
Frontiers in Veterinary Science 01 frontiersin.org

Molecular characterization of 
Fasciola hepatica in endemic 
regions of Colombia
Diego Garcia-Corredor 1,2, Mateo Alvarado 2, 
Martín Pulido-Medellín 1, Marina Muñoz 2, Lissa Cruz-Saavedra 2, 
Carolina Hernández 2,3, Julio Cesar Giraldo 4,5, 
Luis R. Vásquez-Arteaga 6, Ana Cruz Morillo Coronado 7 and 
Juan David Ramírez 2,8*
1 Grupo de Investigación en Medicina Veterinaria y Zootecnia (GIDIMEVETZ), Facultad de Ciencias 
Agropecuarias, Universidad Pedagógica y Tecnológica de Colombia (UPTC), Tunja, Colombia, 2 Centro 
de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, 
Universidad del Rosario, Bogotá, Colombia, 3 Centro de Tecnología en Salud (CETESA), Innovaseq SAS, 
Bogotá, Colombia, 4 Grupo de Investigación en Parasitología y Microbiología Tropical, Programa de 
Biología, Universidad INCCA de Colombia, Bogotá, Colombia, 5 Facultad de Medicina y Ciencias de la 
Salud, Universidad Militar Nueva Granada, Bogotá, Colombia, 6 Centro de Estudios en Microbiología y 
Parasitología, Facultad de Ciencias de la Salud, Universidad del Cauca, Popayán, Colombia, 7 Universidad 
Pedagógica y Tecnológica de Colombia, Facultad de Ciencias Agropecuarias, Tunja, Colombia, 
8 Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, 
Icahn School of Medicine at Mount Sinai, New York, NY, United States

Fasciola hepatica is a zoonotic trematode that affects a wide range of hosts, 
including cattle, sheep, and goats. The economic impact of the parasite on the 
cattle industry is significant, with high losses reported worldwide. While its impact 
on human health was previously underestimated, recent years have seen a rise 
in fascioliasis cases, leading to increased interest among researchers globally. 
To characterize the genetic diversity and intraspecific variation of this parasite in 
South America, specifically in Colombia, we collected 105 adult parasites from 
cattle bile ducts in seven Colombian departments (Antioquia, Boyacá, Santander, 
Cauca, Cundinamarca, Nariño, Norte de Santander, and Santander) to assess 
the parasite’s phenotypic analyses, genetic diversity, and population structure. 
A computer image analysis system (CIAS) was applied based on standardized 
morphological measurements. Liver-fluke size was studied by principal component 
analysis (PCA). DNA sequences were obtained for nuclear markers such as the 
28S, β-tubulin 3, ITS1, ITS2, and the mitochondrial marker Cytochrome Oxidase 
I  (COI). Multiple statistical tests were performed, and the parasite’s population 
structure was analyzed. Maximum Likelihood (ML) phylogenetic reconstructions 
were carried out using the sequences obtained herein and sequences available in 
GenBank. Morphological results revealed that all the obtained individuals matched 
F. hepatica’s morphology. There was no evidence of high genetic diversity, and the 
absence of genetic structure at the country-level was notable, possibly caused by 
a demographic expansion of this trematode in Colombia or the low resolution 
of the molecular markers employed. Future studies are still needed to unveil the 
genetic population structure of F. hepatica across the country.

KEYWORDS

Fasciola hepatica, phylogeneitc tree, Colombia, genetic diversity, population structure

OPEN ACCESS

EDITED BY

Paolo Merella,  
University of Sassari, Italy

REVIEWED BY

Mylissa Chaouadi,  
University of Science and Technology Houari 
Boumediene, Algeria
Daria Sanna,  
University of Sassari, Italy

*CORRESPONDENCE

Juan David Ramírez  
 juand.ramirez@urosario.edu.co; 
 juan.ramirezgonzalez@mountsinai.org

RECEIVED 21 February 2023
ACCEPTED 16 May 2023
PUBLISHED 09 June 2023

CITATION

Garcia-Corredor D, Alvarado M, 
Pulido-Medellín M, Muñoz M, Cruz-Saavedra L, 
Hernández C, Giraldo JC, Vásquez-Arteaga LR, 
Morillo Coronado AC and Ramírez JD (2023) 
Molecular characterization of Fasciola hepatica 
in endemic regions of Colombia.
Front. Vet. Sci. 10:1171147.
doi: 10.3389/fvets.2023.1171147

COPYRIGHT

© 2023 Garcia-Corredor, Alvarado, Pulido-
Medellín, Muñoz, Cruz-Saavedra, Hernández, 
Giraldo, Vásquez-Arteaga, Morillo Coronado 
and Ramírez. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in this 
journal is cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

TYPE Original Research
PUBLISHED 09 June 2023
DOI 10.3389/fvets.2023.1171147

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2023.1171147%EF%BB%BF&domain=pdf&date_stamp=2023-06-09
https://www.frontiersin.org/articles/10.3389/fvets.2023.1171147/full
https://www.frontiersin.org/articles/10.3389/fvets.2023.1171147/full
https://www.frontiersin.org/articles/10.3389/fvets.2023.1171147/full
mailto:juand.ramirez@urosario.edu.co
mailto:juan.ramirezgonzalez@mountsinai.org
https://doi.org/10.3389/fvets.2023.1171147
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2023.1171147


Garcia-Corredor et al. 10.3389/fvets.2023.1171147

Frontiers in Veterinary Science 02 frontiersin.org

Introduction

Fasciola hepatica (1) a hepatic trematode, is a pathogen that affects 
both cattle and humans, causing a parasitic disease called fascioliasis 
(2). Its high pathogenicity during the disease’s invasive or acute phase, 
and during bile or chronic phase in cattle, sheep, and goats, causes 
huge economic losses of approximately $200 million USD per year. 
This is due to the confiscation of livers in slaughterhouses, weight gain 
reduction, and milk production (3–7). Recent research highlights the 
importance of the disease in human health, with the World Health 
Organization including it in their roadmap of neglected tropical 
diseases for 2030, and promoting the use of One Health strategies as 
a transversal approach (8, 9).

The global distribution of fascioliasis is wide, resulting from both 
the historical movement of Old-World animals during colonization 
and the geographic distribution of Limneidae snails, which act as 
intermediate hosts for the parasite (10). As a result, the prevalence of 
the disease in cattle varies widely worldwide. In Africa, prevalence 
ranges from 1.2 to 91%, while in the Americas, it varies between 24.5 
and 100%. In Asian countries, prevalence values fluctuate from 0.71 
to 69.2%, while in Papua New Guinea and Australia, the values range 
from 26.5 to 81%. In Europe, the prevalence varies between 0.12 and 
86% (11).

The distinctive biology of Fasciola hepatica can affect its genetic 
diversity and structure (12). Within these biological parasites clonal 
expansion occurs inside the intermediate host (13), hence there is a 
possibility of the coexistence of multiple metacercariae sharing origin 
and genotype, and consequently, parasites sharing multilocus 
genotypes between definitive hosts (14). Additionally, as a 
hermaphrodite, the parasite has the potential to induce changes in 
the allele frequency of a population, and clonal expansion could 
involve a founder effect, resulting in changes in population 
structure (15).

Considering the complexity of Fasciola characterization 
through morphological examination (16), molecular approaches 
have been recently used to identify this parasite with higher 
accuracy. A variety of molecular markers, such as mitochondrial 
cytochrome oxidase I (COX1) and NADH dehydrogenase subunit 
1 (NAD1), nuclear (28S rRNA) genes, and ribosomal internal 
transcribed spacers (ITS1 and ITS2), have proven useful for 
detecting hybrid forms of Fasciola (17). While molecular strategies 
have facilitated the identification of morphologically similar 
parasites (10), it is not yet the standard, and the distribution of 
some parasitic species is still unknown.

Fasciola hepatica is a significant economic burden in 
Colombia, causing losses of around $479,962 USD (18). The 
parasite is endemic in four recognized regions: Nariño, 
Cundiboyacense highlands, Santander, Norte de Santander 
highlands, and highlands of the west of Antioquia (19). The 
prevalence of F. hepatica varies across these areas, with values 
ranging from 9.5 to 30.9% (20–25). However, knowledge of the 
parasite’s genetic diversity and intrapopulation structure in the 
country is limited. Thus, this study aims to genetically 
characterize F. hepatica infecting cattle and analyze its population 
structure in seven departments of Colombia (Antioquia, Boyacá, 
Santander, Cauca, Cundinamarca, Nariño, Norte de Santander, 
and Santander), located in endemic biogeographic regions of 
the parasite.

Methods

Sample collection

This study was conducted in seven departments of Colombia from 
2021 to 2022: Antioquia, Boyacá, Santander, Cauca, Cundinamarca, 
Nariño, Norte de Santander, and Santander (Figure  1; 
Supplementary Table S1). During liver inspection of sacrificed 
animals, 15 F. hepatica adult samples were selected from the bile duct 
of 15 different cattle in each department (1 adult parasite per cattle). 
The flukes were washed with saline solution to remove bile residues 
and blood remains adhered to the parasite (26). Samples were 
preserved in 70% ethanol and refrigerated at 4°C to conduct the 
phenotypic analysis and then subjected to DNA extraction. 
Epidemiological cards were designed to allow data collection for each 
animal. This information was obtained from the Sanitary guides for 
the internal movement of animals (GSMI; Guías Sanitarias de 
Movilización Interna de Animales) issued by the Instituto Colombiano 
Agropecuario (Supplementary Table S2).

Ethical statement

The current study was approved by the ethics committee of the 
Universidad Pedagógica y Tecnológica de Colombia with the title 
“Caracterización molecular y análisis de la estructura genética 
poblacional de Fasciola spp. en cinco departamentos de Colombia,” 
under report number 007/2019.

Phenotypic analyses

Standardized measurements of Fasciola samples were made 
according to the methods proposed by Valero et al. (27) and Periago 
et  al. (16, 28). The following lineal biometric characters were 
measured: body length (BL), maximum body width (BW), maximum 
diameter of oral sucker (OSmax), maximum diameter of ventral 
sucker (VSmax), distance between the anterior end of the body and 
the ventral sucker (A-VS), and distance between the ventral sucker 
and the posterior end of the body (VS-P). Additionally, areas were 
measured, including body area (BA), oral sucker area (OSA), and 
ventral sucker area (VSA), and the ratio of oral sucker area over 
ventral sucker area (OSA/VSA) was calculated.

Measurements were taken using a microscope and captured with 
a digital camera (Zeiss Primotech, Germany) and analyzed with image 
analysis software (Zeiss Zen 3.1 Blue Edition, Jena, Germany). 
Univariate morphometric comparisons were applied to calculate 
phenotypic variations among Fasciolid adults from each department 
and between departments to compare them with previous reports, 
excluding the effect of ontogenetic variations within the group (29). 
Reference values of Altiplano Bolivia, Cajamarca (Peru) and San Juan 
(Ecuador), Valencia (Spain), Córcega (France) and Bobo Dioulasso 
(Burkina Faso) for F. gigantica (16), are shown in 
Supplementary Table S3. Principal component analysis (PCA) was 
used to summarize the majority of the variations in a multivariate data 
set in a few dimensions (30). Results were considered highly significant 
when p < 0.01. Non-redundant measures (measures not included in 
another one) used were BL, BW, OSmax, VSmax, A-VS, and VS-P.
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Extraction, amplification, and alignment of 
DNA data

Genomic DNA was extracted from 105 adult F. hepatica parasites 
using the Invisorb® Spin Universal Kit (Statec Molecular) following 
the manufacturer’s protocol. The concentration of the extracted DNA 
was assessed using a NanoDrop ND-1000 spectrophotometer, while 
quality and integrity assessments were performed using 
electrophoresis with a 1% agarose gel. Minimum quality and integrity 
parameters were established to select the samples for further analysis, 
including DNA concentrations of at least 200 ng/μl and quality ratios 
between 260/280 of 1.7–2.

Molecular markers included in this study were amplified by PCR: 
28S rRNA (FAS-28sFwd-FAS-28sRV) (31), β-tubulin 3 (FAS-BtubFwd-
FAS-BtubRV) (32), Internal Transcribed Spacer 1-ITS1 
(FAS-ITS1Fwd-FAS-ITS1RV), Internal Transcribed Spacer 2-ITS2 
(FAS-ITS2Fwd-FAS-ITS2RV) (33), and Cytochrome Oxidase Subunit 
1-COI (FAS-COIFwd-FAS-COIRV) (34). The sequences of the 
primers are shown in Supplementary Table S4, where fragments of 
520, 836, 498, 364, and 438 bp were generated, respectively. Each PCR 
reaction consisted of a mixture of GoTaq Green Master Mix (Promega, 
Madison, WI, United  States) at 1× concentration (400 μM dATP, 
400 μM dGTP, 400 μM dCTP, 400 μM dTTP, and 3 mM MgCl2), 
2.5 μM of each primer, 3 μL of total DNA, and 4.5 μL of molecular 
biology-grade water to complete a final volume of 25 μl.

PCR cycles were conducted with the following thermal profiles: 
(i) 28S: starting denaturation at 94°C for 3 min, followed by 30 cycles 
of denaturation at 94°C for 30 s, then 30 cycles of annealing at 60°C 
for 30 s, 30 cycles of extension at 72°C for 60 s, and a final extension at 
72°C for 5 min; (ii) β-tubulin 3: starting denaturation at 95°C for 

2 min, followed by 35 cycles of denaturation at 95°C for 60 s, then 
35 cycles of annealing at 55°C for 60 s, 35 cycles of extension at 72°C 
for 60 s, and a final extension at 72°C for 10 min; (iii) ITS1: starting 
denaturation at 94°C for 5 min, followed by 30 cycles of denaturation 
at 94°C for 30 s, then 30 cycles of annealing at 55°C for 30 s, 30 cycles 
of extension at 72°C for 2 min, and a final extension at 72°C for 
10 min; (iv) ITS2: starting denaturation at 94°C for 2 min, followed by 
35 cycles of denaturation at 93°C for 60 s, then 35 cycles of annealing 
at 55°C for 60 s, 35 cycles of extension at 72°C for 60 s, and a final 
extension at 72°C for 2 min; (v) COI: starting denaturation at 94°C for 
90 s, followed by 30 cycles of denaturation at 94°C for 90 s, then 
30 cycles of annealing at 55°C for 90 s, 30 cycles of extension at 72°C 
for 2 min, and a final extension at 72°C for 10 min. Amplicons were 
visualized using a 1.5% agarose gel.

Purification of PCR products was performed using ExoSAP-IT™ 
PCR Product Cleanup Reagent (Applied Biosystems, Foster City, CA, 
United States) following the manufacturer’s protocol, including quality 
and integrity DNA control. The purified products were then sequenced 
using Sanger sequencing. The resulting raw sequences were analyzed 
and contigs were assembled, verified, and edited in DNAStar 
Lasergene V7.1.0 (DNAStar, Inc., Madison, WI). The alignment of 
locus sequences, visual inspection, and manual correction of 
alignments were performed using Mesquite (35).

Molecular phylogenetic and population 
genetics analyses

To characterize the genetic variability of F. hepatica, we estimated 
the genetic divergences and calculated the number of haplotypes (h), 

FIGURE 1

Map showing the municipalities where the collection of Fasciola hepatica adults was carried out, and the endemic zones for Colombia.
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haplotype diversity (hd), nucleotide diversity (π) and number of 
segregating sites (S) using only the Colombian sequences 
(Supplementary Table S1) for each marker in DNASP v6.12.03 (36). 
We  reconstructed phylogenetic relationships within the multiple 
F. hepatica samples only for markers that were informative according 
to the estimated genetic divergence calculations, using maximum 
likelihood (ML) inference on IQ-Tree 2 (37). The best substitution 
models for each locus were selected using ModelFinder (38), included 
in IQ-Tree 2, and considering the Bayesian Information Criterion for 
the final selection (BIC) (39). Therefore, the resulting substitution 
models for each locus were F81 + F for Cytochrome oxidase I (COI) 
and K2P + G4 for β-tubulin 3. We  used UltraFast Bootstrap (40), 
aBayes (41), and SH-aLRT (42) to assess node support, performing 
each reconstruction with 1,000 pseudoreplicates. For these 
reconstructions, we included Schistosoma turkestanicum sequences 
obtained from GeneBank as the outgroup (Supplementary Table S5). 
TCS haplotype networks were constructed for both markers using 
PopArt v1.7 (43). As little to no intraspecific diversity was evident and 
no phylogeographic signal was detected in the first round of the 
reconstructions, we  decided to include additional F. hepatica 
sequences from different countries retrieved from GenBank (Table 1) 
and re-run the reconstructions under the same parameters described 
above. The aim of the inclusion of new sequences was to determine if 
our sequences would cluster among themselves at a different 
geographic scale, indicating hypothetically that there is intraspecific 
diversity in F. hepatica at a larger geographic scale and not at the 
regional scale as we  expected. We  constructed a TCS haplotype 
network (47) for the COI and β-tubulin 3 markers using PopArt v1.7 
(43), including the new F. hepatica sequences from GenBank. Finally, 
we performed a principal coordinate analysis PCoA using the COI and 
β-tubulin 3 alignments. To do this, we  obtained a “dist” file that 
contained the Euclidean distances of these data sets. We then used the 
gl.pcoa function from the dartR package to conduct the analysis. To 
create the graphs, we  utilized the colorplot function of the 
adegenet package.

Results

Morphometric analysis

Table 2 presents the morphometric values of F. hepatica, including 
extreme values, mean ± standard deviation by department, from 
Antioquia, Boyacá, Cauca, Cundinamarca, Nariño, Norte de 
Santander, and Santander. The data obtained from comparative 
morphometric analysis shows that there are no significant differences 
between Fasciola measurements from different departments (p > 0.01). 
Therefore, the samples do not exhibit any morphometric variation 
between departments (Table  2). The values of F. hepatica for the 
assessed departments, with measures of morphological traits 
considered useful to distinguish between F. hepatica and F. gigantica, 
demonstrate that none of the evaluated characteristics overlap with 
F. gigantica.

In the dispersion graph of principal components 
(Supplementary Figure S1), the populations from the seven 
departments of this study were grouped in the same cluster, which was 
well separated from Burkina Faso’s F. gigantica but remarkably close 
to Bolivia’s F. hepatica. This suggests that the sizes of the populations 

from our study and those from the Bolivian highlands are similar. 
Additionally, the proximity between European and Peruvian 
populations was observed, while Ecuadorian populations appeared to 
be  distant from the rest of the F. hepatica populations analyzed 
(Figure 2).

Phylogenetic analysis

The analysis of genetic divergence showed that there was not a 
significant genetic variability in the ITS1, ITS2, and 28S sequences of 
the Colombian samples. Although an attempt was made to concatenate 
the ribosomal markers, the genetic divergence calculations indicated 
an absence of genetic diversity. However, the COI and β-tubulin 3 
sequences showed a signal of genetic variability, with the COI 
sequences exhibiting less genetic variability compared to β-tubulin 3 
sequences (h 3; hd 0.648; π 0.00182 and h 10; hd 0.945; π 0.00843, 
respectively; Table 3).

To assess genetic divergence, only COI and β-tubulin 3 markers 
were found to be  informative, leading to the decision to perform 
phylogenetic analyses solely for these markers. A preliminary analysis 
of haplotype networks and phylogenetic trees were conducted on 
Colombian samples, but due to the low genetic variability of Fasciola 
in Colombia, it was not possible to detect any genetic structure among 
the analyzed departments (Supplementary Figures S2, S3). The 
resulting topologies were not consistent, and there was no grouping 
between departments. An external sequence analysis was subsequently 
performed to determine if the Colombian sequences would cluster 
with themselves against others on a different geographical scale. The 
resulting topologies for both COI and β-tubulin 3 show that the 
Colombian sequences form paraphyletic clades, intermingled with 
external sequences from GenBank included in the analysis, suggesting 
low genetic diversity in Fasciola at a continental scale and 
corroborating the results of the genetic diversity calculations. In both 
reconstructions, the small distance between the terminal branches and 
their corresponding nodes and the presence of single clades composed 
of identical sequences, likely separated from the rest of the sequences 
by one or two SNPs, indicate this low genetic diversity.

The COI haplotype network revealed a new haplotype in Boyaca, 
Nariño, and Santander, while two haplotypes previously reported in 
South America, and one of them also found in Asia. On the other 
hand, the β-tubulin 3 haplotype network showed that new haplotypes 
were found in Cauca and Nariño; Antioquia, Cauca, and Santander; 
Cundinamarca, and Norte de Santander. Both haplotype networks, 
along with the phylogenetic reconstructions and genetic diversity 
calculations, demonstrated a low genetic diversity between the 
samples, with only a few mutational steps separating the different 
haplotypes detected. Furthermore, external sequences grouped with 
Colombian sequences in both haplotype networks, corroborating the 
results of the topologies obtained (Figures 3, 4). However, intraspecific 
diversity was higher in β-tubulin 3 sequences than COI sequences 
(Supplementary Table S6). This was evident in the phylogenetic 
reconstructions and haplotype networks, where multiple clades and 
haplotypes were composed of a single sequence separated by a small 
distance or a small number of mutational steps. The COI dataset 
showed genetic structuring, which was not confirmed by the β-tubulin 
3 dataset, possibly due to differences in the genetic variability detected 
for the two markers.
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The principal coordinates analysis graph shows that the sequences 
from the seven Colombian departments analyzed in this study were 
grouped together in the same clusters, for both COI and β-tubulin 3 
markers, and were clearly distinct from sequences from Asia, Europe, 
and South America (refer to Supplementary Figures S4, S5). This 

finding is consistent with the results of the previously described 
morphometric analyses. Together, the data from COI and β-tubulin 3 
markers confirm the low genetic diversity observed in the 
morphological analyses at both the country and continental levels, 
and provide new insights into the low molecular diversity of 

TABLE 1 Accession numbers of Fasciola hepatica sequences used for phylogenetic and haplotype analyses.

Marker N° Accession number Country Reference

28S 1 MN970007 Australia Le et al., Unpublished

2 MF678654 Australia Calvani et al. (17)

3 HM369302 Bulgaria Teofanova et al. (32)

4 KF791538 Egypt Mohammad-Gobbah et al., Unpublished

5 HM369311 Poland Teofanova et al. (32)

6 HM369358 Poland Teofanova et al. (32)

β tub 1 HM535803 Bulgaria Teofanova et al. (32)

2 HM535813 Greece Teofanova et al. (32)

3 HM535962 Greece Teofanova et al. (32)

4 HM535806 Greece Teofanova et al. (32)

5 HM535842 Poland Teofanova et al. (32)

ITS1 1 MN559388 Algeria Amor et al. (48)

2 AJ243016 Bolivia Bargues et al. (49)

3 MF991101 Iran Heydarian et al., Unpublished

4 EF612469 Iran Lotfy et al. (50)

5 MG569976 Mexico Valero et al. (44)

6 KJ689334 Peru Reyna and Sanabria (51)

7 KJ689322 Peru Reyna and Sanabria (51)

8 KJ689321 Peru Reyna and Sanabria (51)

9 KJ689320 Peru Reyna and Sanabria (51)

10 GQ231547 Tunisia Farjallah et al. (52)

11 GQ231546 Tunisia Farjallah et al. (52)

ITS2 1 MG569985 Bolivia Valero et al. (44)

2 MT423007 Egypt Khalafalla (53)

3 KT033698 Iran Shahbakhsh et al. (54)

4 MG569976 Mexico Valero et al. (44)

5 MG569983 Mexico Valero et al. (44)

6 KJ852770 Peru Reyna and Sanabria (51)

7 MG569981 Spain Valero et al. (44)

8 MG569986 Spain Valero et al. (44)

COI 1 MK838687 Brazil Schwantes et al. (34)

2 MK838686 Brazil Schwantes et al. (34)

3 MW867317 Ecuador Bargues et al. (45)

4 MN527599 Iran Khazan et al. (55)

5 MK447982 Iran Javanmard et al., Unpublished

6 MK447972 Iran Javanmard et al., Unpublished

7 MF788106 Iran Heydarian et al., Unpublished

8 KR422386 Poland Norbury et al., unpublished

9 MW867326 Uruguay Bargues et al. (46)

10 GU112483 United States Ai et al. (56)
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TABLE 2 Comparative morphometric data (extreme values, mean ± standard deviation) of Fasciola hepatica studied: Antioquia, Boyacá, Cauca, Cundinamarca, Nariño, Norte de Santander, and Santander 
(Colombia).

Adult measurements Antioquia Boyacá Cauca Cundinamarca Nariño Norte de 
Santander

Santander p

Body area, BA 70.77–214.77 70.24–219.34 86.03–210.81 61.18–215.41 64.62–218.08 57.71–193.56 61.72–218.02

142.07 ± 52.48 154.88 ± 57.64 150 ± 41.32 127.77 ± 50.92 132.77 ± 52.32 119.27 ± 42.8 140.77 ± 52.42 0.480

Body length, BL 10.41–23.41 10.88–23.99 12.33–23.72 10.18–23.83 10.67–22.56 10.39–23.57 10.41–22.46

16.12 ± 4.14 18.64 ± 4.6 17.93 ± 4.25 16.39 ± 4.8 17.36 ± 4.03 16.82 ± 4.05 16.74 ± 3.91 0.684

Body width, BW 6.43–10.7 5.03–11 5–10.94 5.32–10.86 5.03–10.18 5.23–10.81 5.01–11

8.72 ± 1.44 7.46 ± 1.97 8.26 ± 2.18 8.26 ± 2.03 6.9 ± 1.5 7.79 ± 1.77 7.15 ± 1.86 0.085

BL/BW ratio 1.04–2.77 1.05–2.87 1.09–3 1.15–2.89 1.02–2.96 1–2.81 1.1–2.98

1.98 ± 0.6 1.94 ± 0.6 2.19 ± 0.69 2.13 ± 0.59 2.18 ± 0.49 1.68 ± 0.58 2.21 ± 0.59 0.168

Oral sucker area, OSA 0.24–0.5 0.2–0.49 0.2–0.49 0.2–0.45 0.2–0.5 0.2–0.49 0.24–0.48

0.4 ± 0.08 0.31 ± 0.09 0.33 ± 0.08 0.3 ± 0.07 0.33 ± 0.09 0.38 ± 0.08 0.34 ± 0.08 0.068

Maximum diameter of the oral sucker, 

OSmax

0.5–1 0.58–1 0.5–0.98 0.52–0.93 0.5–1 0.59–0.97 0.5–0.94

0.7 ± 0.16 0.78 ± 0.13 0.72 ± 0.17 0.77 ± 0.1 0.77 ± 0.15 0.79 ± 0.1 0.73 ± 0.16 0.577

Ventral sucker area, VSA 0.52–1.4 0.53–1.38 0.63–1.4 0.51–1.32 0.55–1.21 0.65–1.38 0.5–1.4

1 ± 0.29 0.93 ± 0.3 1.06 ± 0.24 0.87 ± 0.23 0.84 ± 0.24 1.01 ± 0.27 0.86 ± 0.3 0.204

Maximum diameter of the ventral 

sucker, VSmax

0.76–1.36 0.8–1.4 0.71–1.4 0.71–1.31 0.71–1.39 0.74–1.4 0.82–1.39

1.16 ± 0.16 1.08 ± 0.22 1.02 ± 0.25 1 ± 0.19 1.01 ± 0.21 1.05 ± 0.18 1.08 ± 0.19 0.366

OSA/VSA ratio 0.25–0.78 0.28–0.78 0.31–0.75 0.26–0.8 0.28–0.78 0.27–0.79 0.26–0.74

0.52 ± 0.16 0.6 ± 0.13 0.53 ± 0.14 0.55 ± 0.2 0.55 ± 0.15 0.48 ± 0.15 0.56 ± 0.14 0.572

Distance between the anterior end of 

the body and the ventral sucker, A-VS

1.21–2.76 1.16–2.74 1.15–2.78 1.25–2.71 1.14–2.78 1.11–2.8 1.12–2.57

2.01 ± 0.55 1.92 ± 0.47 2.08 ± 0.58 1.84 ± 0.45 1.73 ± 0.53 1.99 ± 0.51 1.96 ± 0.45 0.587

Distance between the ventral sucker 

and the posterior end of the body, VS-P

12.28–25.73 13.49–25.15 13.24–25.99 12.22–21.92 14.54–24.89 13.16–23.88 12.26–25.39

18.79 ± 5.03 19.82 ± 3.83 18.17 ± 4.58 16.78 ± 3.55 19.94 ± 3.48 18.86 ± 3.66 17.04 ± 4.44 0.240

Lineal biometric characters in mm, areas in mm2 and ratios without units.
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Colombian F. hepatica samples. These results suggest that F. hepatica 
has low genetic diversity at the global scale.

Discussion

This study represents the first comprehensive analysis of both the 
phenotype and genotype of F. hepatica in Colombia. Our 
morphological analysis of adult parasites revealed values consistent 
with those previously reported for F. hepatica in other regions of 
Europe and the Americas (Supplementary Table S3) (16, 44, 45), 
indicating the absence of F. gigantica. Despite being collected from 
different geographical areas characterized by highland environments 
with permanent transmission patterns, we  did not observe any 
significant phenotypic differences between the parasites analyzed in 
this study. However, previous research has shown that intraspecific 
variability in Fasciola spp. can be  linked to changes in altitude, as 
reported in studies from different regions (3, 8, 10, 57).

Valero et  al. (44) found that in regions with high altitude, 
reduced oxygen levels induce hypoxia in hosts, affecting egg 
production, uterus development, and the size of the trematode 

body. As a result, egg production, uterus development, and the 
overall size of the parasite are significantly reduced in high-altitude 
regions, such as the Bolivian highlands where F. hepatica size is 
smaller than in Europe and other American regions (16, 46). Our 
study’s parasitic worms showed similar sizes to those reported in 
the Bolivian highlands (Table 2; Figure 2; Supplementary Table S3), 
indicating that the samples were collected from mountain ranges at 
altitudes between 2,050 and 2,569 meters above sea level (masl). 
Bargues et al. (45) mention that there is no apparent relationship 
between adult trematode shape and altitude or geographic location, 
but phenotypical changes are linked to the definitive host, with low 
persistence of morphological characteristics in subsequent  
infections.

Bargues et  al. (45) suggested that there is no significant 
relationship between the shape of adult F. hepatica and altitude or 
location. However, our assessments of natural populations of 
F. hepatica allowed us to distinguish two phenotypic patterns: the 
valley pattern and the highlands pattern. Our findings indicate that 
populations of Andean valleys and European populations display 
phenotypic homogeneity, unlike highlands populations, which exhibit 
a wide size range with low values. This suggests that smaller sizes are 
sufficient to achieve gravidity in the uterus (58), resulting in reduced 
egg production compared to populations described in Mexico, 
Ecuador, and Europe (44, 45, 59, 60). Our study collected F. hepatica 
from highland zones, and our results align with Valero et al. (44) 
proposal, which observed smaller F. hepatica sizes in Antioquia, 
Boyacá, Cauca, Cundinamarca, Nariño, Norte de Santander, and 
Santander in relation to European samples. This is consistent with the 
transmission patterns and epidemiology of fascioliasis in various 
geographical regions. For instance, in the northern highlands of 
Bolivia, the transmission of the disease is permanent due to stable 
temperatures throughout the year and the constant presence of water 
puddles (61). In this context, the permanent elimination of eggs 
becomes a priority to facilitate transmission throughout the year, as in 
the zones where our study was conducted. In contrast, in some 
Mexican regions, transmission of the trematode is seasonal (62), as in 

FIGURE 2

Plot for the comparison of F. hepatica specimens from Antioquia, Boyacá, Cauca, Cundinamarca, Nariño, Norte de Santander, and Santander 
(Colombia), with F. hepatica specimens from Altiplano Bolivia, Cajamarca (Peru), San Juan (Ecuador), Valencia (Spain), Corsica (France) and F. gigantica 
from Bobo Dioulasso (Burkina Faso). The samples are projected onto the first (PC1, 66.6%) and second (PC2, 21%) principal components.

TABLE 3 Population genetics summary statistics for each marker.

Marker
Statistic

h hd π S

28S 2 0.143 0.00025 1

COI 3 0.648 0.00182 2

ITS1 1 0 0 0

ITS2 1 0 0 0

β tub 3 10 0.945 0.00843 25

28S + ITS1 + ITS2 1 0 0 0

h, number of haplotypes; hd, haplotype diversity; π, nucleotide diversity; S, number of 
segregating sites.
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low altitude regions in Europe, where a larger uterus can store eggs 
during unfavorable seasons (60).

In our study, we found that the 28S, ITS1, and ITS2 markers were 
not informative when evaluating the levels of genetic variation. This 
is likely due to the high percentage of repeat sequences (63, 64), in the 
Fasciola genome, which leads to low-quality assemblies and difficulties 
in designing molecular markers that can provide better 
characterization of the parasite. While these markers are still being 
used, reports of low resolution are common in other countries (29, 45, 
59, 65). To overcome this limitation, it is necessary to obtain a 
reference genome for F. hepatica that can be used to design more 

informative markers to reveal the parasite’s evolutionary history. 
Mitochondrial genes have been shown to be  informative for 
phylogenetic studies of F. hepatica due to their high mutation rate (66, 
67). However, in our study, the use of the COI marker did not allow us 
to reconstruct phylogenetic relationships within Colombian samples 
(Figure 3), a situation similar to that found by Chaouadi et al. (68) in 
samples obtained in Algeria. To achieve higher resolution, it may 
be useful to integrate other mitochondrial markers such as nad1, as 
suggested by Bargues et al. (5). Although the β-tubulin 3 marker did 
not allow us to reconstruct phylogenetic relationships among 
Colombian samples (Figure 4), this marker presents opportunities for 

FIGURE 3

(A) Phylogenetic reconstruction with the ML algorithm based on the molecular marker COI. Flags represent external sequences included in this 
analysis. Bootstrap values on the internal nodes are shown in the following order: SH-aLRT/aBayes/UFBootstrap support. Only nodes with bootstrap 
values higher than 60 are shown. Black lines indicate a node’s bootstrap values. (B) COI TCS haplotype network. European haplotypes includes 
Poland’s sequence, Asian haplotypes includes Iran’s sequences and South American haplotypes include sequences from Brazil, Uruguay and Ecuador. 
Intermediate haplotypes shown as white circles.

FIGURE 4

(A) Phylogenetic reconstruction with the ML algorithm based on the molecular marker β-tubulin 3. Flags represent the origin of external sequences 
included in this analysis. Bootstrap values on the internal nodes are shown in the following order: SH-aLRT/aBayes/UFBootstrap support. Only nodes 
with bootstrap values higher than 60 are shown. Black lines indicate a node’s bootstrap values. (B) β-tubulin 3 TCS haplotype network. European 
haplotypes include sequences from Bulgary, Greece and Poland. Intermediate haplotypes are shown as white circles.
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new investigations related to pharmacological resistance processes. 
Previous studies have shown that β-tubulin is associated with 
resistance to triclabendazole in F. hepatica (69). Therefore, the 
diversity observed in this marker for the Colombian samples could 
be explored to analyze and understand the mechanisms of resistance 
to triclabendazole, which is an important factor to consider in the 
control of this parasite (70).

Previous studies have shown that there is genetic variability in 
F. hepatica specimens in Latin America, which are similar to those 
found in Europe (32, 44, 46, 71, 72). This is likely due to successive 
introductions of cattle from abroad during two historical periods. 
The first period was the colonial era, where European and Central 
American animals were brought and subsequently introduced 
towards South America through the Pacific coast or the terrestrial 
route from what is now Colombia and Venezuela to the rest of the 
South American countries. The latter route has been considered 
the most significant route in terms of the introduction probability 
of F. hepatica haplotypes into the continent. The second period was 
the post-colonial era, characterized by an increase in Imports of 
cattle from Europe, North America, and Asia to improve existing 
breeds in South American countries (45, 65). These introduction 
processes could have resulted in a wide haplotype diversity since 
metacercariae can infect different cattle species (73, 74). 
Additionally, F. hepatica infection does not generate premunition, 
leading to reinfections and the accumulation of the parasite inside 
the same host (75). This indicates that animal movements across 
borders could be the indirect source of introducing more than one 
haplotype capable of infecting multiple susceptible species. 
Therefore, using molecular tools as a diagnostic strategy in 
epidemiological surveillance protocols in border corridors is 
essential for F. hepatica identification.

During the colonial period in Colombia, cattle were distributed in 
both the plains and highlands of the country, similar to other Latin 
American countries. However, unlike other countries, there was a 
reduction in the number of cattle raisers during the independence 
period, and the remaining populations clustered around human 
dwellings. In the late 19th century, there was a significant increase in 
the number of cattle in Colombia, but with little participation from 
imported individuals. This suggests that the restoration of the cattle 
population in Colombia started from previously established 
individuals (76, 77). Despite the increased importation of stallions in 
the 20th century (78), the process of restocking and distribution of 
cattle in Colombia may have resulted in a founder effect that could 
explain the low genetic diversity of parasites, including F. hepatica, in 
the studied zones (15, 65). However, an archaeological study found 
evidence of F. hepatica in South America at least 2,300 years ago (79), 
which opens up a new hypothesis to be explored through molecular 
analysis of archaeological samples from other continents to clarify the 
time and route of entry of the parasite into South America. 
Nevertheless, further studies are still needed to explain the low genetic 
diversity of F. hepatica in Colombia.

The current study has provided new insights into the phylogenetic 
relationships and structure of F. hepatica in Colombia, revealing a low 
diversity of haplotypes for two markers. Despite the parasite’s reported 
presence in multiple regions of the country, the expected excess of 
haplotypes that typically accompanies geographic expansion is not 
observed (80), as Table 3 illustrates. These findings differ from those 
in other countries where Fasciola population expansion is evident, 

such as Ecuador, Argentina, and Uruguay. This discrepancy may 
be due to differences in the molecular markers used in characterization, 
as well as to factors such as the arrival and movement of cattle in each 
country, sociocultural aspects, cattle handling practices, and the 
presence and distribution of intermediate host species (46, 67, 81). 
Further studies are required to gather more information and confirm 
the hypothesis that the population structure of F. hepatica is 
influenced by the mobility of the parasite’s definitive host. In 
Colombia, the high mobility of cattle and other definitive hosts may 
result in a low population structure of F. hepatica, leading to a greater 
spread of the parasite. Insights gained from these studies will improve 
our understanding of the host-vector-pathogen triad and facilitate the 
management of fascioliasis by providing insights into the dynamics of 
the pathogen’s population structure.

This study is the first to characterize the genetic structure of 
Fasciola in Colombia. We analyzed multiple departments and found 
that F. hepatica is exclusively circulating in the country, without strong 
indications of genetic structure. However, to broaden our comparisons, 
more sampling efforts are required to include other regions, using our 
results as a reference. Furthermore, additional studies are necessary to 
obtain a reference genome and identify suitable molecular markers 
that can enhance our understanding of the evolutionary history of 
F. hepatica and complement our current findings. Research on 
Limneidae snails, which are essential in the parasite’s life cycle, is also 
necessary to better understand their distribution, implications, and 
potential role in the circulation of new haplotypes.
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