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Two novel proanthocyanidins, (2R, 3R)-(+)-Gallocatechin-(4β → 8)4-(2R,

3R)-(+)-gallocatechin (compound 1) and 3-O-galloyl-(2S, 3S)-(–)-epicatechin-

(4α → 8)-[3-O-galloyl-(2S, 3S)-(–)-epicatechin (4α → 8)]2-(2S, 3S)-(–)-

epicatechin (compound 2), were structurally characterized from leaves of

Anogeissus pendula. The structures were determined by ultraviolet spectroscopy

(UV), proton nuclear magnetic resonance (1H NMR), 13C NMR, and heteronuclear

multiple bond correlation. Molinspiration and Osiris property explorer applications

were used to predict bioactivity and drug score. Drug scores of 0.08 and 0.05

were predicted for compounds 1 and 2, respectively. Predicted bioactivity scores

were high. Due to their molecular weight, chemical structure, and conformation,

the newly discovered proanthocyanidins possess an inclination to interact with

proteins. Based on this premise, both compounds were subjected to in vitro

testing against ruminal enzymes. They exhibited significant inhibition activities

(p < 0.01) with a range of half maximal e�ective concentration (EC50) of 14.80–

17.88 mg/mL of glutamic oxaloacetic transaminase in both protozoa and bacteria

fractions. The ruminal glutamic pyruvic transaminase activity was significantly

inhibited (p < 0.01) from EC50 12.59–16.29mg/mL, and R-cellulase inhibition was

recorded with EC50 18.20–21.98 mg/mL by compounds 1 and 2, respectively.

Protease activity decreased with increasing incubation time and concentration of

both compounds. The novel proanthocyanidins have potential roles in improving

feed conversion ratios and in drug development.

KEYWORDS

Anogeissus pendula, bioactivity score, drug score, epicatechin, gallocatechin,

proanthocyanidins, ruminal enzymes

1. Introduction

Polyphenolics are common secondary metabolites in plants that exhibit a wide range

of sizes, structures, and functions. Although their chemical structures and functions are

enigmatic, they generally interact with proteins and metal ions upon ingestion through

multiple hydroxylation (1). Plant phenolics include various secondary metabolites, such

as phenolic acids, flavonoids, coumarins, stilbenes, hydrolysable and condensed tannins,

lignans, and lignins. These compounds exhibit antimicrobial, antioxidant, and anti-

inflammatory properties, and their biological activity is determined by molecular structure

(2). Of particular interest in livestock feed are proanthocyanidins (PA), a member of the

phenolic compounds family and flavonoids subfamily. PAs may be foregut or hindgut
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fermenters and are defined by their ability to bind protein (3).

Moderate concentrations of PA (2–4% dry matter) can exert

beneficial effects on ruminants by slowing microbial digestion and

enhancing the absorption of amino acids in the small intestine.

However, there are reports of both positive and negative effects of

PAs on animal diets, indicating their complex roles (4, 5). There are

reports of how low tannin diets correspond with low digestibility,

and high tannin diets with higher digestibility, an indication of

the complex roles of PAs in the animal diet (6). Flavanols and

their oligomers also interact with proteins. Interactions may be

weak or strong; those formed are of low molecular size and

remain in solution (7). The potential of using plant extracts from

clove and mulberry leaves as feed additives in animal diets has

been investigated, and it was found that they improved feed

efficiency (8, 9). Hence, the structure vs. function relationship

of polyphenolics defines whether the nutritional impact will

be positive or negative. Understanding the structure–function

relationship of polyphenolics is essential in determining their

nutritional impact on animals (10).

This research focused on polyphenolics of a common small

tree distributed throughout tropical Asia and Africa. The leaves

of Anogeissus pendula Edgew (Combretaceae), known locally as

Kardhai, are eaten by livestock, especially during lean periods,

as sources of protein, energy, oil, fatty acids, and minerals (11,

12). In our previous studies, we assessed leaves of A. pendula

for contents of crude protein (9.8–10.6%), neutral detergent

fiber (46.4–58.6%), lignin (13.5–15.3%), and in vitro dry matter

digestibility (25–38%) (13). Here, our research aimed to understand

the phytochemical/structural properties of A. pendula phenolics

(flavonoids or PAs) in relation to their effects on rumen enzyme

activities (14–17). The use of natural compounds in animal feed

has become an increasingly popular area of research, with the goal

of improving animal health and productivity while minimizing

negative environmental impacts. In our study, we investigated

the potential of two novel compounds isolated from tree leaves

A. pendula against ruminal enzymes to act as feed additives for

ruminants, with promising results.

2. Materials and methods

2.1. Chemicals and reagents

Tannic acid, gallic acid, 2S, 3S(–)-epicatechin, 2R, 3R(+)-

gallocatechin, 2S,3S(–)-epicatechin-3-O-gallate, and Sephadex LH-

20 of analytical grade were purchased from Sigma, USA. All other

reagents and solvents used were of analytical grade.

2.2. Isolation of proanthocyanidins

Leaves of A. pendula were harvested in the monsoon season

from the Central Research Farm of ICAR-Indian Grassland and

Fodder Research Institute, Jhansi, India. Harvested leaves were

initially dried in shade and then placed in a hot air oven at

60◦C until a constant dry weight was reached. The dried leaves

were ground to a powder and passed through a 1-mm sieve. The

powder was defatted using pure hexane (18). The defatted powder

(4.5 kg) was placed in a Soxhlet extractor with pure ethanol. After

Soxhlet extraction, the solvent was removed under vacuum in

a rotatory evaporator at 40◦C and suspended in 2 L of distilled

water for 12 h. The remaining aqueous phase was washed with

chloroform and ethyl acetate; then, the leftover extract (840 g)

was chromatographed over a silica gel column (60–120 mesh).

Gradient elution of the column with chloroform and methanol

(60:40) yielded a yellow-colored solid, which was found to be

a mixture monitored by thin-layer chromatography (TLC). This

was purified on a pre-equilibrated Sephadex LH-20 column (30

× 2.5 cm) by eluting with H2O and methanol (10:1), which

yielded a yellow crystalline compound containing two compounds

that were resolved by preparative paper chromatography using

3MM Whatman paper and water as the irrigating solvent. The

upper pink band was extracted with water and lyophilized to

obtain compound 1, whereas compound 2 was a pale brown

microcrystalline substance.

2.3. Characterization and structure
determination

Melting points of the two compounds were determined

using a Bock monoscope and were uncorrected. UV spectra

were measured on a UNCAM UV/Vis spectrophotometer

(Newington, USA). Mass spectra were determined on a Jeol mass

spectrophotometer (Tokyo, Japan). 1H and 13C NMR spectra

were obtained on Bruker DRX-300 spectrophotometer (Fallanden,

Switzerland) with tetramethylsilane as an internal standard,

and the heteronuclear multiple bond correlation (HMBC) was

measured using a standard pulse sequence. High-performance

liquid chromatography (HPLC) was carried out using a Shimadzu

model LC-8A. The circular dichroism (CD) spectrum was done

at the Department of Pharmacognosy, University of Mississippi,

USA. TLC, column chromatography, and paper chromatography

(PC) were performed on precoated Si GF256, Si gel (60–120 Mesh,

Merck India), Sephadex LH-20 (Sigma, USA), andWhatman paper

to characterize compounds 1 and 2.

2.4. Qualitative phytochemical
investigation

Compounds 1 and 2 underwent complete acid hydrolysis to

study anthocyanidin subunits through Shinoda, vanillin/HCL, and

FeCl3 tests along with TLC and PC profiling (19). To determine

monomeric units, compounds 1 and 2 were independently treated

with phloroglucinol in the presence of 100mL of 1% HCl in 50%

aqueous methanol in a 250-mL round-bottom flask for 48 h. After

drying of solvent, the product was diluted with H2O and extracted

with ethyl acetate followed by evaporation. The dried product was

dissolved in 80% methanol and subjected to quantitative analysis

by 2D HPTLC (TLC plate cellulose; 20× 20 cm), solvent of tertiary

butanol: acetic acid: water at 3:1:1, and HPLC equipped with

UV/VIS detector at 280 nm and RP ODS column (25cm × 4mm,

id) at ambient temperature with solvents of acetic acid (1%) (A) and

methanol (B) at 1 mL/min.
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2.5. In silico studies

In silico studies were performed using open-source software

for virtual screening of the two novel compounds. Drug score

value qualifies the overall potential of a compound as a drug

candidate. OSIRIS property explorer was used to predict drug

score by considering toxicity risks, partition coefficient between

n-octanol and water (cLogP), solubility (logS), molecular weight

(Mw), tropological polar surface area (TPSA), number of hydrogen

acceptor and donor, number of rotatable bonds, and toxicity risks

(20). Molinspiration is used to predict the bioactivity score of the

isolated compound against regular receptors, such as GPCR ligand,

ion channel modulators, kinase inhibitor, and nuclear receptor

ligand (21).

2.6. In vitro ruminal enzyme activity

An adult sheep was selected for sampling from a small ruminant

unit of the Plant Animal Relationship Division of IGFRI, Jhansi.

Rumen liquor was collected before feeding. It is obtained through

mouth using a perforated plastic tube with light suction in a

0.5-L capacity pre-warmed thermos (22). A ruminal cellulase

extract was prepared from collected rumen liquor, and the effect

of isolated compounds on its activities was estimated according

to a described method (23). A protocol for determining the

activity of the intracellular enzymes glutamic pyruvic transaminase

(GPT) and glutamic oxaloacetic transaminase (GOT) was used

(24) while obtaining from the bacterial and protozoal fractions of

the rumen liquor and then separation of bacteria and protozoal

rich enzyme extracts in 0.1M phosphate buffer of pH 6.8 were

carried out according to our published methods (17, 22, 25). To

measure proteolytic enzyme activities, the concentration of protein

in enzyme extracts was estimated according to Lowry (26). The

proteolytic activity of isolated compounds was determined by

estimating undigested protein from casein (27, 28).

2.7. Statistical analysis

For the statistical analysis, both Microsoft Excel 2016 and R

(R-4.2.3) were used. To evaluate enzymatic activities, analysis of

variance (ANOVA) was performed by using R, and significant

differences in means were determined at p < 0.01 using post-hoc

analysis with Tukey’s test.

3. Results and discussion

3.1. Characterization of compounds 1 and 2

Compound 1: Pink amorphous substance, m.p. 280–82◦C,

UV(MeOH) λmax 264 nm; FAB-MS [M+H]+ 1,827, C90H74O42;

m/z; 1,718, 1,355, 1,216, 915, 911, 610, 305, and 167; CD spectral

data, CD at 231.2 nm CD[medg]= 2.467, at 264.1 nm CD[medg]=

0.1784 and at 275.1 nm CD[medg] = 1.1191; 1H NMR, 13C NMR,

and HMBC data are given in Table 1.

Compound 2: Pale brown microcrystalline substance, m.p.

270–72◦C; UV(MeOH) λmax 278 nm; FAB-MS [M+H]+ 1,611,

C81H62O36; m/z; 1,458, 1,323, 1,305, 882, 730, 441, 303,

289, and 151; 1H NMR and 13C NMR data are given in

Table 1.

Compounds 1 and 2 (Figure 1) were obtained as pink and light

brown microcrystalline substances, mp 280–82◦C and 270–72◦C,

respectively, and were responsive to characteristic reactions of

proanthocyanidin (29, 30). UV (MeOH, λmax, nm): 264 and 278

for compounds 1 and 2 further led us to infer the proanthocyanidin

nature of the compounds (31). The furnished anthocyanidins after

undergoing thorough acid hydrolysis (n-BuOH-HCl; 95:5) with

compounds 1 and 2 identified as delphinidin (Rf 55) and cyanidin

oligomeric procyanidin (Rf 45), respectively. The protonated fast

atom bombardment mass spectrometry (FAB-MS) of compound

1 afforded a molecular ion peak (M+H) at 1,827, consisted of

C90H74O42 furnishing molecular ion fragments due to retro-Diels-

Alder (RDA) cleavage at m/z 1,718, 1,355, 1,216, 915, 911, 610,

305, and 167 confirmed the presence of (+)-gallocatechin in

upper, middle, and terminal units (32) linked by C-C linkage

(m/z 1,521 and 305). Furthermore, the molecular fragment at m/z

152 and 1,718 verified the structure as homogeneous oligomeric

prodelphinidin. The protonated FAB-MS of compound 2 the

M+H peak at m/z 1,611 with formula C81H62O36, furnishing

molecular species due to consequence of RDA at m/z; 1,458, 1,323,

1,305, 882, 730, 441, 303, 289, and 151 confirmed the presence

of galloyl moiety in upper and extender units (m/z 303 and

1,305), whereas the terminal unit was unsubstituted with galloyl

unit (m/z 151 and 1,458) linked by C-C linkage (m/z 441, 882,

and 1,323).

The polymeric nature of isolated compounds was verified by
13C NMR and 1H NMR (Table 1), and their physicochemical

properties are depicted in Table 2. Chemical shift indicated for

polyflavan-3-ol in both compounds; in addition, signals for galloyl

moiety were also present in compound 2. Due to the complexity of

structures, the spectra were studied as regions A and B (A: 30–90

ppm and B: 90–160 ppm) (33). In region A, out of 18 aliphatic

carbons, six oxygenated methane carbons appeared at δ70.2, δ73.1,

and δ61.5 for C-3 of upper (u), middle (m), and terminal (t)

units, respectively. The up-field signal at δ81.6 and δ83.6 attributed

to the C-2 of u, m, and t with 2,3-trans configuration and at

δ36.8 and δ29.2, corresponding to the C-4 of u, m, and t units

was indicative of 2,3-trans and 3,4-trans configuration (34). Of

note was the observance of γ-gauche effect in 13C NMR for

C-4 in ring-C at δ36.8 relative to δ81.6 for C-2 in the upper

unit corroborated the 2,4-trans orientation in the prodelphinidin

molecule (35). Region B of the spectrum displayed characteristic

chemical shifts for 12 aromatic methine carbons at δ121.4 and

δ116.1 for C-2
′

and C-6
′

of u, m, and t units, respectively. Hydroxy

substituted carbons at δ145.7, δ145.4, and δ145.7 corresponded

to C-3
′

, C-4
′

, and C-5
′

, respectively, of u, m, and t along with

six quaternary carbons at δ137.8 of C-1
′

of u, m, and t. The

signals δ102.7 and δ108.8 were due to the C-8 carbon of u, m, and

t units.

Compound 2 exhibited 12 aliphatic carbons in region A in

which four were oxygenated methine for C-3 of u, m, and t units

that were represented by the chemical shift of δ74.5, δ71.9, and
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TABLE 1 1H NMR, 13C NMR, and HMBC spectral data for compounds 1 and 2 in DMSO-d6 (δ, ppm, J/Hz)∗.

C atom, Compound 1 Compound 2

u, m, t HMBC δH δC δH δC

C-2 u, m 3.896 (5H, d, J = 8.4Hz) 81.6 4.679 (3H, d, J = 4.2Hz) 76.8

C-2 t 3.695 (1H, d, J = 8.1Hz) 83.4 4.581 (1H, d, J = 3.6Hz) 77.8

C-3 u, m 3.249 (5H, dd, J = 6.6, 7.5Hz) 70.2, 73.1 5.646 (3H, dd, J = 4.5, 4.5Hz) 74.5, 71.9

C-3 t 4.698 (1H, m) 61.5 3.929 (1H) 68.2

C-4 u, m 3.833 (5H, d, J = 8.7Hz) 36.8 4.806 (3H, d, J = 6.3Hz) 34.6

C-4 t 3.419 (2H, dd, J = 6.6, 7.8Hz) 29.2 4.230 (2H, dd, J = 6.6, 6.3Hz) 29.2

C-5 160.7 154.2

C-6 u, m 5,7 2J & 8 3J 6.185 (1H, s, H-6 u)

6.209 (5H, s, H-6m, t)

89.6 6.179 (1H, s, C-6 u)

6.034 (3H, s, C-6m)

96.0

C-6 t 89.6 6.034 (3H, s) 97.2

C-7 160.7 155.0

C-8 u 6.277 (1H, s) 102.7 6.467 (1H, s) 96.6

C-8m, t 108.8 107.4

C-9 182.0 163.2

C-10 128.5 102.7

C-1
′

137.8 130.8

C-2
′

1
′

, 3
′ 2J & 4

′ 3J 7.312 (1H, s, H-2
′

u)

6.745 (4H, s, H-2
′

m)

6.438 (1H, s, H-2
′

t)

121.4 7.555 (3H, s, H-2
′

u, m)

6.998(1H, s, H-2
′

t)

112.4

C-3
′

145.7 145.5

C-4
′

145.4 145.7

C-5
′

145.7 7.927 (3H, J =8.7Hz, H-5
′

u, m)

6.949 (1H, J = 8.7Hz, H-5
′

, t)

114.9

C-6
′

1
′

, 5
′ 2J & 4

′ 3J 7.399 (1H, s, H-6
′

u)

6.903 (4H, s, H-6
′

m)

6.519 (1H, s, H-6
′

t)

116.1 7.412 (3H, J = 7.2Hz, H-6
′

, u, m)

6.769 (1H, J = 6.3Hz, H-6
′

, t)

112.4

C-1
′′

122.7

C-2” 6.658 (4H, s) 110.7

C-3” 144.8

C-4” 139.3

C-5” 144.8

C-6” 6.570 (4H, s) 109.9

C-7” 166.8

u, upper unit; m, middle unit; t, terminal unit, ∗1H, 13C, nuclear magnetic resonance (NMR) and 2D heteronuclear multiple bond correlation (HMBC) were determined on a Bruker

DRX-300 spectrometer.

δ68.2, respectively. The up-field signal appeared at δ34.6 and δ29.2,

corresponding to the C-4 of u, m, and t units with a 3,4-cis

configuration (36). The up-field resonance of the heterocyclic ring

carbon at δ76.8 and δ77.8 for C-2 of u, m, and t, respectively,

indicated the 2,3-cis configuration. The absence of a γ-gauche effect

in 13C NMR for C-4 (δ34.6) in ring-C relative to C-2 (δ76.8)

in the upper unit strongly indicated 2,4-cis orientation with 4S

configuration in the procyanidin molecule (36). In region B, the

spectrum displayed chemical shifts for seventeen aromatic methine

carbons at δ96.0 (C-6, u, m), δ97.2 (C-6, t), δ96.6 (C-8, u), δ112.4

(C-2
′

, u, m, t), δ114.9 (C-5
′

, u, m, t), and δ112.4 (C-6
′

, u, m,

t), respectively, and hydroxyl substituted carbons at δ145.5 and

δ145.7 corresponded for C-3
′

and C-4
′

, respectively, of u, m, and

t along with four quaternary carbons at δ130.8 of C-1
′

of u, m,

and t units. The resonance at δ107.4 was due to C-8 carbons of

the m and t units. The A-ring carbons at C-7 and C-5 appeared

at δ155.0 and δ154.2 in u, m, and t units. The chemical shifts at

δ163.2 and δ102.7 were due to C-9 and C-10 of u, m, and t. The
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FIGURE 1

Chemical structures of compounds 1 and 2.

TABLE 2 Physicochemical properties of compounds 1 and 2 and standards used in this study.

Compounds IUPAC name Solubility Melting point
(◦C)

Molecular
formula

Compound 1 (2R, 3R)-(+)-Gallocatechin-(4β→ 8)4-(2R,

3R)-(+)-gallocatechin

H2O 280–82◦C C90H74O42

Compound 2 3-O-Galloyl-(2S,

3S)-(–)-epicatechin-(4α→ 8)-[3-O-galloyl-(2S,

3S)-(–)-epicatechin (4α→ 8)]2-(2S, 3S)-(–)-epicatechin

H2O 270–72◦C C81H62O36

Tannic acid [2,3-dihydroxy-5-[[(2R,3R,4S,5R,6S)-3,4,5,6-tetrakis[[3,4-

dihydroxy-5-(3,4,5-

trihydroxybenzoyl)oxybenzoyl]oxy]oxan-2-

yl]methoxycarbonyl]phenyl]

3,4,5-trihydroxybenzoate

Alcohol, acetone,

H2O

200◦C C76H52O46

Gallic acid 3,4,5-trihydroxybenzoic acid H2O 258–265◦C C7H6O5

(–)-Epicatechin (2S,3S)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-

chromene-3,5,7-triol

H2O, Alcohol 235–237◦C C15H14O6

(+)-Gallocatechin (2R,3S)-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-

chromene-3,5,7-triol

H2O 189–191◦C C15H14O7

(–)-Epicatechin-3-O-

gallate

[(2S,3S)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,4-

dihydro-2H-chromen-3-yl]

3,4,5-trihydroxybenzoate

H2O 257–258◦C C22H18O10

additional carbon signals at δ122.7 (C-1
′′

), δ110.7 (C-2
′′

), δ144.8

(C-3
′′

), δ139.3 (C-4
′′

) δ144.8 (C-5
′′

), δ109.9 (C-6
′′

), and δ166.8

(C-7
′′

), respectively, confirmed the presence of galloyl moiety in

the molecule.

The 1H NMR spectrum (DMSO-d6) of compound 1 showed

the presence of singlets at δ6.185 (1H) and δ6.277 (1H) in aromatic

region, which indicated a free proton each at C-6 and C-8,

respectively, as confirmed by available HMBC relationships for

C-4→ C-8 linkage between the upper and extension units (29).

The appearance of doublets at δ3.896 (5H, J = 8.4Hz) and δ3.833

(5H, J = 8.7Hz) and a double doublet at δ3.249 (5H, J = 6.6,

7.5Hz), forming AMX system (37) corresponding to C-2, C-4, and

C-3 position, respectively, for upper and extension unit, exhibiting

positive cotton effect at 231.2 nm (CD[medg] = 2.467) in the CD

spectrum finally led to 4R configuration of protons with β linkage

(38). The large coupling constant (J = 8.4Hz and J = 8.7Hz)
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for C-2 and C-3 was indicative of 2,3-trans orientation with β-

linkage at C-4. Resonance forming AMX2 system by doublet at

δ3.695 (1H, J = 8.1Hz), multiplet at δ4.698 (1H), and double

doublet at δ3.419 (2H, J = 6.6, 7.8Hz) for C-2, C-3, and C-4 of

terminal unit further corroborated of 2,3-trans configuration in

terminal unit of molecule (39). The singlets at δ7.321 (1H), δ6.745

(4H), δ6.430 (1H) δ7.399 (1H), δ6.903 (4H), and δ6.519 (1H),

respectively, are indicative of one proton at C-2
′

and C-6
′

of the

B-ring of upper, extension, and terminal with 2J coupling with C-

1
′

, C-3
′

& C-1
′

, C-5
′

, and 3J coupling with C-4
′

carbon, whereas

the 1H NMR spectrum (DMSO-d6) of compound 2 demonstrated

doublets at δ4.679 (3H, J = 4.2Hz) and δ4.806 (3H, J = 6.3Hz)

and a double doublet at δ5.646 (3H, J = 4.5, 4.5Hz), forming AMX

system for C-2, C-4, and C-3 position of upper and middle units,

respectively, suggested 2,3-cis orientation in upper and middle

units as indicated by the low coupling constant (J = 4.2 and 4.5Hz)

for C-2 and C-3. The noteworthy up-field displacement of the

C-3 proton suggested the presence of a methine proton attached

with an oxygen-bearing carbon, indicative of galloyl moiety on the

C-3 in upper and middle units (33). The presence of a doublet

at δ4.581 (1H, J = 3.6Hz), multiplet at δ3.929 (1H), and a double

doublet at δ4.230 (2H, J = 6.6, 6.3Hz), four protons, respectively,

for terminal units inferred 2,3-cis configuration in the terminal

unit. The chemical shifts appearing as singlets at δ6.179 (1H) and

δ6.467 (1H) for C-6 and C-8, respectively, for the upper flavonoid

moiety suggested C-4 → C-8 linkage with the middle unit. The

presence of a singlet at δ6.034 (3H) indicated a C-6 proton of the m

and t units. The free protons at C-2
′

of the B-ring of u, m, and t units

appeared as singlets at δ7.555 (3H) and at δ6.998 (1H), respectively.

The protons for C-5
′

and C-6
′

of the B-ring of u, m, and t units

were available as doublets at δ7.927 (3H, J = 8.7Hz, H-5
′

u, m),

δ6.949 (1H, J = 8.7Hz, H-5
′

, t), δ7.412 (3H, J = 7.2Hz, H-6
′

, u, m),

and δ6.769 (1H, J = 6.3Hz, H-6
′

, t), respectively. The availability of

protons at C-2
′

, C-5
′

, and C-6
′

in the B-ring suggested the presence

of an epicatechin unit in the u, m, and t units of the molecule.

The chemical shifts as singlets at δ6.658 (4H) and δ6.570 (4H) for

C-2
′′

and C-6
′′

suggested the presence of galloyl moieties in the

molecule (33).

The acid treatment of isolated compound 1 with

phloroglucinol yielded the (+)-gallocatechin and (+)-

gallocatechin-4-phloroglucinol adduct, whereas compound 2

yielded flavanol (–)-epicatechin and 3-O-galloyl-(–)-epicatechin-

4α-phloroglucinol, which were examined in HPLC. Compound

1 showed two peaks for (+)-gallocatechin (Rt = 22.54min)

with 2R:3R configuration and (2R:3R)-(+)-gallocatechin-4-

phloroglucinol (Rt = 14.12min), indicating the presence of

(2R:3R)-(+)-gallocatechin in extension and terminal units in a

molecule forming rare homogeneous oligomeric prodelphinidin

(4, 40). In compound 2, we detected peaks for (–)-epicatechin (Rt

= 28.32min) with 2R:3R configuration and (2R:3R)-3-O-galloyl-(–

)-epicatechin-4-phloroglucinol (Rt = 34.72min), which suggested

C-4 → C-8 inter-flavan linkage in procyanidin B type. This

evidence was adequate to characterize 1 as hexameric (2R, 3R)-

(+)-Gallocatechin-(4β → 8)4-(2R, 3R)-(+)-gallocatechin

and 2 as B-3 type 3-O-Galloyl-(2S, 3S)-(–)-epicatechin-

(4α → 8)-[3-O-galloyl-(2S, 3S)-(–)-epicatechin (4α →

8)]2-(2S, 3S)-(–)-epicatechin.
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3.2. Drug and bioactivity scores

The bioactivity and drug scores of compounds 1 and 2 were

predicted and compared with the standards tannic acid, gallic

acid, 2S,3S(–)-epicatechin, 2R, 3R(+)-gallocatechin, and 2S,3S(–)-

epicatechin-3-O-gallate (Tables 3A, B). The calculated drug score

was 0.08 and 0.05 for compounds 1 and 2, respectively. The

drug score combines druglikeness, cLogP (logarithm of partition

coefficient), logS (logarithm of solubility), molecular weight, and

toxicity risks in one value to judge a compound’s overall potential as

a drug (41). cLogP (octanol/water partition coefficient) is calculated

through the methodology developed by Osiris property explorer

(20), as a sum of fragment-based contributions and correction

factors and used to predict the permeability of molecules across the

cell membrane. Total polar surface area (TPSA) relates to hydrogen

bonding potential of the molecule and is a predictor of drug

transport properties, such as bioavailability, intestinal absorption,

and blood–brain barrier penetration. Calculation of volume is

based on group contributors. A number of rotatable bondsmeasure

molecular flexibility, which is a descriptor of absorption and

bioavailability of drugs (42).

The probability of bioactivity score of compound 1 toward

a G protein-coupled receptor (GPCR) ligand, also called seven-

transmembrane receptor or heptahelical receptor, nuclear receptor

ligand, and enzyme inhibitor was 0.20, 0.30, and 0.12 (>0),

respectively, which was shown to be active, and that of a kinase

inhibitor, ion channel modulator, and protease inhibitor was−0.17,

−0.14, and 0.00, respectively, which suggested the compound

is moderately active (−5.0 to 0.0). For organic molecules, if

the probability of bioactivity score is >0, then it is considered

active. If the probability of bioactivity score range is −5.1 to

0.0, then it is considered moderately active, and if <-5.0, it is

inactive (43, 44). The compounds showed results well within

the active range, depicting a low risk of undesired behavior like

mutagenicity or poor intestinal absorption, and thus indicated

potential drug-like behavior. The results also confirmed the low

risk of tumorigenic, irritant, and negative reproductive effects. The

abovementioned software was unable to calculate the bioactivity

scores for compound 2 due to its complexity.

3.3. Determination of e�ects on ruminal
enzymes in vitro

The ruminal glutamic oxaloacetic transaminase (R-GOT),

glutamic pyruvic transaminase (R–GPT), and cellulase activities are

illustrated in Figures 2A, B. Compounds 1 and 2 significantly (p <

0.01) inhibited the activities of R-GOT (P) with EC50 14.79 and

17.78 mg/mL and R-GOT (B) with EC50 15.14 and 16.60 mg/mL,

respectively. The R-GPT activity was also inhibited significantly (p

< 0.01) in the presence of compounds 1 and 2 (Figures 2C, D).

The comparison of inhibition in protozoal and bacterial fraction

envisaged nearly equal for EC50 (mg/mL) activity as 13.80 and

12.60, respectively, for compound 1 and 16.23 and 15.49 for

compound 2. The effect on cellulase activity of compound 1 showed

strong inhibition of EC50 18.197mg/mL compared with compound

2 with an EC50 21.878 mg/mL (Figure 3). This reveals a strong
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FIGURE 2

E�ects of compounds 1 and 2 compared with tannic acid and galic acid on inhibition activity (EC50) of ruminal glutamic oxaloacetic transaminase

(R-GOT) (A: protozoa fraction, B: bacterial fraction) and ruminal glutamic pyruvic transaminase (R-GPT) (C: protozoa fraction, D: bacterial fraction).

FIGURE 3

Inhibition activity (EC50) against ruminal cellulase for compounds 1 and 2 compared with tannic acid and gallic acid. Di�erent letters above the bars

indicate significant di�erences between the treatments.

affinity of compound 1 to bind cellulase enzyme in less quantity,

and consequently, this might have effects on fiber digestibility.

Tannic acid and gallic acid exhibited significantly (p < 0.01) higher

reduction in both GPT and GOT than did compounds 1 and 2. In

the case of cellulase enzyme activity, tannic acid was more effective

than gallic acid as the effective concentration to inhibit 50% activity

(EC50) was 89.13 and 109.65 mg/mL for gallic acid and tannic

acid, respectively. Both compounds 1 and 2 significantly (p < 0.01)

inhibited cellulase activity compared to both standards.

This inhibition effect of phenolic compounds could be a

result of their antimicrobial nature and the release of other

metabolites during the fermentation process. Similar observations

were recorded in cow rumen kinetics (14) from phenolic extracts of

Ficus species (17) and methanolic tree leaves extracts of A. pendula

(25). The released or break-down products of phenolic compounds

from the plant extracts can be turned into new antioxidants (45)

and that could reduce ruminal enzymatic activities. The inhibitory

effects of legume-extracted phenolics on cellulose digestion (46)
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FIGURE 4

E�ect of compounds 1 (A) and 2 (B) on R-protease with di�erent concentrations and di�erent incubation times.

help to support our findings on the reduction of ruminal cellulase

activity. The effects of simple phenolic acids also showed a

significant decrease in the activities of rumen enzymes in vitro (47).

R-protease activity of both compounds was significantly (p <

0.01) decreased proportional to increasing concentration (4, 8, 12,

16, and 24 mg/mL) and duration of incubation time (1, 2, 3, 4, and

5 h) (Figure 4). Compound 1 proteolysis decreased linearly with

increasing time and increasing quantity. The amount of liberated

protein (µg/min/mL) was 2.02 at 24 mg/mL at 5 h, whereas it

was 58 at 4 mg/mL in the 1st h. A similar trend was observed

with compound 2; a decline in protease activity was reported

between 7–34% and 21–50% with each increasing concentration

and increasing incubation time. At the highest concentration

(24 mg/mL), the amount of liberated protein was lowered to

1.87 µg/min/mL.

The trend for reduction in the concentration of liberated rumen

protein by the addition of compounds 1 and 2 with increasing

concentrations and incubation times was also observed by others

with condensed tannins extracted from Lotus pedunculatus (48),

proanthocyanidins obtained from Ficus species (17), and tannin-

rich forage leaves (49, 50). This could be due to the steric

interference at interaction sites of protease and receptors. The basic

route of proteolysis inhibition by phenolic compounds is based

on interference with the interaction of enzyme substrates (51).

In addition to this, the different types of phenolic structures and

the nature of protein vary by the degree of binding. It is believed

that the presence of proanthocyanidins/phenolics increases protein

flow from rumen to intestine, where it is directly available to the

animal (52). Thus, proanthocyanidins can have beneficial effects

if they bind protein (50) or detrimental effects if they lower

ruminal digestion without binding the protein, particularly for

hemicellulose (53). The isolated compounds from leaves of A.

pendula can be potentially used as a natural and sustainable additive

in animal feed to improve nutrition and minimize health risks and

environmental pollution. Novel animal feed formulations can be

developed that incorporate these compounds, and their testing in

controlled animal feeding trials to evaluate their effects on animal

growth, health, and wellbeing. The compounds could also be tested

for their ability to reduce environmental pollution by reducing the

excretion of harmful compounds in animal waste.

4. Conclusion

The molecular structures of two novel polyphenolic

compounds isolated from A. pendula leaves were elucidated,

and their activities were tested. Both compounds inhibited the

activity of all ruminal enzymes tested. These compounds can

be developed into dietary supplements or functional food for

animals to enhance the utilization of nutrients. The mode of action

of polyphenolics and proanthocyanidins in the gut is not fully

understood, so relating molecular structure to the mechanisms

and actions by which different proanthocyanidins elicit depression

in intake and digestibility in bovines is required. The discovery

of these novel compounds expands our understanding of diverse

and complex roles of proanthocyanidins in the animal diet

and highlights the potential for further investigation into the

molecular–function relationship of these compounds. Further

research is needed to evaluate the safety and efficacy of these

compounds in vivo, as well as to optimize their production and

extraction from natural sources.
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