous (Table 4, p = 0.044) KET cows, 
and the Glu levels were higher in KET throughout the entire 
prepartum period in both primiparous and multiparous cows. The 
multiparous KET group showed lower γ-glutamyl transferase (GGT) 
levels (Table 2, p = 0.039) and lower inorganic phosphate (iP) levels 
(Table 3, p = 0.027). Prepartum BCS was higher in KET cows, but this 
difference was not statistically significant in primiparous cows 
(Tables 2, 3).

Hematological and plasma biochemical 
analyses in postpartum periods

In the postpartum period (Tables 5, 6), lower numbers of white 
blood cells (WBC), Neu, and Lym were present in primiparous or 
multiparous KET in BW3 (Table  6). For the other hematological 
parameters, including HGB, HCT, MCV, and MCH, KET showed 
higher levels than CON, especially in multiparous cows in BW1 
(Table 5). The multiparous KET group had a lower platelet count 
(PLT) than the CON group in BW1 (Table 5, p = 0.047).

Among the biochemical parameters, KET cows showed lower TC 
and higher TG compared with CON (Tables 5, 6), and the differences 
were observed in both primiparous and multiparous cows. BHB and 
NEFA were higher in both primiparous and multiparous KET, which 
is consistent with the definition of ketosis, and they showed lower Glu 
levels (Tables 5, 6). The lower level of blood urea nitrogen (BUN) 
following postpartum ketosis in primiparous cows was weakly 
significant (Table  6, p = 0.050). The plasma levels of aspartate 

TABLE 1 Composition of hay, concentrate, and total mixed ration (TMR) fed to periparturient cows expressed as a percentage of the original feed 
substrate.

Prepartum cow Postpartum cow

Hay Concentrate Hay Concentrate TMR

Crude protein 10.06 18.83 10.06 22.8 15.27

Crude fat 2.45 3.42 2.45 5.54 4.32

Crude fiber 25.14 8.32 25.14 6.63 18.5

Crude ash 6.64 10.69 6.64 8.68 7.39

Calcium 0.39 1.71 0.39 1.71 0.874

Phosphorus 0.22 0.59 0.22 0.589 0.451

NEL (Mcal/kg) 1.19 1.717 1.19 1.868 1.529

Feeding (kg/day) 6.0 3.5 6.0 milk yield × 0.28 20

The daily feeding amount for prepartum cows was determined by adding up the amounts of hay and concentrate. For postpartum cows, the amount of concentrate was adjusted based on their 
milk yield, and TMR was added to their diet. TMR, total mixed ration; NEL, net energy for lactation.
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aminotransferase (AST), GGT, lactate dehydrogenase (LDH), creatine 
kinase (CK), and alkaline phosphatase (ALP) were higher in the KET 
group in primiparous or multiparous cows (Tables 5, 6), and the lower 
Ca was present in multiparous cows in BW1 (Table 5).

Osteocalcin analyses and ketosis

The cOC and ucOC levels of primiparous and multiparous cows 
are presented in Figure 1, and each subfigure shows the average levels 
with distribution and the significance according to ketosis occurrence 

(CON and KET) and parturition (BW–1 and BW1). For the analysis 
of cOC level, the plasma samples of the primiparous CON (n = 5, 
26.8 ± 4.3; the mean ± standard deviation of monthly age at 
parturition), primiparous KET (n = 5, 34.0 ± 4.7), multiparous CON 
(n = 10, 52.3 ± 12.5), and multiparous KET (n = 11, 54.7 ± 12.6) were 
selected. For the ucOC analysis, primiparous CON (n = 6, 26.5 ± 3.9), 
primiparous KET (n = 7, 32.4 ± 4.8), multiparous CON (n = 12, 
50.5 ± 12.2), and multiparous KET (n = 10, 54.0 ± 13.0) were selected. 
The average age at parturition was statistically different between the 
primiparous CON and KET groups for both cOC and ucOC (p = 0.036 
and 0.035, respectively).

TABLE 2 Parameters of complete blood count (CBC), biochemistry analysis and BCS from −6 to −5 weeks of parturition (BW–5).

Prepartum Parameters Primiparous Multiparous

CON (n = 54) KET (n = 60) p value CON (n = 38) KET (n = 58) p value

BW–5 Neu, 103/mm3 2.9 ± 0.8 2.8 ± 1.0 0.73 3.2 ± 1.0 2.7 ± 1.0 0.020

Lym, 103/mm3 3.9 ± 0.8 3.4 ± 0.8 0.015 3.3 ± 1.2 3.0 ± 0.9 0.37

RBC, 106/mm3 6.7 ± 0.8 6.4 ± 0.5 0.017 6.3 ± 0.5 6.3 ± 0.7 0.75

HGB, g/dL 10.6 ± 1.5 10.6 ± 0.9 0.98 9.9 ± 1.0 10.4 ± 1.2 0.023

MCV, fL 41.8 ± 4.0 43.0 ± 3.0 0.16 42.1 ± 3.3 44.2 ± 4.7 0.046

MCH, pg 15.9 ± 2.2 16.7 ± 1.6 0.076 15.7 ± 1.8 16.7 ± 1.7 0.010

TC, mg/dL 104.7 ± 20.0 105.2 ± 23.7 0.93 129.5 ± 43.4 111.4 ± 27.9 0.037

TG, mg/dL 23.7 ± 6.0 21.1 ± 5.2 0.067 20.0 ± 6.4 21.8 ± 5.3 0.17

NEFA, mmol/L 0.16 ± 0.12 0.20 ± 0.13 0.29 0.11 ± 0.09 0.14 ± 0.11 0.10

Glu, mg/gL 71.0 ± 6.9 73.8 ± 6.7 0.068 67.3 ± 8.4 69.2 ± 7.6 0.28

GGT, U/L 15.8 ± 3.5 16.2 ± 5.1 0.82 21.0 ± 6.9 19.3 ± 5.4 0.039

iP, mg/dL 6.6 ± 0.7 6.7 ± 0.7 0.75 6.4 ± 0.8 6.4 ± 0.6 0.84

BCS 3.46 ± 0.16 3.47 ± 0.18 0.71 3.36 ± 0.18 3.48 ± 0.21 0.010

The results are expressed as means ± standard deviations and p value. Neu, neutrophil; Lym, lymphocytes; RBC, red blood cell; HGB, hemoglobin; MCV, mean corpuscular volume; MCH, 
mean corpuscular hemoglobin; TC, cholesterol; TG, triglyceride; NEFA, non-esterified fatty acids; Glu, glucose; GGT, γ-glutamyl transferase; iP, inorganic phosphate; BCS, body condition 
score.

TABLE 3 Parameters of complete blood count (CBC), biochemistry analysis and BCS from −4 to −3 weeks of parturition (BW–3).

Prepartum Parameters Primiparous Multiparous

CON (n = 54) KET (n = 60) p value CON (n = 38) KET (n = 58) p value

BW–3 Neu, 103/mm3 3.3 ± 0.9 3.1 ± 0.8 0.21 3.0 ± 0.8 2.9 ± 0.8 0.34

Lym, 103/mm3 3.8 ± 0.9 3.5 ± 1.6 0.024 3.2 ± 1.4 3.0 ± 0.8 0.91

RBC, 106/mm3 6.7 ± 0.6 6.5 ± 0.6 0.081 6.3 ± 0.4 6.2 ± 0.6 0.56

HGB, g/dL 10.7 ± 1.2 10.8 ± 1.2 0.69 10.1 ± 1.0 10.4 ± 1.1 0.29

MCV, fL 41.9 ± 3.8 42.7 ± 5.0 0.12 42.6 ± 3.5 44.4 ± 4.8 0.063

MCH, pg 16.2 ± 2.1 16.8 ± 1.7 0.051 16.1 ± 1.6 16.7 ± 1.7 0.11

TC, mg/dL 104.2 ± 19.8 100.1 ± 23.4 0.33 107.3 ± 33.2 105.7 ± 28.3 0.81

TG, mg/dL 23.7 ± 7.0 21.9 ± 5.0 0.13 20.4 ± 4.7 23.9 ± 6.0 0.005

NEFA, mmol/L 0.17 ± 0.11 0.25 ± 0.23 0.048 0.11 ± 0.08 0.15 ± 0.17 0.23

Glu, mg/gL 71.9 ± 6.0 74.0 ± 6.0 0.089 67.3 ± 5.4 70.2 ± 6.2 0.033

GGT, U/L 16.8 ± 4.7 16.7 ± 3.8 0.96 20.5 ± 4.7 19.1 ± 4.1 0.16

iP, mg/dL 6.6 ± 1.0 6.6 ± 0.7 0.52 6.6 ± 0.8 6.2 ± 0.7 0.027

BCS 3.47 ± 0.16 3.51 ± 0.17 0.40 3.40 ± 0.15 3.49 ± 0.18 0.011

The results are expressed as means ± standard deviations and p value. Neu, neutrophil; Lym, lymphocytes; RBC, red blood cell; HGB, hemoglobin; MCV, mean corpuscular volume; MCH, 
mean corpuscular hemoglobin; TC, cholesterol; TG, triglyceride; NEFA, non-esterified fatty acids; Glu, glucose; GGT, γ-glutamyl transferase; iP, inorganic phosphate; BCS, body condition 
score.
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Statistical comparisons between CON and KET were performed 
for cOC and ucOC, and in BW–1, only prepartum primiparous cows 

for cOC showed statistical differences (Figure  1A p  = 0.021). The 
postpartum cows (BW1) showed statistical differences for the 

TABLE 4 Parameters of complete blood count (CBC), biochemistry analysis and BCS from −2 to −1 weeks of parturition (BW–1).

Prepartum Parameters Primiparous Multiparous

CON (n = 54) KET (n = 60) p value CON (n = 38) KET (n = 58) p value

BW–1 Neu, 103/mm3 4.1 ± 1.4 4.0 ± 1.5 0.58 3.7 ± 1.0 3.7 ± 1.3 0.93

Lym, 103/mm3 3.5 ± 1.0 3.5 ± 1.3 0.98 3.1 ± 1.5 2.7 ± 0.9 0.62

RBC, 106/mm3 6.8 ± 0.7 6.7 ± 0.6 0.46 6.5 ± 0.6 6.4 ± 0.6 0.48

HGB, g/dL 10.8 ± 1.4 11.1 ± 1.4 0.27 10.3 ± 0.9 10.7 ± 1.4 0.16

MCV, fL 41.6 ± 3.6 43.5 ± 3.5 0.011 42.8 ± 3.8 45.0 ± 4.7 0.049

MCH, pg 15.9 ± 1.9 16.6 ± 1.9 0.064 16.0 ± 1.8 16.7 ± 1.9 0.068

TC, mg/dL 91.9 ± 22.0 86.7 ± 23.8 0.27 95.0 ± 31.0 90.5 ± 24.6 0.45

TG, mg/dL 22.6 ± 7.0 21.6 ± 6.9 0.48 22.2 ± 7.3 22.6 ± 6.3 0.75

NEFA, mmol/L 0.21 ± 0.12 0.28 ± 0.30 0.51 0.14 ± 0.11 0.19 ± 0.12 0.044

Glu, mg/gL 70.4 ± 6.2 71.8 ± 9.0 0.38 66.7 ± 7.8 69.5 ± 6.9 0.074

GGT, U/L 17.3 ± 4 16.9 ± 7.6 0.31 18.4 ± 5.4 18.6 ± 5.2 0.51

iP, mg/dL 6.4 ± 1.4 6.5 ± 0.8 0.73 6.6 ± 0.8 6.5 ± 1.0 0.53

BCS 3.47 ± 0.15 3.48 ± 0.17 0.76 3.43 ± 0.21 3.50 ± 0.20 0.085

The results are expressed as means ± standard deviations and p value. Neu, neutrophil; Lym, lymphocytes; RBC, red blood cell; HGB, hemoglobin; MCV, mean corpuscular volume; MCH, 
mean corpuscular hemoglobin; TC, cholesterol; TG, triglyceride; NEFA, non-esterified fatty acids; Glu, glucose; GGT, γ-glutamyl transferase; iP, inorganic phosphate; BCS, body condition 
score.

TABLE 5 Parameters of complete blood count (CBC) and biochemistry analysis from 1 to 2 weeks of parturition (BW1).

Postpartum Parameters Primiparous Multiparous

CON (n = 54) KET (n = 60) p value CON (n = 38) KET (n = 58) p value

BW1 WBC, 103/mm3 7.2 ± 2.8 7.2 ± 2.6 0.76 6.6 ± 2.3 6.9 ± 2.3 0.52

Neu, 103/mm3 3.4 ± 2.4 3.6 ± 2.1 0.52 3.2 ± 1.5 3.7 ± 1.9 0.23

Lym, 103/mm3 2.9 ± 0.8 2.8 ± 0.8 0.47 3.0 ± 1.2 2.5 ± 0.8 0.072

HGB, g/dL 10.6 ± 1.5 10.6 ± 1.4 0.96 10.1 ± 1.1 10.8 ± 1.1 0.002

HCT, % 27.4 ± 2.9 28.1 ± 3.6 0.43 26.4 ± 2.6 28.4 ± 2.9 0.001

MCV, fL 41.9 ± 3.6 43.2 ± 3.3 0.058 42.7 ± 3.4 44.9 ± 4.6 0.044

MCH, pg 16.2 ± 1.8 16.3 ± 1.8 0.48 16.4 ± 1.7 17.1 ± 1.2 0.018

PLT, 103/mm3 327.1 ± 129.3 316.2 ± 166.0 0.70 337.2 ± 100.1 286.9 ± 105.9 0.047

TC, mg/dL 93.7 ± 24.6 78.0 ± 26.3 0.001 91.8 ± 34.8 87.5 ± 40.4 0.29

TG, mg/dL 10.7 ± 3.7 12.2 ± 4.0 0.014 8.6 ± 2.0 10.4 ± 3.2 0.001

BHB, mmol/L 0.69 ± 0.21 1.23 ± 0.87 <0.001 0.63 ± 0.17 1.28 ± 0.77 <0.001

NEFA, mmol/L 0.42 ± 0.15 0.95 ± 0.38 <0.001 0.33 ± 0.15 0.79 ± 0.40 <0.001

Glu, mg/gL 69.6 ± 14.9 64.5 ± 16.7 0.038 63.0 ± 12.5 59.3 ± 15.5 0.23

BUN, mg/dL 12.7 ± 3.1 12.0 ± 2.9 0.24 13.0 ± 3.4 12.9 ± 3.4 0.96

AST, U/L 90.3 ± 22.0 125.9 ± 67.9 <0.001 86.3 ± 17.5 116.0 ± 80.7 0.007

GGT, U/L 20.4 ± 5.5 21.7 ± 8.4 0.60 20.5 ± 6.2 22.8 ± 12.7 0.81

LDH, U/L 2139.8 ± 419.1 2358.9 ± 546.3 <0.001 1847.6 ± 250.4 2061.9 ± 616.4 0.094

CK, U/L 219.1 ± 165 407.7 ± 531 <0.001 184.8 ± 176.0 236.6 ± 194.2 0.013

ALP, U/L 67.2 ± 19.0 73.2 ± 25.7 0.22 48.9 ± 16.9 52.1 ± 17.7 0.37

Ca, mg/dL 8.9 ± 0.7 8.8 ± 0.6 0.17 8.9 ± 0.6 8.6 ± 0.8 0.020

The results are expressed as means ± standard deviations and p value. WBC, white blood cell; Neu, neutrophil; Lym, lymphocytes; HGB, hemoglobin; HCT, hematocrit; MCV, mean 
corpuscular volume; MCH, mean corpuscular hemoglobin; PLT, platelet; TC, cholesterol; TG, triglyceride; BHB, β-hydroxybutyrate; NEFA, non-esterified fatty acids; Glu, glucose; BUN, blood 
urea nitrogen; AST, aspartate aminotransferase; GGT, γ-glutamyl transferase; LDH, lactate dehydrogenase; CK, creatine kinase; ALP, alkaline phosphatase; Ca, total calcium.
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primiparous cOC (Figure 1A p = 0.001), multiparous cOC (Figure 1B 
p = 0.016), and multiparous ucOC (Figure 1D p = 0.017). As a result 
of the postpartum decrease in OC, differences were observed when 
we compared the prepartum and postpartum cows in the primiparous 
cOC (Figure 1A p = 0.14 and 0.043 in CON and KET, respectively), 
multiparous cOC (Figure 1B p = 0.017 and 0.003), primiparous ucOC 
(Figure  1C p  = 0.028 both), and multiparous ucOC (Figure  1D 
p = 0.071 and 0.005).

Discussion

In the present study, we aimed to evaluate the differences in the 
concentrations of hematological and biochemical parameters and 
osteocalcin related to ketosis between CON and KET during the 
periparturient period and to screen for prepartum or early postpartum 
parameters that could predict the occurrence of ketosis. The metabolic 
changes in KET in the postpartum period reflected the obvious 
differences in the blood analysis compared with the CON group, as 
expected. In the prepartum period (BW–5, BW–3, and BW–1) and the 
early postpartum period (BW1), we found several parameters, implying 
potential as a detection for ketosis occurrence, which is defined as an 
increase in BHB or NEFA in the postpartum period. Each parameter 
showed a different significance in primiparous and multiparous cows. 
In primiparous cows, Lym, RBC, MCV, and NEFA had significantly 

different values between CON and KET at least one stage of the test 
period inthe prepartum period, but the differences were limited in 
fewer parameters and periods compared with multiparous cows. In 
multiparous cows, higher values of HGB, MCV, MCH, TG, NEFA, Glu, 
and BCS, and lower values of Neu, TC, GGT, and iP were observed in 
the prepartum period. In addition, the decreases in cOC and ucOC 
levels of the multiparous KET were observed in the periods from BW–1 
to BW1, which were more significant and lowered than CON, whereas 
the prepartum and postpartum differences were significant only for the 
cOC levels in the primiparous cows.

Increases in Neu and Lym counts mainly indicate systemic 
inflammation or other pathological symptoms. Hammon et al. (22) 
presented a correlation between NEFA concentration and Neu activity. 
In the peripartum period, the number of circulating Neu or activity 
tends to decrease due to mammary involution, recruitment to the 
peripheral tissues, or hypocalcemia (23). Conversely, increased 
numbers of Neu and insulin resistance are related to adipose tissue in 
overweight individuals (24), and stressful conditions, including 
ketosis, abomasal displacement, and dystocia, can induce Neu in cows 
(25). A decrease in Lym count is also related to insulin resistance (26), 
and both NEFA and BHB inhibit the development and function of 
Lym (27, 28). It is uncertain which factor gave rise to differences 
between the CON and the KET groups since evidence of an infection 
or changes in physical symptoms were not detected in the 
prepartum cows.

TABLE 6 Parameters of complete blood count (CBC) and biochemistry analysis from 3 to 4 weeks of parturition (BW3).

Postpartum Parameters Primiparous Multiparous

CON (n = 54) KET (n = 60) p value CON (n = 38) KET (n = 58) p value

BW3 WBC, 103/mm3 9.1 ± 3.1 7.3 ± 2.3 0.003 7.5 ± 1.8 6.7 ± 2.0 0.065

Neu, 103/mm3 4.9 ± 2.6 3.6 ± 1.7 0.007 3.8 ± 1.3 3.6 ± 1.7 0.26

Lym, 103/mm3 3.2 ± 0.9 3.2 ± 1.2 0.57 3.1 ± 1.2 2.6 ± 0.6 0.019

HGB, g/dL 9.5 ± 1.1 9.4 ± 1.4 0.65 9.4 ± 0.9 9.4 ± 1.1 0.93

HCT, % 24.6 ± 2.1 24.7 ± 3.3 0.78 24.3 ± 1.9 24.8 ± 2.5 0.32

MCV, fL 40.8 ± 3.7 41.7 ± 2.9 0.15 41.8 ± 3.2 44.0 ± 4.5 0.026

MCH, pg 15.9 ± 2.0 15.9 ± 1.8 0.83 16.2 ± 1.7 16.6 ± 2.0 0.34

PLT, 103/mm3 407.6 ± 130.6 438.9 ± 164.9 0.29 369.8 ± 103.0 376.2 ± 129.5 0.82

TC, mg/dL 144.1 ± 33.5 131.5 ± 37.5 0.074 160.8 ± 36.3 149.8 ± 44.9 0.26

TG, mg/dL 10.3 ± 2.1 11.0 ± 3.4 0.51 9.1 ± 2.3 10.5 ± 2.5 0.014

BHB, mmol/L 0.72 ± 0.23 1.45 ± 0.88 <0.001 0.82 ± 0.21 1.63 ± 1.17 <0.001

NEFA, mmol/L 0.34 ± 0.13 0.67 ± 0.43 <0.001 0.28 ± 0.14 0.53 ± 0.25 <0.001

Glu, mg/gL 63.8 ± 10.4 59.3 ± 14.5 0.069 57.8 ± 7.0 52.7 ± 10.1 0.008

BUN, mg/dL 13.8 ± 3.6 12.1 ± 3.7 0.050 13.4 ± 3.2 12.8 ± 3.2 0.45

AST, U/L 77.0 ± 12.8 107.7 ± 55.1 <0.001 86.6 ± 15.4 101.4 ± 28.5 0.003

GGT, U/L 24.1 ± 19.0 32.2 ± 22.2 <0.001 23.9 ± 7.2 35.8 ± 57.0 0.13

LDH, U/L 2045.6 ± 375.4 2534.8 ± 682.1 <0.001 1982.3 ± 289.1 2274.2 ± 620.5 0.005

CK, U/L 244.9 ± 199.2 283.8 ± 267.3 0.55 170.9 ± 39.6 207.1 ± 126.6 0.44

ALP, U/L 57.5 ± 18.6 59.8 ± 17.3 0.44 37.9 ± 7.4 44.9 ± 18.2 0.048

Ca, mg/dL 9.1 ± 0.6 9.1 ± 0.7 0.87 9.2 ± 0.5 9.1 ± 0.7 0.47

The results are expressed as means ± standard deviations and p value. WBC, white blood cell; Neu, neutrophil; Lym, lymphocytes; HGB, hemoglobin; HCT, hematocrit; MCV, mean 
corpuscular volume; MCH, mean corpuscular hemoglobin; PLT, platelet; TC, cholesterol; TG, triglyceride; BHB, β-hydroxybutyrate; NEFA, non-esterified fatty acids; Glu, glucose; BUN, blood 
urea nitrogen; AST, aspartate aminotransferase; GGT, γ-glutamyl transferase; LDH, lactate dehydrogenase; CK, creatine kinase; ALP, alkaline phosphatase; Ca, total calcium.
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The primiparous KET group in the early prepartum period 
showed a lower number of RBC than the CON group, but we could 
not directly relate the lower RBC numbers to anemia. Rather, 
we observed a slight increase in the concentrations of HGB, MCV, and 
MCH, especially in the multiparous KET in both the prepartum and 
postpartum periods. The increase in MCV and MCH suggests 
macrocytosis, which is mostly found in cirrhotic patients with 
alcoholic or non-alcoholic disease (29), and the early postpartum 
values were consistent with a previous report (15). However, in the 
prepartum period, no noticeable increases in biochemical parameters 
related to liver damage or vitamin B12/folate deficiency were observed 
(30). Kamruzzaman (31) evaluated anemia and HGB levels according 
to BMI scores in humans thus it would also be relevant to evaluate 
both BCS and HGB-related parameters in the present study. In a study 
on a ketogenic diet in rats, the MCV and MCH levels decreased with 
acidosis (32), implying that the effects of ketone bodies are not 
superior to those in this study. Low platelet numbers can also 
be attributed to liver disease or folate deficiency (33, 34), and the lower 
PLT in KET compared with CON in the present study needs to 
be evaluated together with additional analysis for postpartum liver 
function or nutrition.

As a predominant factor, which indicates NEB and lipolysis (35), 
the concentration of NEFA increased just before parturition and was 
significant in primiparous and multiparous cows. Cholesterol 

concentration is one of the parameters used to predict fatty liver and 
other postpartum diseases, with a ratio to NEFA in cows (36, 37). In 
a study by Tessari et al. (35), fatty acids were evaluated according to 
lipid classes, and healthy cows with lower NEFA had higher circulating 
cholesterol esters (CEs) with higher lecithin cholesterol acyl-
transferase (LCAT) activity in the early postpartum period. The 
negative correlation between NEFA and blood cholesterol was also 
explained by an accumulation of TG in the liver, followed by a 
reduction in DMI (38). Furthermore, the low cholesterol concentration 
in cows with fatty liver (39), can be  a basis for presuming the 
prepartum health status of multiparous KET in the present study. 
High TG concentrations in the postpartum KET showed contrary 
results to those of a previous study which suggested a negative 
correlation between NEFA and plasma TG levels (40). Oikawa et al. 
(41), however, suggested a positive correlation between NEFA and 
VLDL-TG concentrations in the serum of primiparous cows rather 
than multiparous cows, and in the analysis of plasma fatty acids (FA) 
related to TG (41), the total FA increased in hyperketonemic cows. In 
addition, they suggested that the ability to synthesize VLDL differs 
depending on parity, which supports the prepartum TG levels of 
primiparous and multiparous cows in the present study. Although 
cattle have a limited ability to export TG, and their blood levels do not 
accurately reflect liver accumulation (42), increased TG is one of the 
main parameters used to evaluate liver function in cows (43). Lipid 
metabolism-related blood parameters can be complicated by parities, 
the time point of sampling or analyses, fatty liver, nutrition states, and 
parturition stress; however, the differences between CON and KET in 
the present study exhibited potential as a preventative marker of 
ketosis. As indicators of liver and muscle damage (15, 44, 45), higher 
levels of AST, GGT, LDH, CK, and ALP in KET reflect the postpartum 
liver function for sudden energy consumption, but the reason for the 
prepartum difference in GGT is not clear. Calcium concentration after 
parturition is related to disturbances in energy metabolism (18), and 
it is significantly lower immediately after parturition in 
multiparous cows.

The role of skeleton-derived osteocalcin in energy metabolism 
has been confirmed in knockout mice expressing obesity and 
hyperglycemia, with insulin insufficiency and resistance (19). Both 
cOC and ucOC in mice are associated with decreased fat mass, 
increased glucose transport, and improved insulin sensitivity in vivo 
(46) and in vitro (47). In non-periparturient cows, an age-related 
decrease was observed as parity increased (48), and their findings 
support the difference in prepartum or postpartum cOC levels 
between CON and KET in primiparous cows in the present study. 
The age-related decrease in ucOC was less significant than that in 
cOC. The concentration of ucOC in postpartum multiparous cows 
(Figure  1D) could be  explained by the low ucOC levels and low 
insulin sensitivity in postpartum cows (49). In addition, the changes 
in cOC or ucOC levels between BW–1 and BW1 and the different 
postpartum levels between CON and KET suggest that both cOC and 
ucOC are involved in energy metabolism related to postpartum 
ketosis. Thus, the low levels of OC (both cOC and ucOC), which 
decreased abruptly in BW1, provide a rationale for managing 
transition cows at high risk for ketosis in the early postpartum period. 
Exogenous calcitriol administration increases the plasma 
concentrations of ucOC and cOC in cattle (50), and in the present 
study, cows were injected with vitamin D intramuscularly before 

FIGURE 1

Box-and-whisker plot comparison of plasma concentrations of 
osteocalcin (OC) between healthy cows (CON) and ketotic cows 
(KET) in prepartum (BW–1; −2 to −1 weeks of parturition) and 
postpartum (BW1; 1 to 2 weeks of parturition). The carboxylated 
osteocalcin (cOC) in primiparous (A) and multiparous (B) cows are 
presented, and the uncarboxylated osteocalcin (ucOC) is also 
analyzed in primiparous (C) and multiparous (D) cows. Statistical 
comparisons were performed, and the significances between CON 
and KET (* p < 0.05, ** p < 0.01) and between BW–1 and BW1 († p < 0.05, 
†† p < 0.01) were presented.
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parturition at a 4-week interval. The effect of vitamin D injection 
could not be analyzed due to the uncontrolled administration date, 
however, it is possible that controlled administration of a variety of 
forms of vitamin D before parturition prevents ketosis through 
increased plasma concentrations of ucOC and cOC. To elucidate 
these, further investigations are needed on the effects of OC changes 
with various health states and the mechanisms by which OC is 
involved in energy metabolism.

The inclusion of a comparison between primiparous and 
multiparous cows provides valuable information for understanding 
the differences in ketosis incidence and blood test values between 
these two groups. It is noteworthy that high NEFA levels were 
observed in both primiparous and multiparous cows before 
parturition, whereas high BCS, low TC, and high TG levels were only 
significant in multiparous cows. Additionally, low TC and Glu levels 
in cows with ketosis after parturition appeared earlier in primiparous 
cows, and there was no significant difference in Ca levels between the 
two groups. The differences in blood test values may be attributed to 
the differences in energy metabolism and nutritional requirements 
between these two groups. Primiparous cows produce less milk than 
multiparous cows, and the imbalance of energy metabolism before 
parturition assessed by blood biochemistry results was not noticeable. 
Therefore, management strategies to prevent and manage ketosis 
should take into account the specific needs and characteristics of both 
primiparous and multiparous cows. In primiparous cows, the rumen 
filling score (41) can be a useful tool for assessing DMI and ensuring 
that cows are receiving an adequate supply of nutrients to support 
their energy requirements.

In conclusion, several hematologic and biochemical parameters 
were significantly different in ketotic cows in both the prepartum and 
postpartum periods. The increased levels of MCV and MCH in the 
prepartum period suggested the occurrence of ketosis related to 
hepatic metabolism, which appeared earlier in the prepartum period, 
especially in multiparous cows. Among the parameters of energy 
metabolism, low TC and high BCS and TG in KET cows before 
parturition suggested impaired hepatic lipid metabolism and 
increased insulin resistance related to ketosis, which appeared 
prominently in multiparous cows. In the OC analyses, the largely 
decreased cOC and ucOC after parturition in KET indicated that OC 
is related to energy metabolism and ketosis occurrence in 
periparturient cows. To identify the metabolic parameters of ketosis 
occurrence, this study was conducted based only on ketosis, without 
considering other postpartum diseases in cows. Since only blood 
analysis was performed every 2 weeks, comparative analysis with other 
indicators, such as TG concentration in the liver, is limited, and it 
might be less subdivided in inferring change than a daily analysis. In 
this study, however, it was able to identify differences in blood analysis 
values between CON and KET for each evaluation period before and 
after parturition. The significantly different levels of prepartum blood 
parameters and the postpartum changes in osteocalcin level can 
be used to detect cows with a high risk of ketosis, and it helps improve 
cattle productivity and understand metabolic processes related 
to ketosis.
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