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Seminal plasma proteins have recently been reported to play a significant role 
as valuable materials for understanding male reproductive biology, identifying 
causes of fertility problems, and developing reproductive biomarkers. Proteomic 
analysis of seminal plasma holds promise in advancing the understanding of male 
Asian elephant reproductive biology. This study aims to explore seminal plasma 
proteins of Asian elephants and their probable functions to provide fundamental 
information about male reproduction in this species. The protein solution from 
pooled seminal plasma from 10 bulls (a total of 33 ejaculates) was digested into 
peptides and identified using LC-MS/MS. Out of 986 proteins, 597 were mapped 
and matched with 58 species in UniProt databases, including Elephas maximus. 
These mapped proteins were mostly involved in binding function, catalytic activity, 
cellular process, and metabolic process. Only 29 mapped proteins were recognized 
to be  related in reproductive process, mainly associated in spermatogenesis 
and sperm capacitation. Additionally, several seminal plasma proteins related to 
fertility or semen quality in other mammals were also found in Asian elephant 
semen, such as keratin type I, aldose reductase, thrombospondon-1, fibronectin 
1, platelet-activating factor acetyl hydrolase, mannosidase, and semenogelin-2. 
This discovery clearly reveals the beneficial protein profile in seminal plasma of 
the Asian elephant and serves as a crucial step in investigating infertility and poor 
semen quality in this valuable species.
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Introduction

The International Union of Conservation of Nature (IUCN) currently lists the Asian 
elephant (Elephas maximus) as endangered in the Red List of Threatened Species. This 
designation is due to the declining numbers of the Asian elephant population, even in captivity. 
A major contributing factor to the decline of the captive population of Asian elephant is the low 
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birth rate (1, 2). In terms of male reproductive factors, the quality and 
quantity of semen have a significant impact on fertility and the success 
of artificial insemination (AI). The inconsistency of semen quality 
observed following collection using the per rectum massage technique 
necessitates comprehensive investigation to determine the underlying 
causes and develop potential strategies for improvement (3).

Seminal plasma (SP), consisting of a plentiful number of proteins 
in terms of quality and quantity, is a combined fluid secreted from the 
testis, epididymis, and accessory sex glands in male mammals (4). SP, 
which accounts for approximately 90% of semen volume, has been 
reported as an important medium affecting sperm quality and 
fertilizing ability (5). SP proteins have been reported to have an 
essential influence on preserving sperm survival, sperm capacitation, 
and sperm-oocyte binding during fertilization in the female 
reproductive tract (6). Over the last decade, SP proteins have been 
extensively investigated for their influence on male fertility/subfertility 
and sperm function in various species, aiming to develop biomarkers 
for early detection of fertility/subfertility (6–11). In human, certain 
proteins found in seminal plasma can potentially be  used as 
biomarkers to identify patients with oligozoospermia, abnormal 
morphology, or infertility (9). Furthermore, gaining knowledge about 
SP proteins can lead to a better understanding of reproductive 
physiology and assisting in the development of new storage 
protocols (6).

There have been very few studies on SP proteins in Asian 
elephants. The relationship between the amount of protein in Asian 
elephant SP and sperm motility has been explored in published 
studies. However, the results from these publications present 
contrasting findings. One study demonstrated a positive correlation 
between protein levels and sperm motility (12), while another study 
indicated the opposite (13). Interestingly, the protein lactotransferrin 
appears to serve as an indicator of high sperm motility in this species. 
It is noteworthy that lactotransferrin is only present in 85% of semen 
samples exhibiting high motility (≥65% sperm motility), while it is 
absent in 90% of semen samples with poor motility (≤10% sperm 
motility) (13). The composition of proteins in SP seems to play a more 
significant role in sperm biology than the overall volume of proteins. 
These findings strongly support further investigation into the complete 
protein profile of seminal plasma in Asian elephants (14), which 
would provide valuable insights into the types and functions of 
proteins involved.

Proteomic analysis is a useful tool for the identification of protein 
characteristics and functions, including protein interactions. This 
assessment has been significant in exploring the nature of male 
reproduction, such as proteomics of seminal plasma and spermatozoa 
(8, 9). Recently, the mass spectrometric (MS) technique has been 
widely applied for protein identification, even in complex samples 
such as seminal plasma (15). Protein mass spectrometry can 
be broadly categorized into two approaches: untargeted and targeted 
proteomics. Untargeted or non-targeted proteomics aims to discover 
the near-complete proteome coverage, which involves the 
identification and/or quantification of a maximum number of proteins 
possible (16). Typically, protein identification, the allocation of 
covalent modifications, the detection of sequence errors, and even de 
novo sequencing are commonly performed at the peptide level. The 
choice of digestion method and its conditions must be meticulously 
made, taking into account both the protein sequence and the desired 
information to be extracted. In order to have greater influence on the 

results of the procedure, in-solution digestion is favored over in-gel 
digestion (17). In-solution digestion offers greater automation 
potential and reduces the need for extensive sample manipulation (18).

The objective of this proteomic analysis conducted on seminal 
plasma from Asian elephants was to investigate the complete protein 
composition and their respective functions. The in-solution digestion 
technique and liquid chromatography tandem-mass spectrometry 
(LC-MS/MS) were employed for this purpose. The identification of 
this protein profile is anticipated to assist future research on male 
reproductive issues, including challenges related to semen quality and 
infertility in this particular species.

Materials and methods

Semen collection and analysis

The animal care and use protocol was approved by the Institutional 
Animal Care and Use Committee, Kasetsart University 
(ACKU61-VET-014). Semen was collected every month using a 
transrectal massage technique (19) from 10 sexually mature elephant 
bulls, ranging in age from 15 to 60 years old. These elephants were 
housed at the National Elephant Institute (NEI), Forest Industry 
Organization, located in Lampang, Thailand (latitude and longitude: 
18° 5.2  m 134.6  cm N/99° 30′ 63.5  cm E) during January 2014–
December 2016. Collecting semen and conducting basic semen 
evaluation were regular tasks involved in the breeding management 
of elephants at this organization by the NEI staff. The total of 33 
ejaculates without urine contamination from 10 bulls (three ejaculates 
from seven bulls and four ejaculates from three bulls) was included in 
the study. The semen quality of each ejaculate was evaluated for 
volume, pH, sperm concentration, motility, viability, and sperm 
morphology. Sperm concentration was measured using a 
hemocytometer (Paul Marienfeld GmbH & Co.KG, Lauda-
Königshofen, Germany), while the percentage of sperm motility was 
estimated under a phase-contrast microscope (Olympus (Thailand) 
Co., Ltd., Bangkok, Thailand) at a magnification of ×200. A 
standardized 10 μL drop of semen was pipetted onto a pre-warmed 
(38°C) glass slide and covered with a coverslip for examination. Sperm 
viability evaluation was conducted using eosin-negrosin technique 
(20). For this, 200 spermatozoa per sample were examined, with 
unstained sperm classified as live and stained sperm classified as dead. 
Sperm morphology was assessed using William’s staining according 
to the procedure developed by Sarder (21). Smears of fresh semen 
were air-dried, fixed in absolute alcohol for 3 min, and stained with 
William’s stain for 5 min. After staining, the slides were washed in 
running tap water, dried, and examined using bright-field light 
microscopy at a magnification of ×1,000. Again, 200 spermatozoa per 
sample were examined for head, mid-piece, and tail abnormalities, or 
classified as having normal morphology.

Seminal plasma preparation for protein 
analysis

One mL of fresh semen was mixed with 10 μL of a protease 
inhibitor cocktail (Sigma-Aldrich) (11) and immediately centrifuged 
at 700 g 4°C for 15 min. After centrifugation, the seminal plasma from 
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the supernatant was pipetted into a new tube. Samples were then 
centrifuged at 10,000 g 4°C for 1 h to ensure the removal of sperm cells 
and debris from the seminal plasma. The seminal plasma was kept at 
−20°C for protein analysis. To create a pooled sample, 50 μL of 
thoroughly mixed seminal plasma from each ejaculate of 33 ejaculates 
of Asian elephant bulls was combined in a sterile 5-mL tube. Similarly, 
for each individual bull sample, 50 μL of well-mixed seminal plasma 
from each ejaculate was combined in a separate sterile 1.5-mL 
centrifuge tube, resulting in a total of 10 individual samples for 10 
bulls. The pooled and individual seminal plasma samples were 
measured for total protein and prepared for further protein 
identification of Asian elephant seminal plasma.

Total protein in seminal plasma was determined using Lowry’s 
method (22) with bovine serum albumin (Sigma-Aldrich) as 
standards. Five μg of seminal plasma proteins were dried in a 
low-binding microcentrifuge tube using a speed vacuum centrifuge 
for 30 min. The dried samples were then resuspended with 10 μL of 
10 mM Ammonium bicarbonate (Ambic). Seminal plasma proteins in 
Ambic were digested into peptides following an in-solution digestion 
protocol modified from Leon et al. (23). Briefly, the protein solutions 
were reduced with 10 mM Dithiothreitol (DTT) in 10 mM Ambic at 
56°C for 1 h. After allowing the samples to cool at room temperature, 
the protein samples were alkylated with 30 mM Iodoacetamide (IAA) 
in 10 mM Ambic at room temperature in the dark for 1 h. The next 
step involved digesting the protein solutions using 0.25 μg trypsin 
(1 μg trypsin per 20 μg protein) at 37°C overnight. Samples were then 
spun down at 10,000 g for 30 s and dried using a speed vacuum 
centrifugation. The dry samples were frozen at −20°C until analysis 
with LC-MS/MS.

Protein quantitation and identification

The digested peptides were analyzed in an Ultimate3000 Nano/
Capillary LC System (Thermo Scientific, Massachusetts, United States) 
coupled to a Q-Tof impact II™ (Bruker Daltonics, Massachusetts, 
United States) equipped with a Nano-captive spray ion source. One 
hundred ng of the digested peptide was subjected to the trapping 
column (Thermo Scientific, PepMap100, C18, 300 μm i.d. × 5 mm), 
using full loop injection. The sample was resolved on an analytical 
column (PepSwift Monolithic Nano Column, 100 μm × 5 cm i.d.) at 
column temperature of 60°C. The mobile phase A and B were 0.1% 
(v/v) formic acid in water and 80% (v/v) acetonitrile in 0.1% (v/v) 
formic acid, respectively. Peptide separation was accomplished under 
gradient conditions of 1%–60% B over 10 min at a flow rate of 1 μL/
min. Electrospray ionization was carried out at 1.6 kV using the 
CaptiveSpray. Mass spectra (MS) and MS/MS spectra were fully 
acquired in the positive-ion mode over the range m/z 150–2,200 
(Compass 1.9 for otofSeries software, Bruker Daltonics). Mass 
accuracy in positive detection mode after tune/internal calibration 
with Sodium trifluoroacetate (NaTFA) was within 1.6 ppm. LC-MS/
MS spectra were acquired using a data-dependent auto-MS/MS 
method, with a dynamic method, and a fixed cycle time of 3 s. 
DeCyder MS Differential Analysis software (DeCyderMS, GE 
Healthcare, Illinois, United  States) (24, 25) was used for protein 
quantitation and raw data from DeCyder were searched against the 
mammal protein database from NCBI using the MASCOT (Matrix 
Science, London, United Kingdom) (26) search engine for protein 

identification. Searches were performed with a maximum of three 
missed cleavages, carbamidomethylation of Cys as a fixed 
modification, and oxidation of Met as variable modifications. The level 
of proteins in each sample were expressed as log2 value. The MS/MS 
raw data and analysis files have been deposited in the 
ProteomeXchange Consortium1 via the jPOST partner repository2 
with the data set identifier JPST002020 and PXD039856.

Data and gene ontology analysis

Statistical analysis of semen quality parameters was carried out in 
the R (version 3.5.1, R foundation). The results are presented as the 
means and standard deviation (mean ± SD). Protein data after the 
MASCOT search was identified using UniProt protein database (27). 
Gene ontology analysis using UniProt via https://www.uniprot.org/
id-mapping (for only reproductive process) and the Protein Analysis 
Through Evolutionary Relationship (PANTHER) online tool3 (28) was 
performed for functional classification of UniProt mapped proteins. 
The protein–protein interactions (PPI) were explored using STRING 
database via https://string-db.org/ (29). For further investigation, the 
SP proteins were searched to determine their recognition in previous 
publications on human and other male animal research. This was done 
by using their names as search terms through platforms such as 
Google Scholar and PubMed. The analysis was conducted using all 
these database sources accessed between November 2022–June 2023.

Results

The average (mean ± SD) age of 10 elephant bulls in this 
experiment was 32.55 ± 10.09. The semen quality of each ejaculate is 
presented in Table 1. The average percentages (mean ± SD) of sperm 
motility, viability, and normal morphology were 34.39 ± 26.54, 
47.09 ± 30.70, and 72.76 ± 25.88, respectively.

The LC-MS/MS revealed 1,183 proteins from seminal plasma, 
which included both the pooled sample and 10 individual samples 
(Supplementary Table 1). From the pooled seminal plasma sample, 
986 proteins were identified using LC-MS/MS. However, only 597 SP 
proteins from the pooled sample were matched in the UniProt 
databases (Supplementary Table 2). Similarly, the total number of 
mapped proteins in the 10 individual samples (E2, E3, E4, E5, E6, E8, 
E9, E10, E11, and E13) was approximately 605. Figure 1 illustrates the 
quantity of the same SP proteins found in individual samples 
compared to the pooled sample. The proportion of equivalent proteins 
between the individual samples and in the pooled sample for E2, E3, 
E4, E5, E6, E8, E9, E10, E11, and E13 was calculated as a percentage: 
92.71%, 93.61%, 93.49%, 92.46%, 95.30, 93.85%, 93.88%, 90.02%, 
91.73%, and 92.44%, respectively. Based on these results, the mapped 
proteins’ profile from the pooled sample was considered representative 
of all individual samples for further analysis. Out of a total of 58 
species that matched with 597 SP proteins in the pooled sample, 
including Elephas maximus, most of them were recognized in Homo 

1  http://proteomecentral.proteomexchange.org

2  https://jpostdb.org

3  http://www.pantherdb.org/
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sapiens (160 proteins), Mus musculus (140 proteins), Rattus norvegicus 
(48 proteins), Bos Taurus (34 proteins), and Ailuropoda melanoleuca 
(25 proteins). Among those matched proteins in Uniprot database, 
only two SP proteins were identified as belonging to the Asian 
elephant species in UniProt: serum albumin (ESA or ALB) and trace 
amine-associated receptor 4 (TAAR4).

The mapped proteins from UniProt were then classified 
separately based on molecular function, biological process, and 
cellular component (Figure  2), as well as biological pathway 
(Supplementary Table 3), using PANTHER. A total of 204 hits of 

mapped proteins were categorized based on molecular function 
(Figure 2A), with the majority of them being involved in binding 
function (39%) and catalytic activity (34%). In terms of biological 
process classification (Figure  2B), there were 481 hits, primarily 
associated with cellular process (32%) and metabolic process (22%) 
function. Additionally, within the cellular component category 
(Figure 2C), the majority of proteins from 254 hits were grouped as 
cell parts (38%) and organelles (27%). Sixty-one SP proteins of the 
Asian elephant, which were recognized as human proteins in the 
STRING database, were found to have interactions among 

TABLE 1  Semen parameters of Asian elephant bulls: assessing sperm motility, viability, morphology, concentration, volume, and pH in 33 ejaculates 
from 10 individuals collected during January 2014–Dec 2016 at NEI, Lampang, Thailand.

Elephant Id
No. of 

ejaculation
% Motility % Viability

% Normal 
morphology

Sperm 
concentration 

(cells × 106/mL)

Volume 
(mL)

pH

E2

1 30 30 87 950 1 8.5

2 40 82 81.5 1,580 23 7.5

3 60 77 95 1,640 32 7

E3

1 60 92 92 2,865 20 7

2 40 78 79 1,573 13 7

3 50 83 82 899 16 7

E4

1 80 92 78.5 1,695 35 8

2 40 61 70.5 1,485 120 7.5

3 5 26 59 995 8 8

4 50 62 74 1785 30 7.5

E5

1 30 30 47 1,040 1 8

2 50 52 97.5 2,585 12 5.5

3 5 12 19 900 26 8

4 0 10 16.5 775 8 5

E6

1 60 78 91 1790 0.9 7.5

2 70 72 91 815 16 7

3 5 12 94 786 5 6.5

4 50 65 97 1,456 50 6

E8

1 70 81 97 1,270 33 8.5

2 80 77 93.5 3,000 20 7

3 60 73 96.5 1,540 17 8

E9

1 10 12 85.5 575 17 8

2 5 10 84 1,370 30 7.5

3 0 10 82.5 361 4.5 8

E10

1 30 45 95 2,455 24 6

2 0 0 15.5 690 11 5.5

3 50 70 93 1,387 24 7

E11

1 10 10 50.5 775 9 7

2 0 12 30 287 10.5 9

3 25 36 87 1,200 1.5 8

E13

1 60 70 56.5 1,460 38 6

2 5 22 43 540 10 7

3 5 12 40 396 35 8

Mean ± SD 34.39 ± 26.54 47.09 ± 30.70 72.76 ± 25.88 1300.61 ± 690.21 21.26 ± 21.61 7.24 ± 0.95

https://doi.org/10.3389/fvets.2023.1174078
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Wattananit et al.� 10.3389/fvets.2023.1174078

Frontiers in Veterinary Science 05 frontiersin.org

themselves. These proteins are associated with various cellular 
processes based on their biological functions, except for the 
Mastermind-like domain-containing protein 1 (MAMLD1). These 
proteins include ALB, fibronectin 1 (FN1), Thrombospondin-1 
(THBS1), sonic hedgehog protein (SHH), Elongation factor 1-alpha 
1 (EEF1A1), Tubulin polymerization-promoting protein (TPPP), 
T-complex protein 1 subunit beta (CCT2), probable ATP-dependent 
RNA helicase DDX4 (DDX4), Nuclear pore complex protein 
Nup98-Nup96 (NUP98), probable global transcription activator 
SNF2L2 (SMARCA2), serine/threonine-protein kinase (ATR), and 
others. There were 52 pairs of these proteins showing PPI as gene 
co-expression such as ALB and FN1, EEF1A1 and TPPP, EEF1A1 
and CCT2, and others (Figure  3). Interestingly, gene ontology 
analysis conducted in UniProt revealed that out of 29 SP proteins, 
44 hits were related to reproductive process, with a significant 
involvement in spermatogenesis and sperm capacitation (51%; 
Figure 4). The 29 SP proteins related to reproductive processes were 
presented in Table  2, along with an example of their specific 
reproductive functions. For instance, BTB/POZ domain-containing 
protein 18 (BTBD18), DDX4, SMARCA2, Spermatogenesis-
associated protein 18 (SPATA18), Spermatogenesis-associated 
protein 32 (SPATA32), and Zinc finger protein 105 (ZFP105) have 
been reported to be associated with spermatogenesis.

It was found that 34 of the proteins detected in Asian elephant 
seminal plasma shared similarities with SP proteins in various species, 
including boar, bull, ram, and human (Table 3). It is worth noting that 
the proteins KRT9, Platelet-activating factor acetylhydrolase IB 
subunit alpha (PAFAH1B1), Semenogelin-2 (SEMG2), SPATA18, 
SPATA32, and T-complex protein 1 subunit beta (CCT2), which were 
identified as SP proteins related to reproductive processes in Table 2, 
are also included in Table 3.

Discussion

The inconsistency of semen quality, especially sperm motility, 
among ejaculates within each bull was observed in Asian elephant 

semen in this experiment. This finding is similar to previous reports 
(3, 13, 14). In this case, conducting proteomic analysis on the pooled 
semen sample that includes ejaculates with both poor and high quality 
from all bulls may provide a more reliable assessment of the whole 
proteomes in the seminal plasma of this species.

Based on the gene ontology analysis, the functional analysis of 
seminal plasma (SP) proteins in Asian elephants showed similar 
results to those described in bovine (34) and buffalo SP proteome 
(35). The highest proportion of SP proteins in terms of molecular 
function was found to be associated with binding, accounting for 

FIGURE 1

The bar graph illustrating the quantity of mapped Asian elephant SP 
proteins obtained from Uniprot database of seminal plasma samples 
from a cohort of 10 male elephants: E2, E3, E4, E5, E6, E8, E9, E10, 
E11, and E13. The solid bar represents the SP proteins that are 
common to both individual samples and the pooled sample from all 
bulls, whereas the striped bar indicates the total number of SP 
proteins found in the individual samples.

FIGURE 2

Classification of seminal plasma proteins from Asian elephant semen 
in terms of (A) molecular function, (B) biological process, and 
(C) cellular component using PANTHER as a gene ontology analysis. 
The quantities of proteins in each class are presented as percentages 
in pie charts.
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39% in Asian elephants, 44% in bovines, and 60% in buffaloes. 
Similarly, the highest proportion of SP proteins related to cellular 
processes was observed in the biological process category, with 
percentages of 32%, 24%, and 60% in Asian elephants, bovines, and 
buffaloes, respectively. In many instances, the protein-binding 
function observed in seminal proteins may serve as a supporting 
part to their primary function such as enzymatic and transport 
activities. They were reported to be bound to the sperm surface 

during ejaculation, leading to the formation of protein-coating 
layers (36).

In humans, the primary category of seminal proteins consists 
of various enzymes involved in catalytic activities, making up 
approximately 33%–65% of the total protein composition. 
Additionally, around 5%–14% of the SP proteins are categorized as 
regulators of these enzymes (36). Similarly, boar SP proteins were 
reported to have 41% proteins categorized as catalytic activities (4). 
However, human SP proteins in some publications revealed the 
most commonly reported annotation found in seminal proteins is 
binding activity (37, 38). Some mapped SP proteins of the Asian 
elephant involved in cellular processes also exhibited protein–
protein interactions within their functional group. ALB and FN1 
have been suggested as potential biomarkers for oxidative stress in 
terms of male infertility factors (39). This report confirms the 
potential interaction between these protein types (39). However, 
further investigation is required to understand the interactions 
within the group of SP proteins in this species. According to the 
search results from the STRING database, they were mentioned 
together in several publications as text-mining interactions. 
Nonetheless, their interactions in relation to reproductive biology 
remain uncertain.

ESA and TAAR4 are only two matched SP proteins, which were 
recognized as Asian elephant proteins in the database. ESA has been 
reported to be a shuttle of pheromones in Asian elephants. There is 
substantial evidence confirming that the ESA protein binds with 
pheromones in the elephant bloodstream and is subsequently 
transported into urine. A considerable portion of the pheromone 
present in urine is found to be bound to ESA as a complex (40). While 

FIGURE 3

The protein–protein interaction (PPI) network of mapped Asian elephant SP proteins, constructed using data from the STRING database, was 
recognized in Homo sapiens (human). Sixty-one SP proteins displayed interactions among them at different levels. The different types of associations 
are presented in different colors of the linkage lines between proteins: light blue for curated database interactions, pink for experimental interactions, 
green for gene neighborhoods, red for gene fusions, blue for gene co-occurrence, light green for text-mining, black for co-expression, and purple for 
protein homology.

FIGURE 4

Pie chart showing percentage of seminal plasma proteins from Asian 
elephant semen divided into several functions that are involved in 
the reproductive process using UniProt as a gene ontology analysis.
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TAARs were recognized as a distinct group of G-protein-coupled 
receptors with a specific responsiveness to trace amines rather than 
classical biogenic amines. The TAAR family in mammals comprises a 
total of nine subtypes. In mice, the olfactory epithelium expresses all 
TAAR subtypes, except for TAAR1, which act as chemosensory 
receptors for volatile amines (41). In recent times, there has been a 
proposition that murine TAAR3, TAAR4, and TAAR5 are involved in 
chemosensory functions related to the recognition of volatile amines. 
Interestingly, humans can still detect the scent of volatile amines, even 
though they have disruptions in the open reading frames (ORFs) of 
TAAR3 and TAAR4 (42). No evidence has been found yet regarding 
the functional analysis of TAAR4 in Asian elephants.

Based on the gene ontology analysis conducted with the UniProt 
database, several Asian elephant SP proteins were prominently linked 
to spermatogenesis such as BTBD18, DDX4, SMARCA2, SPATA18, 

SPATA32, ZFP105, and sperm capacitation activities such as 
CATSPER3, GLRA1, PAFAH1B1, and SEMG2. However, boar SP 
protein members involved in the reproductive process function 
tended to be more associated with fertilization (4). The SP proteins 
related to spermatogenesis have been selected for use in the 
development of biomarkers for diagnosing invasively non-obstructive 
azoospermia (NOA) in humans (43). DDX4, recognized as a general 
germ cell marker present across all stages of germ cell development, 
including spermatogonia, spermatocytes, and round spermatids, has 
been chosen as one of the protein biomarkers in seminal plasma for 
diagnosing non-obstructive azoospermia (NOA) (44).

However, most of these mapped proteins involved in 
spermatogenesis or sperm capacitation were assessed for their roles in 
reproductive function based on their localization within the sperm 
cell. Analysis of expression microarrays conducted on testicular 

TABLE 2  The list of reproductively associated SP proteins in Asian elephants (based on 33 ejaculates from 10 bulls) using Uniprot gene ontology.

UniProt code Protein name Recognized species Example of function in 
reproductive process

P15428 15-hydroxyprostaglandin dehydrogenase (HPGD) Homo sapiens (Human) Parturition

P51647 Aldehyde dehydrogenase family 1 member A1 (AlDH1A1) Rattus norvegicus (Rat) Estrous cycle

P22086 Alpha-2C adrenergic receptor (ADRA2C) Rattus norvegicus (Rat) Female pregnancy

F6YBC0 Beta-1,3-N-acetylglucosaminyltransferase (LFNG) Monodelphis domestica (Gray short-tailed 

opossum)

Meiotic cell cycle process

A0A0A6YY25 BTB/POZ domain-containing protein 18 (BTBD18) Mus musculus (Mouse) Spermatogenesis

G1MHQ3 Cation channel sperm associated 3 (CATSPER3) Ailuropoda melanoleuca (Giant panda) Sperm capacitation

Q8BRT1 CLIP-associating protein 2 (CLASP2) Mus musculus (Mouse) Meiotic cell cycle

Q96CW5 Gamma-tubulin complex component 3 (TUBGCP3) Homo sapiens (Human) Single fertilization

H2PH52 Glycine receptor alpha 1 (GLRA1) Pongo abelii (Sumatran orangutan) Acrosome reaction

Q7Z4P5 Growth/differentiation factor 7 (GDF7) Homo sapiens (Human) Reproductive structure development

P23441 Homeobox protein Nkx-2.1 (NKX2-1) Rattus norvegicus (Rat) Development of primary female 

sexual characteristics

P14616 Insulin receptor-related protein (INSRR) Homo sapiens (Human) Male sex determination

P11679 Keratin, type II cytoskeletal 8 (KRT8) Mus musculus (Mouse) Cell differentiation in embryonic 

placenta development

O88978 Leucine-rich repeat-containing protein 6 (LRRC6) Mus musculus (Mouse) Male gonad development

O88572 Low-density lipoprotein receptor-related protein 6 (LRP6) Mus musculus (Mouse) External genitalia morphogenesis

Q13495 Mastermind-like domain-containing protein 1 (MAMLD1) Homo sapiens (Human) Male gonad development

Q8IZA3 Oocyte-specific histone H1 (H1FOO) Homo sapiens (Human) Meiotic cell cycle

P63005 Platelet-activating factor acetylhydrolase IB subunit alpha 

(PAFAH1B1)

Mus musculus (Mouse) Acrosome assembly

Q9NQI0 Probable ATP-dependent RNA helicase DDX4 (DDX4) Homo sapiens (Human) Spermatogenesis

P51531 Probable global transcription activator SNF2L2 (SMARCA2) Homo sapiens (Human) Spermatid development

P16471 Prolactin receptor (PRLR) Homo sapiens (Human) Embryo implantation

Q5U7N4 Semenogelin-2 (SEMG2) Pan troglodytes (Chimpanzee) Sperm capacitation

Q15465 Sonic hedgehog protein (SHH) Homo sapiens (Human) Prostate gland development

Q0P557 Spermatogenesis-associated protein 18 (SPATA18) Mus musculus (Mouse) Spermatogenesis

Q8C5V0 Spermatogenesis-associated protein 32 (SPATA32) Mus musculus (Mouse) Spermatogenesis

P78371 T-complex protein 1 subunit beta (CCT2) Homo sapiens (Human) Binding of sperm to zona pellucida

Q8C2E7 WASH complex subunit 5 (KIAA0196) Mus musculus (Mouse) Oocyte maturation

Q5M881 Zinc finger protein 105 (ZFP105) Rattus norvegicus (Rat) Spermatogenesis
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TABLE 3  Comparative analysis of SP proteins in Asian elephants: identifying homologous proteins from previous studies assessing male reproductive 
performance in other species such as Sus scrofa domesticus (boar), Bos taurus (cattle bull), Bos indicus (Guzerat bull), Ovis aries (ram), and Homo 
sapiens (human).

SP proteins in Asian elephants SP proteins in other species

Protein name Species References

Aldose reductase-related protein 1 (AVDP) Aldose reductase (AKR1B1) Sus scrofa domesticus (4)

Alpha-1,2-mannosidase (MAN1C1) Predicted: alpha mannosidase 2C1 (MAN2C1) Bos taurus (7)

(11)Beta mannosidase (MANB1) Ovis aries

Bactericidal/permeability-increasing protein-like 3 (BPIFB6) Bactericidal/permeability-increasing protein (BPI) Ovis aries (11)

Beta-defensin 107 (DEFB107) Predicted: beta-defensin 1 (DEFB1) Bos taurus (7)

Chaperone Hsp 60 kDa (HSP60) Chaperone Hsp 70 kDa (HSP70) Bos taurus, Ovis aries (7, 11)

Chaperone Hsp 90 kDa (HSP90) Bos taurus (7)

Cilia- and flagella-associated protein 74 (CFAP74) Cilia- and flagella-associated protein 70 (CFAP70) Ovis aries (30)

Coiled-coil domain-containing protein 66 (CCDC66) Coiled-coil domain-containing protein (CCDC) Ovis aries (30)

Coiled-coil domain-containing protein 89 (CCDC89)

Coiled-coil domain-containing protein 105 (CCDC105)

Dynein heavy chain 3, axonemal (DNAH3) Dynein heavy chain 2, axonemal (DNAH2) Ovis aries (30)

Fibronectin 1 (FN1) Fibronectin 1 (FN1) Sus scrofa domesticus (31)

Hypothetical protein LOC507206 (TIMMDC1) Hypothetical protein LOC512373 Bos taurus (7)

Immunoglobulin gamma 1 chain C region (IGHG1) Immunoglobulin gamma 1 chain C region (IGHG1) Bos taurus (7)

Immunoglobulin gamma 2 chain C region (IGHG2)

Immunoglobulin lambda light chain (IGLL)

Keratin, type I cytoskeletal 9 (KRT9) Keratin, type I cytoskeletal 17 (KRT17) Sus scrofa domesticus (4)

Keratin, type I cytoskeletal 15 (KRT15)

Lamin B2 (LMNB2) Lamin A/C (LMNA) Ovis aries (30)

Mesothelin (MSLN) Predicted: mesothelin isoform 1 (MSLN1) Bos taurus (7)

Nuclear pore complex protein Nup98-Nup96 (NUP98) Nuclear pore complex protein Nup155 (NUP155) Ovis aries (30)

Phosphoglycerate kinase (PGK2) Predicted: phosphoglycerate kinase, testis-specific Bos taurus (7)

Phosphoglycerate kinase 2 (PGK2) Ovis aries (9)

Platelet-activating factor acetylhydrolase IB subunit alpha 

(PAFAH1B1)

Platelet-activating factor acetylhydrolase (PAFA) Bos tauru, Bos indicus (7, 32)

Protein FAM171B (FAM171B) Protein FAM154A (FAM154A) Ovis aries (30)

Protein FAM186A (FAM186A)

Semenogelin 2 (SEMG2) Semenogelin 2 (SMEG2) Homo sapiens (33)

Serum albumin (ALB or ESA) Serum albumin (ALB) Bos taurus (7)

Spermatogenesis-associated protein 18 (SPATA18) Spermatogenesis-associated protein 32 (SPATA32) Ovis aries (30)

Spermatogenesis-associated protein 32 (SPATA32)

T-complex protein-1, beta subunit (CCT2) Predicted: T-complex protein-1 (TCP1), alpha subunit Bos taurus (7)

Predicted: T-complex protein-1 (TCP1), epsilon 

subunit, isoform 1, 2 or 3

Predicted: T-complex protein-1 (TCP1), eta subunit

Predicted: T-complex protein-1 (TCP1), gamma 

subunit

Testis-expressed protein 33 (TEX33) Predicted: testis expressed sequence 101 (TEX101) Bos taurus (7)

Testis-expressed protein 35 (TEX35)

Thrombospondin-1 (THBS1) Thrombospondin-1 (THBS1) Sus scrofa domesticus (4)

Thrombospondin type-1 domain-containing protein 1 

(THSD1)

(Continued)
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biopsy specimens from azoospermia patients revealed a significant 
downregulation of SPATA18 mRNA in biopsy specimens obtained 
from non-obstructive azoospermia (NOA) patients, in comparison to 
those collected from obstructive azoospermia (OA) patients (45). 
Moreover, SPATA18 protein is localized in satellite fibers that are 
associated with outer dense fibers within the midpiece of spermatozoa. 
The observed downregulation of SPATA18  in the asthenospermia 
group highlights the crucial role of this gene in sperm motility and 
fertility (46). Additionally, Asian elephant SP was discovered 19 zinc 
finger proteins (ZFPs) with various types, e.g., zinc finger C2H2-type, 
zinc finger CCCH-type, and zinc finger matrin-type. ZFP105, a 
C2H2-type ZFP, exhibited notable expression in the testes of adult 
mice, with its expression being regulated during postnatal 
development. Similar to other zinc finger proteins, ZFP105 is 
presumed to operate as an RNA-binding protein within spermatogenic 
cells, primarily spermatocytes, to exert its biological effects. 
Additionally, ZFP105 might serve as a cytoplasmic protein within 
spermatogenic cells, potentially engaging in direct or indirect 
interactions with other proteins implicated in the regulation of 
spermatogenesis and male fertility (47).

CATSPER, a sperm-specific ion channel, is vital for regulating 
sperm hyperactivation as a polymodal, chemosensory calcium 
channel. CATSPER3 and CATSPER4, recently identified as testis-
specific genes, are crucial for sperm hyperactivated motility and male 
fertility in mice. Knockout of CATSPER3 and CATSPER4 in male 
mice leads to complete infertility due to rapid loss of motility and 
absence of hyperactivated motility under capacitating conditions (48). 
SMEG1 and SMEG2 are dominant proteins in human seminal plasma, 
contributing to the gel-like coagulum in ejaculated semen. They are 
produced by the glandular epithelium of the seminal vesicles in high 
concentrations. Seminal plasma motility inhibitors (SPMIs) are 
proteinase-resistant fragments derived from SMEG1 and SMEG2, 
which form the main proteins in the semen coagulum. A negative 
correlation was observed between sperm motility and the presence/
intensity of SPMI labeling on spermatozoa (49).

Proteomic analysis of SP has been widely conducted in various 
animal species, particularly in agricultural mammal such as ram (11, 
50), bull (7, 32), and boar (4, 31). Many SP proteins found in other 
species have also been identified in the Asian elephant, although some 
proteins exhibit different isoforms or subunits. For instance, aldose 
reductase, THBS1, and FN1, which were identified in boar SP (4, 31), 
were also presented in Asian elephant SP. However, keratin type I and 
aldosterone reductase in boar and Asian elephant SP exist in different 
subunits, such as KRT9, KRT15, and AVDP in Asian elephants, and 
KRT17 and AKR1B1 in boars (4). High expression of KRT17 and 
AKR1B1  in SP has been correlated with fertility rate in porcine, 
whereas boar semen with lower expression of THBS1 in SP appeared 
to produce larger litter sizes (4). Aldose reductase is an enzyme that 

plays a crucial role in sperm capacitation within the female 
reproductive tract of porcine (51). On the other hand, THBS1, an 
antiangiogenic protein, appears to have potential in the maternal-fetal 
interface during the early stages of porcine pregnancy (52). 
Furthermore, the level of FN1 in seminal plasma has been suggested 
as a potential biomarker for boar semen with good freezability (31) 
and has been reported to be correlated with the motility and fertilizing 
ability of human spermatozoa (53). In contrast, PAFA, an enzyme, has 
shown a negative association with freezability in Guzerat bull (32), but 
it is positively related to sperm motility in humans (54) and fertility in 
boars (54). The PAFA protein is known to function in stabilizing the 
sperm membrane during the process of sperm freezing (32).

Furthermore, the SP of Asian elephants contains several heparin-
binding proteins described in ram SP, including BPI, HSP70, TPPP2, 
and MANB1, although in different subunits, except for PGK2 (11). 
BPI, an antimicrobial protein, functions by damaging the membrane 
of gram-negative bacteria through binding to lipopolysaccharide and 
activating endogenous phospholipase (56). Chaperone protein 
families such as HSP have been reported to be  involved in 
spermatogenesis and the preparation of the sperm membrane before 
interfacing with the zona pellucida of the oocyte (30). Additionally, 
HSP60, which acts as a signaling molecule within the immune system, 
interacts with glutathione peroxidase, a scavenger of reactive oxygen 
species, to protect sperm membrane from lipid peroxidation (32). 
TPPP family members play a role in maintaining the integrity of 
microtubules in ciliated cells, including neurons and sperm cells, 
suggesting a possible involvement in sperm tail stabilization (11). 
Mannosidase, an enzyme originating from the epididymis, is found in 
the seminal plasma of various species (7, 57, 58), including Asian 
elephants. Mannosidase is also presented on the sperm membrane and 
is involved in sperm-egg fertilization (11).

Thirteen proteins out of the 99 proteins in the SP proteome of Bull 
(Bos Taurus) reported by Kelly et al. (7) were found in this proteomic 
analysis of Asian elephant SP. However, half of these similar proteins, 
such as PAFA, DEFB, TCP1, and TEX, were different isoforms or 
subunits. DEFBs, which are host defense peptides, are known to 
be expressed in both male and female reproductive tracts and are also 
found on sperm surface. They are believed to play a role in fertility and 
sperm function by protecting spermatozoa from infections through 
their antimicrobial activity and preventing premature hyperactivation 
of spermatozoa within the female reproductive tract (59). The distal 
inversion of the T-complex on chromosome 17 comprises genes that 
specifically impact male fertility. Furthermore, a number of proteins 
encoded by these t-complex genes are specifically found in the sperm 
flagellum and are associated with various functions related to sperm 
motility (60). CCT2 (TCP1 beta subunit), which was found in Asian 
elephant SP, has been identified in the flagella of the sperm tail in 
humans (61) and is involved in sperm maturation in epididymis (62).

TABLE 3  (Continued)

SP proteins in Asian elephants SP proteins in other species

Protein name Species References

Tubulin epsilon and delta complex 2 (TEDC2) Tubulin, beta-2 (TUBB2) Bos taurus (7)

Tubulin polymerization-promoting protein (TPPP) Tubulin polymerization-promoting protein 2 (TPPP2) Ovis aries (9)

Very long-chain specific acyl-CoA dehydrogenase, 

mitochondrial (ACADVL)

Medium-chain specific acyl-CoA dehydrogenase, 

mitochondrial (ACADM)

Ovis aries (30)
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Conclusion

Several proteins discovered in Asian elephant seminal plasma (SP) 
have been reported to be involved in reproductive function and have 
shown potential as biomarkers for fertility, sperm quality, and 
preservation. However, a significant number of these proteins are 
predicted to have their primary impact as proteins derived from 
sperm cells rather than SP proteins. Therefore, when investigating 
male reproductive problems, it is crucial to consider the comparison 
between protein expression in spermatozoa and SP proteins in order 
to obtain a comprehensive understanding of the root causes of these 
issues. Although various SP proteins in Asian elephants have been 
matched with SP proteins from other species, most of them differ in 
terms of isoforms or subunits. The exact functions of these Asian 
elephant SP proteins still need to be explored.
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