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Hypoparathyroidism is a relatively rare human and veterinary disease characterized

by deficient or absent production of parathyroid hormone (PTH). PTH is known

as a classical regulator of calcium and phosphorus homeostasis. Nevertheless,

the hormone also appears to modulate immune functions. For example,

increased CD4:CD8 T-cell ratios and elevated interleukin (IL)-6 and IL-17A levels

were observed in patients with hyperparathyroidism, whereas gene expression

of tumor necrosis factor-α (TNF-α) and granulocyte macrophage-colony

stimulating factor (GM-CSF) was decreased in patients with chronic postsurgical

hypoparathyroidism. Various immune cell populations are a�ected di�erently. So,

there is a need for validated animal models for the further characterization of

this disease for identifying targeted immune-modulatory therapies. In addition

to genetically modified mouse models of hypoparathyroidism, there are surgical

rodent models. Parathyroidectomy (PTX) can be well performed in rats—

for pharmacological and associated osteoimmunological research and bone

mechanical studies, a large animal model could be preferable, however. A major

drawback for successfully performing total PTX in large animal species (pigs and

sheep) is the presence of accessory glands, thus demanding to develop new

approaches for real-time detection of all parathyroid tissues.
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1. Parathyroid glands and parathyroid hormone—an
introduction

The first description of the parathyroid gland is credited to Sir Richard Owen, who in
1862 published the findings of the autopsy of an Indian Rhinoceros (Rhinoceros unicornis) he
dissected in the winter months of 1849/1850 (1). The term “parathyroid gland” was coined
by Ivar Viktor Sandström, who in 1877 identified the gland in a dog and subsequently in
cats, rabbits, horses, and humans (2). The pathologist Jakob Erdheim proved in a series
of experiments with rats that total parathyroidectomy leads to tetany and for the first
time related the parathyroid gland to calcium metabolism (3). The parathyroid glands are
important organs, which are located in the neck posterior and inferior to the thyroid gland
and emerge from the third and fourth pharyngeal pouches (Figures 1, 2).
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FIGURE 1

Anatomical position of the pharyngeal and ventral neck region of a

Sprague Dawley rat.

In humans, there are usually four glands, which are crucial
for the maintenance of blood calcium homeostasis, as parathyroid
glands are responsible for parathyroid hormone (PTH) secretion.
Furthermore, lower levels of PTH transcripts can also be
determined in the thymus, pituitary, and hypothalamus (4). PTH
is located in the secretory granules and is secreted from the
chief cells in response to reduced circulating ionized calcium
concentrations to maintain the normocalcemic state. Usually, a
minimal proliferation of the parathyroid cells can be seen, but
chronic hypocalcemia triggers an increase in size and number of the
parathyroid cells (5). On the plasma membrane of the parathyroid
cells, calcium-sensing receptors (CaSRs) are abundantly present,
which are responsible for monitoring free calcium concentrations
and binding Ca2+ (6–12). The CaSR belongs to the G-protein-
coupled receptor superfamily, which has a calcium-binding
element in the extracellular domain and signaling determinants
in the cytoplasmic region (13). Outside the parathyroid gland,
CaSRs play a crucial role in the kidneys in taking part in the
regulation of urinary calcium excretion independently of PTH (14).
Furthermore, CaSRs can be found in the intestine, vasculature, and
lungs (13).

PTH is a peptide hormone consisting of 84 amino acids
and is—together with vitamin D—essential for blood calcium
homeostasis. It belongs, together with PTH-related peptide
(PTHrP) and tuberoinfundibular peptide of 39 residues (TIP39),
to the parathyroid hormone peptide subfamily (4). Additionally,
a new member was discovered, PTH-like peptide (PTH-L), which
is only existing in non-mammalian species like teleost fishes,
chicken, or Xenopus (15). In mammals, PTH is first synthesized as
a pre-pro-peptide consisting of 115 amino acids, but only the 84
amino acids full-length single-chain polypeptide is later secreted

by the parathyroid glands (9). It is responsible for inducing the
release of calcium and phosphate from the skeletal reservoir by
bone resorption while simultaneously acting on the kidneys. High
levels of extracellular calcium inhibit PTH secretion, while low
serum calcium levels lead to an increase, which has an effect on
the PTH receptor in the kidneys leading to higher resorption
of tubular calcium and suppression of phosphate reabsorption
(12, 13). Persistently decreased systemic calcium levels further
lead to an upregulated PTH mRNA expression and an increased
number of PTH-secreting parathyroid cells (16). As a consequence,
there is a rise in the renal production of 1,25(OH)2VitD3, leading
to enhanced intestinal calcium absorption, which is a negative
regulator of PTH secretion (6, 12, 17). Decreased levels of VitD3

in turn lead to higher PTH production (18). Furthermore, PTH
indirectly activates bone-resorbing cells, the osteoclasts, through
the classical parathyroid hormone 1 receptor (PTH1R). This
receptor is expressed mainly on osteoblasts and in the kidneys.
Activated osteoblasts then activate osteoclasts via the RANKL
(receptor activator of nuclear factor-κB ligand)–RANK axis, which
results in increased net bone resorption (12, 19).

2. Pathophysiology and clinical
aspects of hypoparathyroidism in
humans

Hypoparathyroidism is a relatively rare disease characterized
by deficient or absent production of PTH (with blood-serum
PTH levels below the physiological reference range of 12–72 ng/L
corresponding to 1.5–6.0 pmol/L), which leads to a disbalanced
extracellular fluid calcium level. Low calcium levels can either
have rapid onset or successively develop almost asymptomatically.
On the contrary, serum phosphate levels typically are increased.
In consequence, the calcium/phosphate ratio is decreased (but
increased in primary hyperparathyroidism). The majority of
human cases of hypoparathyroidism results from neck—in
particular thyroid—surgery (20–22).

In addition to hypoparathyroidism resulting after neck surgery,
non-surgical or genetic forms of hypoparathyroidism can be
described. The most frequent genetic form is the DiGeorge
syndrome, which affects approximately 60 % of children diagnosed
with hypoparathyroidism (23). It emerges from a microdeletion
in chromosome 22q11.2, leading to a lack of T box protein 1,
which is crucial for the development of the thymus and parathyroid
glands. Due to this deletion, cardiovascular malformations,
thymus underdevelopment, and facial abnormalities arise (24,
25). Furthermore, affected children show symptoms like chronic
infections, nasal regurgitation, hypocalcemia, feeding difficulties,
and learning disabilities (26).

Another genetic cause for hypoparathyroidism is the
autoimmune polyendocrine syndrome type 1 (APS-1), which
is described as an autosomal recessive disorder and caused
by a mutation in the autoimmune regulator gene AIRE on
chromosome 21q22.3 (27, 28). This mutation gives rise to a
lack of self-immunotolerance, leading to the destruction of
the parathyroid, adrenal, and other endocrine glands. APS-1
usually develops during early childhood at an age of 2–5 years
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FIGURE 2

(a) Histological situs of the parathyroid gland within the thyroid (Mus musculus), (b) magnification of the parathyroid gland. HE stain.

(29). For the diagnosis of autoimmune polyendocrine syndrome
type 1, two of three major diseases must be present, including
hypoparathyroidism, adrenal insufficiency, and mucocutaneous
candidiasis (30). These diagnostic criteria are often met before an
age of 20 years (31).

Typical symptoms occurring during hypoparathyroidism,
often due to low calcium levels, are, tetanic spasms, which
may be lethal (20). Regarding bone manifestations, affected
persons show higher bone mineral densities than sex- and
age-matched controls (32). Patients with hypoparathyroidism
exhibit changes in bone metabolism, as low-normal values
of bone turnover markers were detected in blood and urine
(33). Consequently, hypoparathyroidism leads to a greater risk
of developing fractures in the appendicular skeleton (34).
Affected patients often show neuromotor manifestations, like,
for example, that of parkinsonism, which partially improved
after the treatment of hypocalcemia. Some patients also display
increased anxiety, fatigue, difficulty to concentrate, and a decrease
in memory (20). Furthermore, hypoparathyroidism is associated
with heart failure with resistance to diuretics and other standard
treatment options. Patients with acute hypocalcemia may also
show hypotension, bradycardia, and arrhythmias. After the
correction of hypocalcemia, patients with cardiac dysfunction
showed improvement (35, 36). Regarding the gastrointestinal tract,
patients often exhibit abdominal cramps and constipation (20).
Moreover, hypoparathyroidism is often associated with intense
photophobia, chronic conjunctivitis, and cataracts (37). Regarding
cutaneous manifestations, patients suffer from dry skin, pustular
psoriasis, or deformations of the nails (38). The most common
dental manifestation of hypoparathyroidism is hypoplastic enamel
followed by cemental hyperplasia (39).

To correct hypocalcemia, patients with hypoparathyroidism are
treated with calcium supplements and vitamin D analogs (40).
Nevertheless, despite (standard) treatment, the quality of life of
many patients is impaired due to hypoparathyroidism-associated
symptoms (41, 42). Recently, a novel treatment option with human
recombinant PTH has become available (43–45) and has been
associated with an improved quality of life (46). Probably due
to the rarity of the disease, rigorous data on co-morbidities of

hypoparathyroidism are relatively sparse. Patients with postsurgical
hypoparathyroidism are at an increased risk of renal complications
and hospitalization due to seizures (47). In a study based on
the Danish National Patient Registry, Underbjerg and co-workers
demonstrated that postsurgical hypoparathyroidism is associated
with a significantly increased risk of hospitalization for infections
(and depression/bipolar disorders) (48). This increased risk might
be due to a compromised immune function (49). Interestingly,
when patients with urinary tract infections (potentially resulting
from urinary calcium deposition) were excluded from the analyses,
the increased risk of hospitalization for infections persisted. In
interpreting their results, the authors assumed that “PTH may
impair the immunology response to infections” (47). In 2015,
these authors extended their observation of an increased risk of
hospitalization due to infections also to patients with non-surgical
hypoparathyroidism (34). In a subsequent study, Underbjerg et al.
investigated potential biochemical risk factors associated with
infections. Persistent hyperphosphatemia, which develops due to a
diminished renal excretion in hypoparathyroidism, was associated
with increased mortality and risk of any infections (50).

3. Osteoimmunology of
hypoparathyroidism

Osteoimmunology analyses the interplay between bone and
immune cells. The main two types of bone cells are osteoblasts and
osteoclasts. Osteoblasts are the so-called bone-forming cells, which
are responsible for bone matrix formation and mineralization,
whereas bone resorption is performed by osteoclasts. In addition
to osteoblasts and osteoclasts, osteocytes and bone lining cells can
be found in bones (Figure 3).

Mature osteoblasts are the only cell type that is able to
construct bones by secreting bone matrix proteins and guidance
of mineralization. Bone-forming cells are cuboidal cells, which
are present along the bone surface covering 4–6% of the total
resident bone cells. Although mature osteoblasts are short-lived,
a subset is differentiating into osteocytes that are encapsulated
within the newly formed bone matrix. Osteocytes are characterized
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FIGURE 3

Histology of the bone of a domestic pig; toluidine blue stain.

Osteoblasts (arrowheads), osteocytes (white arrows), and

osteoclasts (black arrows). Cell types are identified due to their

morphological characteristics and position within specific bone

compartments. Porcine bone marrow-derived stromal cells as well

as osteoblasts and osteoclasts exhibit similar in vitro growth

characteristics and osteoimmunological properties as their rodent

and human counterparts (51, 52).

as the most abundant cell type (90%) present within the
matrix or on bone surfaces, where they are responsible for
supporting bone structure and metabolism. Furthermore, they
are in charge of mechanosensation as they transduce stress
signals from bending or stretching bone into biological activity.
Those, which are not encapsulated, undergo apoptosis or become
inactive flat-shaped bone lining cells, which cover the bone
surface, where neither bone resorption nor formation occurs in
humans. Bone lining cells prevent bone resorption by blocking
the interaction between osteoclasts and the bone matrix, which
should not be degraded. Another important function is the
production of osteoprotegerin (OPG) and RANKL, which are
crucial for osteoclast differentiation. Bone-resorbing osteoclasts are
large multinucleated cells, which origin from the hematopoietic
lineage. During resorption, osteoclasts secrete tartrate-resistant
acid phosphatase (TRAP), cathepsin K, hydrogen ions, matrix
metalloproteinase-9, and gelatinase, which are necessary for the
digestion of the organic matrix. Dysregulations in the activity of
osteoblasts can lead either to an increased or reduced bone mass
(17, 53–56).

As mentioned before, PTH is a classical regulator of calcium
and phosphorus homeostasis. Nevertheless, the hormone also
appears to modulate immune functions. For instance, PTH
receptors were found to be expressed by cells of the innate
and acquired immune system [for review, see Geara et al. (57)].
Kotzmann et al. (58) described an increased CD4:CD8 T-cell
ratio in patients with primary hyperparathyroidism, characterized
by increased serum interleukin (IL)-6 and IL-17A levels (59,
60), and in mice, PTH augmented the production of tumor
necrosis factor-α (TNF-α) by T cells. Moreover, in a recent
study aiming at evaluating the immune function in patients

with chronic postsurgical hypoparathyroidism, immune cell
profiling revealed a decline in different immune cell populations
including monocytes and regulatory, naïve, and total CD4+

lymphocytes. In addition, TNF-α and GM-CSF gene expression
and circulating TNF-α levels were shown to be decreased in
patients with chronic postsurgical hypoparathyroidism, whereas
absolute numbers of total CD3−CD56+ natural killer cells
were significantly increased (49). Collectively, these findings
indicate that PTH induces proinflammatory cytokines and also
nominates PTH as a regulator of the crosstalk between bone
and the immune system, a field termed “osteoimmunology”
as mentioned before (61, 62). Regarding this crosstalk, in
addition to osteoclasts, also osteocytes are assumed to play
an important role. In addition to their classical role as
mechanosensors, osteocytes express several central regulators of
bone and mineral metabolism and therefore can be regarded
as endocrine cells (63). Osteocytes regulate bone formation by
the expression of the Wnt antagonist sclerostin and dickkopf-
1 (DKK-1), as well as osteopontin, a negative regulator of
bone mineralization; fibroblast growth factor-23 (FGF-23) is
an endocrine product of osteocytes that regulates phosphate
homeostasis and 1,25(OH)2VitD3 synthesis (63–65). Osteocytes
also express factors that determine osteoclast generation, namely
RANKL, OPG, and proinflammatory cytokines such as IL-6, IL-17,
and TNF-α (66, 67).

Responsiveness of osteocytes to PTH is well established in
intermittent PTH administration causing net bone formation. This
osteoanabolic effect is in part caused by decreasing sclerostin
(68, 69). Given the well-established crosstalk between PTH
and osteocytes on the one hand and the fact that osteocytes
act as regulatory cells producing proinflammatory cytokines,
among other substances, on the other hand, we expect that
decreased PTH levels in hypoparathyroidism lead to decreased
levels of proinflammatory cytokines produced by osteocytes,
thereby contributing to bone effects seen in conjunction with
hypoparathyroidism such as increased bone mineral density due to
low bone turnover. Due to their inaccessible location, osteocytes
are a challenging cell population to study; nevertheless, a number
of osteocyte cell lines are available and have facilitated their
investigation in vitro [for review, see Dallas et al. (70)]. As an
alternative approach, for ex vivo studies, the advantage could be
taken from the fact that osteocytes are by far the most abundant cell
population in bone. In a recent publication, the protein expression
of osteocytes in two different mouse strains was investigated
immunohistochemically. It was evident that osteocytes express
important proteins, such as sclerostin, DKK-1, or periostin, which
are associated with bone formation (71).

In the genetic form of hypoparathyroidism (APS-1, see above),
a mutation in the AIRE gene causes an impaired formation of the
autoimmune regulator protein. The lack of this protein is associated
with the decrease in autoantigen expression in the thymus and
disruption of the negative selection of T-lymphocytes (28, 30).
Many affected patients show autoantibodies against interferon
(IFN)-α, IFN-ω, and IL-22 (72). As stated above, AIRE is known
to play a crucial role in the induction of T-cell tolerance (73). 75
% of patients affected with DiGeorge syndrome, another form of
genetic hypoparathyroidism, show immunodeficiencies including
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thymic hypoplasia and an impaired T-cell production, leading to a
low T-cell count (26, 74).

4. Animal models of
hypoparathyroidism

For the establishment of a valid biomedical model, it is of
interest whether the targeted pathology occurs naturally in the
respective species. Hypoparathyroidism, however, has only minor
significance for veterinary species, and if yes, only pet animals
are worth mentioning. There are descriptions of feline primary
hypoparathyroidism (75), which resulted in a reversible myocardial
failure due to excessive hypocalcemia in a patient (76) as well as
primary hypocalcemia in dogs, which can be treated successfully
with calcium andVitD3 supplementation (77).Whereas there exists
a series of further case reports on canine and feline disease, there are
only very few documentations on (primary) hypoparathyroidism in
horses, which has a genetic background in this species (78), and a
single report on a case of bovine disease (79). Remarkably, in pigs
and sheep, there is no single report in the literature concerning
hypoparathyroidism, which is in line with the findings of accessory
parathyroid glands in these species. Interestingly, even in older pigs,
such as minipigs, endocrinopathies (except for sexual ones) are
nearly not encountered in the veterinary practice at all (80). No
records on non-mammalian tetrapod hypoparathyroidism could
be found.

Cats and dogs, although principally suited for
parathyroidectomy (PTX) to induce hypoparathyroid conditions,
have to be excluded in Austria due to legal regulations. Hence,
large animal species worth considering as models are sheep
and pigs. They are comparably easy to handle and inexpensive
in housing. Moreover, they are frequently used in osteologic
and osteoimmunological studies as they show anatomical and
physiological similarities with humans in various organs including
the bone compartment (81–83). Literature research and cadaveric
feasibility studies regarding parathyroid gland anatomy and
topography revealed that in sheep the superior parathyroid
glands are easy to detect. However, the inferior parathyroid
glands are deeply embedded in the thyroidal tissue and cannot be
separated from the surroundings due to a missing encapsulation.
Additionally, accessory parathyroid glands are disseminated
over a large area of the ventral neck and total PTX is therefore
impossible. This is underlined by reports in older literature of good
tolerability of PTX in sheep, which points toward only a partial
hypoparathyroid condition after surgery (84).

In swine, total PTX is difficult due to accessory glands, which
can functionally replace primary parathyroid tissue. Moreover,
the superior parathyroid glands are found in variable numbers
and at variable sites. They are localized deeply in the massive
cranio-ventral neck region in near vicinity to vulnerable structures
and can easily be confused with other organs such as lymphatic
tissue or thymus lobules. In recent literature, there is one
report describing a new approach for PTX surgery in swine,
however, without reporting on the effects of PTX (85). Another
group described the effects of thyroparathyroidectomy (TPTX),
but not isolated PTX, on bone development in unborn sheep

(86). Taken together, both sheep and swine do not fulfill
anatomical requirements for a suitable conventional surgical
hypoparathyroidism model. Instead, these species ask for novel
ways to visualize dispersed parathyroid tissues when choosing a
surgical approach.

Existing genetically modified animal models of
hypoparathyroidism include mice carrying parathyroid hormone
(PTH)-null (87) or Glial Cells Missing Homolog 2 (GCM2)-null
alleles (88). Whereas in the first model PTH levels are decreased by
directly targeting the PTH gene, in the second model parathyroid
gland development is impaired by targeting a transcription factor
crucial for gland development. Unexpectedly, GCM2-deficient
mice, despite their lack of parathyroid glands, displayed only
a mildly abnormal bone phenotype with PTH levels that were
identical to those in wild-type mice. Further studies revealed
the thymus as an additional source of PTH compensating for
impaired PTH output of the parathyroid gland (88). The use
of these models for acquired hypoparathyroidism—the most
common form of the disease (89)—is limited by an inherited
chronic hypoparathyroid phenotype. Moreover, alterations in the
development of organs affected by impairments of the hypothyroid
gland (i.e., the skeleton) may occur. To overcome this limitation,
Bi et al. established the PTHcre-iDTR mouse model, in which
parathyroid cells selectively express the human diphtheria toxin
receptors (DTR) (90). By systemic injection of diphtheria toxin,
parathyroid cells can be ablated leading to low PTH levels and
an acquired hypoparathyroid condition. There are also several
genetic models mimicking related syndromes including impaired
parathyroid gland development, such as the DiGeorge syndrome,
the hypoparathyroidism–sensorineural deafness–renal dysplasia
(HDR) syndrome, and the hypoparathyroidism–retardation–
dysmorphism (HRD) syndrome [for review, see Garfield and
Karaplis (91)]. Knockout mice are typically used as models, but
there is also a zebra fish model mimicking the HRD syndrome (92).
Given that these models failed to display conclusive symptoms
of hypoparathyroidism (93–96), they are not suitable for use
as models for that issue. Apart from this, in these syndromes,
defects of the parathyroid gland are associated with other
manifestations, making a comparison to hypoparathyroidism in
humans difficult.

As an alternative to genetic models, surgical PTX is used to
model acquired hypoparathyroidism. Mice, due to the small size
of the parathyroid glands, are limited in their use for PTX. Hence,
Bi et al. developed a mouse model in which green fluorescent
protein (GFP) is selectively expressed in the parathyroid gland, thus
facilitating a more precise PTX surgery (90). Another approach
to overcome the limitation of small parathyroid glands in mice
is the performance of TPTX (97). In this model, hormones of
the thyroid gland (thyroid hormones and calcitonin) have to
be supplemented, thereby reducing comparability to acquired
hypoparathyroidism in humans. PTX was performed also in
chickens and rabbits; however, most typically it is performed in
rats (98–105). Comparable to mice, also in rats, fluorescence-based
detection was used to enable precise excision of the parathyroid
gland. To prevent animals from perishing, calcium must be
supplemented. The ideal dietary calcium content in this model to
mimic acquired hypoparathyroidism in humans was determined
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to be 0.5%. Serum calcium levels decreased, and phosphorus
levels and bone volume increased (106, 107). Cadaveric studies
performed by us revealed that rats are preferable to mice from a
surgical perspective.

Thus, the seemingly most reliable model of
hypoparathyroidism at the moment are Sprague Dawley rats
being subject to PTX at the age of 8 weeks (106). As postsurgical
hypoparathyroidism is more frequent in women than in men (54),
female rats should be preferred. As an alternative for surgery,
male Wistar rats treated with cinacalcet may be used for the
development of a non-surgical rodent hypoparathyroid model.
Cinacalcet suppresses the calcium levels, which was associated with
a decline in PTH, and afterwards PTH 1-34 or a delayed-clearance
PTH molecule (DC-PTH) were administered to reverse this effect
(108). An advantage of this model is that there is no need to replace
thyroid hormones (as in most surgical models). Nevertheless,
it should be mentioned that long-term data are missing for
this approach.

5. Future perspectives

Postsurgical hypoparathyroidism has been shown to be
associated with a significantly increased risk of hospitalization due
to infections. Deepening the knowledge on the osteoimmunological
aspects of hypoparathyroidism will lead to a better understanding
of the pathophysiological mechanisms behind this observation. In
particular, the influence of decreased PTH levels on the ratio of
pro- vs. anti-inflammatory cytokines and dynamics in responsible
cell type populations should be assessed in vivo using rodent
models as a first step. Moreover, by investigating the impact of
PTH deficiency on the production of proinflammatory cytokines
by osteocytes, a possible new role of osteocytes in linking PTH
and hypoparathyroidism-related bone effects might be established.
As mentioned before, lowered circulating TNF-α levels were
observed in patients with chronic postsurgical hypoparathyroidism
(49). We, therefore, expect not only a higher bone volume, as
already described, but also a higher bone mineral content and
increased cortical and trabecular thicknesses in PTX models and
an altered cytokine profile of various immune cell populations
and osteocytes. For future research, it would be an option to
develop real-time detection methods for identifying accessory
parathyroid tissue islets, thus being able to perform accurate total
PTX also in large animal species, as these have advantages in further
pharmacological studies.

6. Conclusion

Acquired hypoparathyroidism is the most common form of
this rare endocrinopathy in humans with a reported range of
prevalence of chronic hypoparathyroidism from 6.4 to 37/100,000
(109). Except for the PTHcre-iDTRmousemodel (90), most genetic
models available do not reflect acquired hypoparathyroidism
satisfactorily. Moreover, concomitant alterations of immune

functions that could interfere with the interpretation of results
cannot be excluded, and PTHcre-iDTR mice are limited by high
purchase costs. Hence, a surgical model of hypoparathyroidism
is most suitable to meet clear criteria. Large animal models
(sheep and pig)—although their immune system is also well
characterized meanwhile (81, 110, 111), which is an argument in
favor of their increased use in biomedical research in general,
but also in osteological research in special (112)—do not fulfill
the requirements of surgical feasibility and have thus to be
excluded for such experiments till real-time detection methods
for hypoparathyroid tissues exist. A model widely used for
hypoparathyroidism and offering high availability of analytical
reagents is PTX in mice and rats. Although the small size of
mice limits the amount of tissue and biological fluids that can
be harvested, PTX in rats seems to be the preferable option
to date. One major limitation in all experimental models of
hypoparathyroidism is the fact that over 80 % of respective human
patients develop this condition as a complication of anterior neck
surgery due to thyroid adenomas or related pathologies, meaning
that data extrapolation of sole PTX (vs. TPTX) models needs to be
done with caution.
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