
Frontiers in Veterinary Science 01 frontiersin.org

Phytochemicals: potential 
alternative strategy to fight 
Salmonella enterica serovar 
Typhimurium
Abdulaziz M. Almuzaini *

Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, 
Buraydah, Saudi Arabia

The rise of multidrug resistant (MDR) microorganisms is a great hazard worldwide 
and has made it difficult to treat many infectious diseases adequately. One of the 
most prevalent causes of outbreaks of foodborne illness worldwide is Salmonella. 
The ability of this and other harmful bacteria to withstand antibiotics has recently 
proven crucial to their effective control. Since the beginning of time, herbal 
medicines and phytochemicals have been employed for their potent antibacterial 
action and there is a growing trend toward the production of plant based natural 
products for the prevention and treatment of pathogenic infections. Numerous 
phytochemicals have been proven effective against the molecular determinants 
responsible for attaining drug resistance in pathogens like efflux pumps, membrane 
proteins, bacterial cell communications and biofilms. The medicinal plants having 
antibacterial activity and antibiotics combination with phytochemicals have 
shown synergetic activity against Salmonella enterica serovar Typhimurium. The 
inhibitory effects of tannins on rumen proteolytic bacteria can be  exploited in 
ruminant nutrition. Improved control of the rumen ecology and practical use of 
this feed additive technology in livestock production will be made possible by a 
better knowledge of the modulatory effects of phytochemicals on the rumen 
microbial populations in combination with fermentation. This review focuses 
on the development of antibacterial resistance in Salmonella, the mechanism of 
action of phytochemicals and the use of phytochemicals against S. enterica serovar 
Typhimurium. The advances and potential future applications of phytochemicals 
in the fight against resistant are also discussed.
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Introduction

Foodborne diseases are brought on by consuming food, herbs, and beverages that have been 
contaminated by microorganisms as well as hazardous compounds including heavy metals (1), 
mycotoxins and bacterial toxins, as well as fermentation byproducts including biogenic amines 
and ethyl carbamate (2). Most of these foodborne illnesses are a problem for worldwide public 
health because they are brought on by pathogenic bacteria, viruses and parasites (3, 4). One of 
the main causes of foodborne diseases is Salmonellosis infection, which is brought on by a 
species of Salmonella (5, 6). Salmonella has long been recognized as an important zoonotic 
pathogen of economic importance in animals and humans. Salmonella enterica serovar 
Typhimurium can infect a wide range of animal species, e.g., cattle, sheep, goats, pigs, horses 

OPEN ACCESS

EDITED BY

Rao Zahid Abbas,  
University of Agriculture, Faisalabad, Pakistan

REVIEWED BY

Bushra Shnawa,  
Soran University, Iraq
Riaz Hussain,  
Islamia University of Bahawalpur, Pakistan
Filip Štrbac,  
University of Belgrade, Serbia

*CORRESPONDENCE

Abdulaziz M. Almuzaini  
 ammzieny@qu.edu.sa

RECEIVED 17 March 2023
ACCEPTED 20 April 2023
PUBLISHED 

CITATION

Almuzaini AM (2023) Phytochemicals: potential 
alternative strategy to fight Salmonella enterica 
serovar Typhimurium.
Front. Vet. Sci. 10:1188752.
doi: 10.3389/fvets.2023.1188752

COPYRIGHT

© 2023 Almuzaini. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License (CC BY). 
The use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in this 
journal is cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

TYPE Review
PUBLISHED 
DOI 10.3389/fvets.2023.1188752

16 May 2023

16 May 2023

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2023.1188752%EF%BB%BF&domain=pdf&date_stamp=2023-05-16
https://www.frontiersin.org/articles/10.3389/fvets.2023.1188752/full
https://www.frontiersin.org/articles/10.3389/fvets.2023.1188752/full
https://www.frontiersin.org/articles/10.3389/fvets.2023.1188752/full
https://www.frontiersin.org/articles/10.3389/fvets.2023.1188752/full
mailto:ammzieny@qu.edu.sa
https://doi.org/10.3389/fvets.2023.1188752
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2023.1188752


Almuzaini 10.3389/fvets.2023.1188752

Frontiers in Veterinary Science 02 frontiersin.org

and poultry (7). There are pathovariants within serovar Typhimurium 
that are host-adapted, including sequence type (ST) 313 (8, 9) linked 
to invasive NTS (iNTS) in humans in sub-Saharan Africa and 
definitive phage types (DT) 2 and DT99 in pigeons (10), DT40 and 
DT56 in passerine birds (11) and U288 in pigs (12).

Salmonella Typhimurium belongs to the Enterobacteriaceae 
family. These Gram negative, flagellated rods are facultative 
anaerobic and do not produce spores (13). S. Typhi, which causes 
typhoid fever and gastrointertitis, a multi systemic disease, is a 
public health concern in developing countries. Salmonella species 
can be found throughout nature, although their primary sources 
include the GIT of mammals, reptiles, birds, and insects, as well as 
the environment that has been contaminated by human or animal 
waste (14). The most common clinical manifestation of salmonellosis 
in animals is an enteric disease, but numerous other conditions may 
be  observed including acute septicemia, abortion, arthritis and 
respiratory diseases (15, 16).

Antibiotics are used in food animal production to promote 
growth and to prevent, treat and control infectious diseases. The 
antibiotics chloramphenicol, trimethoprim-sulfamethoxazole, 
ampicillin, fluoroquinolones and cephalosporin are the treatment 
options for S. Typhimurium (17). In emerging and particularly 
underdeveloped nations, the rise in antibiotic resistance in this 
disease has been a major concern. Resistance to antimicrobial agents 
may be  defined as is the inability of bacteria to respond to 
medications that were once thought to be  useful in treating 
infections brought on by that particular pathogen (18). By absorbing 
foreign DNA or by mutating its own DNA, S. Typhimurium can 
develop antibiotic resistance (19). Resistance to these antibiotics in 
S. Typhimurium strains is known as multi drug resistance (MDR) 
(20, 21). The rapid emergence of MDR among bacteria is caused by 
ongoing selective pressure and the evolution of new bacterial 
survival mechanisms in response to commonly used or recently 
produced antibiotics (22). Like all bacteria and depending on the 
strain and external factors, Salmonella attach to a variety of biotic 
and abiotic surfaces and form biofilms, posing a concern in food 
sectors and healthcare settings (23, 24). Biofilms are linked to about 
80% of all bacterial illnesses in humans (25). Thus, Salmonella 
species discovered in their planktonic phase are typically susceptible 
to being eliminated by disinfectants or antibiotics, are significantly 
more resistant to these actions in biofilms (26). However, it costs a 
lot of money and time to find new antibiotics, and it takes around 
10 years to get a new antibiotic on the market (27).

Therefore, there is a great effort to tackle antibacterial resistance 
and create effective, ecofriendly, and safe anti-biofilm techniques as 
well as therapeutic methods (28). Natural compounds, especially those 
derived from plants, have been an essential source of therapeutic 
medications over the past years with distinct features that make them 
suitable for use as alternative treatments for MDR infections that pose 
medical challenges (29). In order to protect themselves from 
microbial, herbivore, and insect predators, plants have an almost 
infinite capacity to mix aromatic molecules, primarily phenolic 
compounds, polyphenols, alkaloids, flavonoid, terpenoids, ketones, 
and essential oils (30). Many bioactive substance derived from 
substances, known as phytochemicals have been studied and found to 
be relatively safer than synthetic counterparts (31). These compounds 
also exert various therapeutic effects due to their high potency (32). 

Phytochemicals also known as phytobiotics or phytogenics that are 
added to animal feed to increase production. Phytochemicals are also 
proposed for use as antioxidants in animal feed, which will protect 
animals from oxidative damage caused by free radicals (33, 34). These 
phytochemicals have a variety of mechanisms of action, including the 
inhibition of efflux pumps and target altering and drug degrading 
enzymes (35). When used alone or in combination with other 
antibiotic compounds, phytochemicals have been found to have 
antimicrobial activities against clinically significant pathogens like 
Salmonella species, lowering the risk of developing a variety of diseases 
(36, 37). A successful method for modifying resistance is to use 
antimicrobial agents and phytochemicals in combination that will 
eliminate the resistance mechanism and still allow the medicine to 
be effective against resistant microorganisms (38). Plant extracts can 
be used to make natural additives with antibacterial properties that 
can be added to animal feed in an effort to reduce the use of antibiotics 
and switch to a more natural diet for animals (39). The main challenges 
that prevent plant based bioactive chemicals from being used 
commercially include a lack of raw materials, poor stability, high 
production costs, an unclear mode of action, and a lack of efficient 
regulatory systems (40). The aim of this review is to comprehensively 
present antibacterial resistance in Salmonella, the mechanism of 
action of phytochemicals and the use of plant-derived medicinal 
plants against S. Typhimurium.

Antibacterial resistance in Salmonella

Salmonella, that is multi drug-resistant, has emerged as one of the 
major foodborne pathogens, threatening global public health safety 
(41). Antibiotics are used as feed supplements at sub therapeutic doses 
to the economic effectiveness of animal production, to enhance 
growth and feed conversion efficiency and to avoid diseases (42). 
However, using in feed antibiotics (IFAs) could result in the emergence 
of antimicrobial resistance as animal farming intensifies, posing a 
potential risk to human health (43).

Salmonella resistance has been reported to a wide variety of 
antibiotics including sulfamethoxazole, tetracycline, cefotaxime 
chloramphenicol, compound trimethoprim, ampicillin, 
cephalosporins and nalidixic acid (44, 45). It is well known that the 
development of biofilms results in a high level of resistance in the 
bacteria as well as the horizontal transmission of resistance between 
bacterial cells through transformation and conjugation (46, 47). The 
activity of efflux pumps, target adaptation, enzymes expressions and 
mutation are the antimicrobial resistance mechanisms that occur in 
planktonic cells (48).

Mechanism of action of phytochemicals

Phytochemicals have possible biological effects, including 
antibacterial, antiviral, antioxidant, and anti-inflammatory, and used 
for animal nutrition and health improvement (43, 49, 50). 
Phytochemicals inhibit the growth of S. Typhimurium by several 
mechanisms (51). These might include preventing the bacterial 
attachment to host cells (52), reduction in the bacterial ability to 
produce proteins, cell wall, and nucleic acids (53), loss of the 
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transmembrane electrochemical gradient and reduction of the 
osmoregulation of bacteria and increased nitric oxide (NO) 
synthesis, which has a deadly effect (54). Additionally, 
phytochemicals influence the immune system through 
immunomodulatory effects such as enhanced immune cell 
proliferation, modification of cytokines as well as higher antibody 
titers (55, 56).

Inhibition of cell wall synthesis

N-acetylglucosamine (NAcGlc) and N-acetylmuramic acid 
(NAcMur) residues are repeated units that make up peptidoglycan 
and these repeating units are joined by short amino acid chains. The 
arrangement of amino acid residues is essential for giving bacteria 
strength and consequently protection (57). In order to better control 
the formation of the bacterial cell wall, phytochemicals have been 
found to be helpful in therapeutic approaches. Due to their impact 
on the bacterial cell wall, flavonoids have a marked antibacterial 
effect against a variety of bacterial and infectious diseases. The 
presence of more lipophilic flavonoids may also disrupt bacterial 
membranes (58). The lysis of cell walls has also been notice in 
bacteria exposed to phenolic mixtures. By targeting bacterial cell 
wall, tannins have qualities that inhibit the growth and protease 
activity of ruminal bacteria and if they are highly lipophilic, they 
also disrupt cell layers (59). The tannin of Sorghum has antibacterial 
activity against S. Typhi (60). Alkaloids often exert their antibacterial 
effects by intercalating themselves into the DNA and cell wall of 
bacteria (61). Through the upregulation of immunoglobulin A and 
mucin 2, tannins are helpful in maintaining chicken mucosal 
immune system components. Through paracellular and transcellular 
pathways, Salmonella spp. can enter the bloodstream and use 
immune cells to enter enterocytes, which are then dispersed 
throughout the muscles and organs of chickens. Tannins change the 
functions and expression of immune cells, mucus and tight junction 
proteins of chickens (62–64) as shown in Figure 1. Tannins inhibit 
the growth of Salmonella spp. in the intestine and decrease the 
quorum sensing of bacteria.

Tannins that are used against S. Typimurium is Condensed 
tannins from Quebaracho and Calliandra calothyrsus, Gallotannins 
from Tara and Sumach (Gall nuts), Flavanol gallates from Tea and 
Acacia nilotica, Tannic acid and Gallic acid. All of the tannins 
inhibited the growth of the S. Typimurium (65).

Inhibition of bacterial physiology

When phytochemicals are added to the medium, the ensuing 
changes in membrane potential, inhibition of the function of 
membrane bound ATPase alter the physiological condition of the 
bacteria and metal ion chelation ultimately leading to bacterial death 
(66). The disruption of the membranes integrity by carvacrol, eugenol 
thymol and catechins has been observed to result in the release of 
cellular components and the ATP levels of cells (67). Additionally, 
terpinen-4-ol, 1,8-cineol, terpenes, alpha-terpineol and sesquiterpenes 
found in tea tree oil have the ability to alter membrane permeability, 
disrupt cell membranes, and inhibit cell development, leading to cell 
death in resistant organisms like S. Typhimurium (68).

Inhibition of biofilms

Biofilm is a collection of microbial populations with surface 
integration that is enclosed in an exopolysaccharide matrix (69). 
Phytochemicals are employed to prevent and inhibit biofilm growth 
as well as to combat the development of antibacterial resistance, by 
taking advantage of their disruption of some of the key elements 
involved in the formation of biofilms, such as motility, attachment, 
intercellular accumulation and interaction (70, 71) shown in Figure 2.

Essential oils (EOs) components, lectins, alkaloids, polyacetylenes 
and polypeptides and terpenoids, phenolics, inhibit Salmonella growth 
and biofilm formation (72–74). The major ingredients in thyme oil 
and oregano, thymol and carvacrol, have antibiofilm properties 
against S. Enteritidis and S. Typhimurium on polypropylene (75). 
However, it has been demonstrated that Salmonella adapts to EOs and 
their constituents after being exposed to them at sub lethal 
concentrations by changing the expression of some important stress 
response genes. As a result, gains tolerance to both heterologous 
stressors and homologous (76). The anti-biofilm efficacy of two 
nutraceuticals of plant sources, Andrographis paniculata (Ap) and 
Holarrhena antidysentrica (Ha) are shown against S. Typhi biofilm 
development, whereby both exhibited and both showed antibiofilm 
and antimicrobial action by rupturing the membrane permeability of 
this pathogen (77).

Synergistic phytochemicals as active site 
modification inhibitors

To mitigate the harmful effects of enteric infections, a number of 
phytochemicals are combined to create synergistic effects. Different 
resistance mechanisms such as increased activation of efflux pumps 
(EPs), expression of drug inactivating and target site modifying 
enzymes and modification of permeability barriers, can be neutralized 
by phytochemicals in combination with currently available antibiotics 
in a synergistic manner (78). Antibiotics and phytochemical 
substances have been given together to stop the emergence of 
resistance and it is effective tool for the management of MDR (79). For 
instance, ubiquitous phytochemicals from the barberry plant 
berberine and 5′-methoxyhydnocarpin exhibit synergism by 
accumulating inside bacteria and blocking the MDR pump (80). It has 
been discovered that streptomycin in combination with eugenol or 
cinnamaldehyde work synergistically to destroy the S. Typhimurium 
biofilm (81). Geraniol, bioactive compound that can be found in the 
essential oil of Helichrysum italicum, can restore the effectiveness of 
quinolones, chloramphenicol and beta lactam antibiotics against 
MDR bacteria (82). Studies on β-resorcylic acid, thymol, eugenol, 
carvacrol and trans-cinnamaldehyde revealed that they boosted 
S. Typhi DT104’s susceptibility to 5 antibiotics due to an inhibitory 
activity on EPs (83). The synergistic activity of phytochemicals with 
antibiotics shown in Table 1.

Plant- derived phytochemicals against 
Salmonella

Antibacterial resistance can be prevented, mitigated and reversed 
in a number of methods, whereby employing medicinal plant extracts 
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with intrinsic antibacterial characteristics has been shown to be one 
of the most successful approaches (79, 89). When compared to 
synthetic chemicals, plant-derived antimicrobials have been found to 
be one of the most advantageous sources that are harmless due to their 
natural origin (90). For many years, bacterial infections have been 

treated by means of traditional healing systems using medicinal herbs 
(91). Around 80% of the developing nations uses traditional medicine 
made from phytochemicals as their primary health care modality (92, 
93). Compared to their synthetic counterparts, medicinal plants are 
frequently less expensive, safer to use in terms of side effects and more 

FIGURE 1

Systemic infection routes of Salmonella spp. and potential mechanisms of antibacterial actions of tannins (Retrieved from bio render).

FIGURE 2

Phytochemicals are antibiotic alternatives and their mode of action (Retrieved from bio render).

https://doi.org/10.3389/fvets.2023.1188752
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Almuzaini 10.3389/fvets.2023.1188752

Frontiers in Veterinary Science 05 frontiersin.org

accessible and also the probability for resistance development is most 
likely lessened due to the synergism of different bioactive compounds 
that can be present in plant-based formulation (any of them may 
belong to a different chemical group and be  with a different 
mechanisms of action) (94). Gram-negative and Gram-positive 
bacteria are all affected by the bacteriostatic properties of resveratrol, 
which is a compound found in grapes and Itadori plants (95). 
Blackberry (Rubus fruticosus) and blueberry (Vaccinium corymbosum) 
pomace extracts were tested against S. Typhimurium at lethal and 
sub-lethal concentrations for their antibacterial, anti-motility, and 
antibiofilm activity. As growth promoters and to alter the gut 
microbiota, tannins and EOs are commercial food to a variety of 
domestic animal species (96). A commercial blend of phytonutrients 
that boosts innate immunity and lessens the harmful effects of enteric 
bacteria was approved in the Europe as the first botanical feed additive 
for enhancing the performance of broilers and livestock. This blend 
contains capsicum oleoresin, carvacrol and cinnamaldehyde (97). 
However, the best way to deal with antibacterial resistance is probably 
through a combinational strategy that allows for a synergistic 
interaction between plant extracts and conventional antibiotics. 
Streptomycin with either cinnamaldehyde or eugenol has been shown 
to work synergistically to destroy the S. Typhimurium biofilm (81). A 
detailed list of antibacterial activity of important medicinal plant 
extract and phytochemicals against Salmonella strains is provided in 
Tables 1, 2.

Conclusion and future prospective

Salmonella species have been labeled environmental persisters, 
mostly because of their powerful biofilm forming capacity. Because 
of this, a long lasting and persistent colonization of people, animals 
and plants is typically occurring. It is essential to develop 
antibiotics alternatives as soon as possible due to growing concerns 
about the spread of superbugs and the slow development of new 
medications for both livestock and humans. However, it has been 
found that numerous plant extract and their isolated 
phytochemicals exhibit strong efficacy against organisms that cause 
foodborne diseases. Numerous phytochemicals have showed 
promise as bactericidal or antimicrobial agents that can enhance 
the effects of already available antibiotics. These phytochemicals 
have demonstrated the ability to block key mechanisms for the 
development of resistance, including cell permeability, replication 
machinery, efflux pumps, and other processes necessary for the 
pathogen’s survival and resistance. These phytochemicals have 
displayed great effectiveness against bacteria that are resistant to 
antibiotics when used in combination. The possibility of a 
synergistic interaction between phytochemicals and established or 
newly developed antimicrobial agents is an opportunity, while the 
development of novel plant based antibacterial products through 
combinatorial chemistry and computational design continues to 
be an exciting challenge. Future research should also concentrate 

TABLE 1 Synergistic activity of phytochemicals with antibiotics and their minimum inhibitory concentration (MIC) or zone of inhibition (ZOI) values.

Plants Antibiotic
Plant 
part

Extract
Biological 
activity

MIC/ZOI Bacteria type References

A. sativum Ciprofloxacin Bulbs Methanolic Inhibit efflux pump 27.5 ± 0.5 mm S. Typhimurium NKS70 (84)

S. aromaticum Ciprofloxacin Flower buds Ethyl acetate Synergistic 23 ± 0.5 mm S. Typhimurium NKS174 (84)

R. cotinus Ciprofloxacin Leaf Methanolic Synergistic 23.3 ± 0.5 mm S. Typhimurium NKS773 (84)

P. emblica Ciprofloxacin Fruit Ethyl acetate Synergistic 27.5 ± 0.5 mm S. Typhimurium NKS70 (84)

B. aristata Tetracycline Leaf Methanolic Synergistic 24.3 ± 0.8 mm S. Typhimurium NKS70 (84)

R. cotinus Tetracycline Leaf Ethyl acetate Inhibit efflux pump 15 ± 0.1 mm S. Typhimurium NKS773 (84)

A. muricata Chloramphenicol Leaves Methanol Anti-biofilm 12.5 μg/ml S. Typhimurium ATCC 13311 (85)

Thymol Amikacin Fruit Ethanol Synergistic 0.5 μg/ml S. Typhi ATCC 6539 (86)

Piperine Kanamycin Berry Aqueous Synergistic 2 μg/ml S. Typhi ATCC 6539 (86)

Thymol Streptomycin Fruit Ethanol Synergistic 0.5 μg/ml S. enteritidis (86)

Thymol Kanamycin Fruit Ethanol Synergistic 0.5 μg/ml S. Typhimurium (86)

Thymol Streptomycin Fruit Ethanol Synergistic 8 μg/ml S. Typhimurium (86)

Thymol Amikacin Fruit Ethanol Synergistic 0.25 μg/ml S. Typhimurium (86)

Piperine Kanamycin Berry Aqueous Synergistic 1 μg/ml S. Typhimurium (86)

Piperine Streptomycin Berry Aqueous Synergistic 0.5 μg/ml S. Typhimurium (86)

Piperine Amikacin Berry Ether Bactericidal 1 μg/ml S. Typhimurium (86)

W. somnifera Ciprofloxacin Leaves Methanol Synergistic 27.5 ± 0.5 mm S. Typhimurium NKS70 (87)

Z. officinale Ciprofloxacin Rhizome Ethyl acetate Synergistic 26 ± 0.7 mm S. Typhimurium NKS70 (87)

P. integerrima Ciprofloxacin Leaves Methanol Synergistic 23.3 ± 0.5 mm S. Typhimurium NKS773 (87)

O. sanctum Tetracycline Leaves Methanol Synergistic 32 ± 0.5 mm S. Typhimurium NKS174 (87)

M. charantia Tetracycline Seeds Ethyl acetate Synergistic 18.5 ± 0.5 mm S. Typhimurium NKS70 (87)

C. asiatica Tetracycline Whole plant Methanol Synergistic 28 ± 0.6 mm S. Typhimurium NKS174 (87)

P. latifolia Gentamicin Leaves Aqueous Bactericidal 0.5 mg.ml S. enteritidis ATCC 13076 (88)
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TABLE 2 Phytochemicals and their minimum inhibitory concentration (MIC) values against Salmonella.

Plants Plant part Extract Biological activity MIC Bacteria type References

Cinnamomum verum Leaf Aqueous Antibacterial 0.1/0.013 v/v S. Typhimurium (98)

Stereospermum 

kunthianum

Leaf Aqueous Antibacterial 4.17 mg/ml Salmonella (99)

Terminalia chebula Fruit Aqueous Inhibition of bacteria 15 mg/ml Salmonella (100)

Rosa damascena Flower Butanol Antibacterial 62.5 μg/ml S. Typhimurium (100)

Abutilon indicum Root Chloroform Bactericidal 0.6 mg/ml S. Typhi (101)

Piper nigrum Seeds Aqueous Good inhibitory activity >1,200 μg/ml S. Typhimurium (102)

Aegle marmelos Leaf Aqueous Antibacterial >6,000 μg/ml S. Typhimurium (103)

Alstonia scholaris Leaf Aqueous Antibacterial >5,000 μg/ml S. Typhimurium (103)

Dalbergia latifolia Bark Aqueous Antibacterial >5,000 μg/ml S. Typhimurium (103)

Helicteres isora Root Aqueous Antibacterial 1,250 μg/ml S. Typhimurium (103)

Oroxylum indicum Bark Aqueous Antibacterial >5,000 μg/ml S. Typhimurium (103)

Casuarina equisetifolia Root Aqueous Bactericidal 12–18 mm S. Typhimurium (104)

Acacia mearnsii Bark Acetone Antibacterial 1.25 mg/ml S. Typhimurium (105)

Aloe arborescens Leaves Acetone Antibacterial 2.5 mg/ml S. Typhimurium (105)

Eucomis autumnalis Bulb Acetone Antibacterial 0.156 mg/ml S. Typhimurium (105)

Hydnora africana Tuber Acetone Antibacterial 0.625 mg/ml S. Typhimurium (105)

Pelargonium sidoides Root Acetone Antibacterial 0.312 mg/ml S. Typhimurium (105)

Psidium guajava Leaves Acetone Antibacterial 1.25 mg/ml S. Typhimurium (105)

Hypericum 

roeperianum

Leaf Acetone Antibacterial 0.22 mg/ml S. Typhimurium (106)

Bolusanthus speciosus Leaf Acetone Inhibitory activity 0.13 ± 0.04 mm S. Typhimurium (106)

Elaeodendron croceum Leaf Acetone Inhibitory activity 0.26 ± 0.07 mm S. Typhimurium (106)

Morus mesozygia Leaf Acetone Inhibitory activity 0.16 ± 0.11 mm S. Typhimurium (106)

Helicteres isora Fruit Aqueous Antimutagenicity 22.77 ± 0.03 mg/ml S. Typhimurium YG1024 (107)

Aloysia triphylla Leaves Chloramphenicol Antibacterial 17.1 mg/ml S. Typhimurium 245 (108)

Cinnamomum 

zeylanicum

Leaves, bark Chloramphenicol Antibacterial 0.63 mg/ml S. Typhimurium 250 (108)

Cymbopogon citratus Roots Chloramphenicol Antibacterial 17.9 mg/ml S. Typhimurium 251 (108)

Litsea cubeba Fruit Chloramphenicol Antibacterial 17.7 mg/ml S. Typhimurium 252 (108)

Mentha piperita Leaves, flower, stem, 

bark, and seeds

Chloramphenicol Antibacterial 18.24 mg/ml S. Typhimurium 258 (108)

Syzygium aromaticum Dried flower buds, 

leaves, and stems

Chloramphenicol Antibacterial 0.329 mg/ml S. Typhimurium 261 (108)

Curcuma longa Rhizomes Chloroform Antibacterial 10.7 ± 0.49 mg/ml S. Typhimurim (109)

Morus alba Leaves Aqueous Antibacterial and 

antioxidant

10.51 ± 1.17 μg/ml S. Typhimurium (101)

Salvia officinalis Leaves Aqueous Antibacterial 0.045 mg/ml S. Typhimurium (110)

Flacourtia indica Bark Aqueous Anti-salmonella 12 mg/ml S. Typhimurium (111)

Swartzia 

madagascariensis

Leaves Aqueous Antibacterial 23 mg/ml S. Typhimurium (111)

Ximenia caffra Leaves Aqueous Antibacterial 11 mg/ml S. Typhimurium (111)

Diospyros 

mespiliformis

Leaves Aqueous Inhibitory activity 25 mg/ml S. Typhimurium ATCC 

14028

(112)

Brachychiton bidwillii Leaf Aceton Antibacterial 0.31 mg/ml S. Typhimurium (113)

Loxostylis alata Leaf Acetone Antibacterial 0.08 ± 0.00 mg/ml S. Typhimurium (ATCC 

14028)

(114)

(Continued)

https://doi.org/10.3389/fvets.2023.1188752
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Almuzaini 10.3389/fvets.2023.1188752

Frontiers in Veterinary Science 07 frontiersin.org

TABLE 2 (Continued)

Plants Plant part Extract Biological 
activity

MIC Bacteria type References

Trema guineensis Leaves, stem-

bark and roots

Ethanol Anti-Salmonella typhi 24–33 mg/ml MDR-S. Typhi 

strains

(115)

Newbouldia laevis Leaf Methanolic Bactericidal activity 3.125 mg/ml S. Typhimurium (116)

Cymbopogon flexuosus Herb grass Ethanol Antimicrobial 0.4/0.1 v/v S. Typhimurium (98)

Lavandula hybrida 

reydova

Flowering plant Ethanol Highest inhibitory 

effect

0.4/0.1 v/v S. Typhimurium (98)

Eugenia caryophyllus Flower bud Ethanolic Antibacterial 0.1/0.025 v/v S. Typhimurium (98)

Cinnamomum cassia Barks Methanol Inhibit the growth of 

Salmonella

0.025/0.013 v/v S. Typhimurium SL 

1344

(98)

Satureja montana Flowering plant Methanolic Inactivate bacteria 0.05/0.013 v/v S. Typhimurium (98)

Phyllanthus amarus Leaves Ethanolic Strong antibacterial 

activity

8.0 mm S. Typhi (117)

Mimusops elengi Bark Methanol Anti-typhoid 4.6 ± 0.3 mg/ml S. Typhimurium (73)

Acacia catechu Leaves Methanol Antibacterial 700 μg/ml S. Typhi (118)

Aegle marmelos Fruits Methanol Strong inhibitory 

effect

1.25–10 mg/ml S. Typhimurium (119)

Acalypha australis Leafs Ethanol Antidiarrheal 1 mg/ml S. Typhi (120)

Fagraea fragrans Leaf, bark and 

twig

Methanolic Antibacterial 500 μg/ml S. Typhimurium (121)

Momordica balsamina Fruit Ethanol Bactericidal 600 μg/ml MDR-S. Typhi 

strains

(122)

Andrographis 

paniculata

Leaf Methanol Antibacterial 500 μg/ml S. Typhimurium (103)

Croton roxburghii Leaf Methanol Antibacterial 156 μg/ml S. Typhimurium (103)

Vitex negundo Leaf Methanol Antibacterial 5,000 μg/ml S. Typhimurium (103)

Combretum 

paniculatumand

Leaves Ethanolic Anti-Salmonella typhi 5.3 mg/ml MDR-S. Typhi 

strains

(123)

Coriandrum sativum Roots Ethanol Antimicrobial 0.2/0.003 v/v S. Typhi (124)

Acacia nilotica Bark Phenol Antibacterial 6.25 mg/ml S. Typhimurium (125)

Elaeis guineensis Leaf Methanol Antibacterial 8.33 ± 0.33 mg/ml S. Typhimurium (126)

Boehmeria platyphylla Root Methanol Antibacterial 7 ± 0.2 mm S. Typhi (127)

Terminalia 

avicennioides

Root Ethanol Bactericidal 12.5–25 mg/ml MDR-S. Typhi 

strains

(128)

S. aromaticum Flower buds n-Hexane Antibacterial 1.318 mg/ml S. Typhimurium (109)

Picrorhiza kurroa Leaves Hydro-alcoholic Antibacterial 7.81 μg/ml S. Typhimurium (129)

Syzygium cumini Pulp Phenolic Inhibitory activity >0.78 mg/g S. Typhimurium (130)

Petroselinum crispum Leaves Ethanol Antibacterial 47.62 μl/ml S. Typhimurium (110)

Levisticum officinale Leaves Ethanol Antibacterial 47.62 μl/ml S. Typhimurium (110)

Thymus vulgare Leaves Hexanic Antibacterial 0.56 μl/ml S. Typhimurium (110)

Occimomum basilicum Leaf Methanol Antibacterial 22.68 μl/ml S. Typhimurium (110)

Petroselinum crispum Leaves Ethanol Antibacterial 3.00 ± 2.65 mg/ml S. Typhimurium 

TA98

(131)

Petroselinum crispum Leaves Ethanol Antibacterial 2.00 ± 0.00 mg/ml S. Typhimurium 

TA100

(131)

Bauhinia holophylla Leaves Hydro-alcoholic Mutagenic 214 ± 24 mg/plate S. Typhimurium TA 

97a

(132)

(Continued)
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TABLE 2 (Continued)

Plants Plant part Extract Biological 
activity

MIC Bacteria type References

Kirkia wilmsii Leaf Ethanol Antibacterial 0.31 mg/ml S. Typhimurium (113)

Noltea africana Leaf Ethanol Antibacterial 0.63 mg/ml S. Typhimurium (113)

Protorhus longifolia Leaf Methanol Antibacterial 0.31 mg/ml S. Typhimurium (113)

Carissa macrocarpa Leaf Methanol Antibacterial 0.31 mg/ml S. Typhimurium (113)

Anacardium 

occidentale

Leaf Ethanolic Inhibitory activity 12.5 mg/ml S. Typhimurium 

ATCC 14028

(112)

Daniellia oliveri Leaf Hdrothanolic Inhibitory activity 12.5 mg/ml S. Typhimurium 

ATCC 14028

(112)

Pterocarpus erinaceus Stem bark Hydrothanolic Inhibitory activity 25 mg/ml S. Typhimurium 

ATCC 14028

(112)

Ochrosia elliptica Leaves Ethanolic Antibacterial 3.9 μl/ml S. Typhimurium (133)

Aloe barbadensis Leaf Methanol Antibacterial 4.5 μg/ml Salmonella enterica (134)

Adhatoda vasica Leaf Methanol Antioxidant 9.5 μg/ml Salmonella enterica (134)

Amaranthus hybridus Leaf Methanol Antibacterial 6 μg/ml Salmonella enterica (134)

Loxostylis alata Leaf Ethanol Strong inhibition 

activity

0.31 ± 0.00 mg/ml Salmonella 

Enteritidis (ATCC 

13076)

(114)

Loxostylis alata Leaf Ethanol Antibacterial 0.16 ± 0.00 mg/ml S. Typhimurium (114)

Loxostylis alata Leaf Methanol Antimicrobial 0.12 ± 0.06 mg/ml S. Typhimurium (114)

Cinnamomum 

zeylanicum

Dried powder Methanol Antibacterial 24.57 ± 0.58 mm S. Typhi (135)

on the toxicological and pharmacokinetic properties of plant 
extracts and phytochemicals.
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