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At present, the differentiation potential and antioxidant activity of feline umbilical 
cord-derived mesenchymal stem cells (UC-MSCs) have not been clearly studied. 
In this study, feline UC-MSCs were isolated by tissue adhesion method, identified 
by flow cytometry detection of cell surface markers (CD44, CD90, CD34, and 
CD45), and induced differentiation toward osteogenesis and adipogenesis in vitro. 
Furthermore, the oxidative stress model was established with hydrogen peroxide 
(H2O2) (100 μM, 300 μM, 500 μM, 700 μM, and 900 μM). The antioxidant properties 
of feline UC-MSCs and feline fibroblasts were compared by morphological 
observation, ROS detection, cell viability via CCK-8 assay, as well as oxidative 
and antioxidative parameters via ELISA. The mRNA expression of genes related 
to NF-κB pathway was detected via quantitative real-time polymerase chain 
reaction, while the levels of NF-κB signaling cascade-related proteins were 
determined via Western Blot. The results showed that feline UC-MSCs highly 
expressed CD44 and CD90, while negative for CD34 and CD45 expression. Feline 
UC-MSCs cultured under osteogenic and adipogenic conditions showed good 
differentiation capacity. After being exposed to different concentrations of H2O2 
for eight hours, feline UC-MSCs exhibited the significantly higher survival rate 
than feline fibroblasts. A certain concentration of H2O2 could up-regulate the 
activities of SOD2 and GSH-Px in feline UC-MSCs. The expression levels of p50, 
MnSOD, and FHC mRNA in feline UC-MSCs stimulated by 300 μM and 500 μM 
H2O2 significantly increased compared with the control group. Furthermore, it 
was observed that 500 μM H2O2 significantly enhanced the protein levels of p-IκB, 
IκB, p-p50, p50, MnSOD, and FHC, which could be reversed by BAY 11-7,082, a 
NF-κB signaling pathway inhibitor. In conclusion, it was confirmed that feline UC-
MSCs, with good osteogenesis and adipogenesis abilities, had better antioxidant 
property which might be  related to NF-κB signaling pathway. This study lays a 
foundation for the further application of feline UC-MSCs in treating the various 
inflammatory and oxidative injury diseases of pets.
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1. Introduction

Mesenchymal stem cells (MSCs) are a kind of adult stem cells with 
the potential of self-renewal and multi-directional differentiation, which 
exist in bone marrow, fat, amniotic membranes, placenta, umbilical 
cord, and other tissues, and can differentiate into osteoblasts, 
chondrocytes, adipocytes, and nerve cells under appropriate conditions 
(1, 2). In addition, MSCs were testified to exert antioxidant properties 
in animal models of various diseases such as chemotherapy-induced 
injury to the lungs, brain, and aorta; diabetic injuries to the kidney, 
neurons, and bone formation; gastrointestinal inflammation and aging 
(3). In recent years, MSCs have been widely used in tissue repair, 
immune regulation, antioxidation, and other fields in human (4–6). The 
cat is a popular pet and an important model animal, so it is important 
to explore the biological characteristics and function of feline MSCs.

At present, feline MSCs have been reported in clinical trials for the 
treatment of chronic gingival stomatitis, chronic intestinal disease, 
asthma, kidney disease and other diseases in cats, but mainly focused 
on fat and bone marrow sources (7). Some studies have shown that 
feline adipose-derived mesenchymal stem cells (AD-MSCs) face 
problems such as cell proliferation stagnation during passage, thus 
hindering the large-scale expansion of autologous MSCs in feline 
patients (8). Trzil showed that although the injection of feline adipose-
derived MSCs was beneficial for feline asthma, the benefits were delayed 
in time compared to rodent asthma models (9). In acute ischemic 
kidney injury models, no improvement in renal function was observed 
by the injection of allogeneic feline bone marrow-derived mesenchymal 
stem cells (BM-MSCs) (10). Therefore, more studies are needed for 
further improvement and optimization. Umbilical cord-derived 
mesenchymal stem cells (UC-MSCs) have the advantages of convenient 
source, low acquisition cost, without ethical violations, and no damage 
to animals (11). However, only two reports on the isolation, 
identification, and characteristic of feline UC-MSCs were found (12, 
13). Many aspects such as the antioxidant capacity and mechanism are 
not clear for feline UC-MSCs, so further research is necessary for 
expanding the theoretical knowledge and application potential of it.

The antioxidative mechanism of MSCs involves in inhibiting the 
production and release of intracellular reactive oxygen species (ROS) 
through upregulating the endogenous antioxidant enzymes, such as 
superoxide dismutase (SOD), catalase (CAT), and glutathione 
peroxidase (GSH-Px) or activating the related signaling pathway under 
oxidative stress (3). Nuclear factor-κB (NF-κB) pathway plays an 
important role in oxidative stress, immune function, inflammatory 
response, apoptosis, and cell survival (14–16). Some studies have shown 
that the addition of H2O2 to cell culture medium can activate NF-κB 
activity in several cell lines (17). Under normal circumstances, IκB 
retains NF-κB in the cytoplasm in an inhibitory state, while when 
external stimuli such as ultraviolet radiation, lipopolysaccharide or 
H2O2 trigger IκB phosphorylation and proteasomal degradation, the 
free NF-κB dimers were released and translocated to the nucleus, where 
they bind to the specific DNA sequences and promote the transcription 
of multiple downstream target genes (18). Among them, manganese 
superoxide dismutase (MnSOD) and ferritin heavy chain (FHC) are 
main genes in antioxidant defense (19). Currently, the antioxidant 
mechanism of NF-κB signaling pathway in H2O2-treated MSCs is not 
very clear, especially no relevant reports have been found in UC-MSCs.

Therefore, the purpose of this study was to isolate and identify 
feline UC-MSCs, and explore the role of NF-κB pathway in their 
antioxidant stress, which will lay a foundation for revealing the 

antioxidant mechanism of UC-MSCs, and provide a theoretical basis 
for the clinical application of feline UC-MSCs.

2. Materials and methods

2.1. Animals and cell lines

The feline umbilical cord tissues were obtained from female cats 
after parturition at the small animal clinic in Taigu. Owners agreed to 
the collection of tissues and all experimental protocols were approved 
by the Committee for the Care and Use of Experimental Animals, 
Shanxi Agricultural University, Shanxi, China.

C3H10T1/2 (JCRB Cat# IFO50415, RRID:CVCL_0190) and feline 
fibroblasts were cultured in Dulbecco’s Modified Eagle Medium 
(DMEM, Viva Cell, China) containing 20% fetal bovine serum (FBS, 
Viva Cell, China), 1% penicillin–streptomycin (P/S, 100×, Solarbio, 
China), 0.1 μM dexamethasone (Solarbio, China), and 55 μM 
β-mercaptoethanol (Sigma, United States).

2.2. Isolation and culture of feline 
UC-MSCs

The umbilical cord tissue of approximately 2–3 cm length was 
immersed in sterile Hanks’ balanced salt solution at 4°C, 
supplemented with P/S, and then immediately transferred to the 
laboratory. The surface of umbilical cord was rinsed with Dulbecco’s 
phosphate-buffered saline (DPBS, Sigma, United States) to remove 
as much blood as possible. The umbilical arteries and veins were 
removed from each umbilical cord and the Wharton’s jelly (WJ) was 
carefully separated. The WJ was cut with a scalpel into 0.1–0.5 mm3 
pieces and transferred to 10 cm tissue culture dishes (Corning, 
United States) at 0.5–1 cm intervals. The pellet of tissue was then 
incubated at 37°C in α-modified minimum essential medium 
(α-MEM, Viva Cell, China) with 20% FBS, 1% P/S, 55 μM 
β-mercaptoethanol, and 0.1 μM dexamethasone for 2 weeks. During 
this period, half of the culture medium was refreshed every 7 d until 
the cells migrated from the fragments borders and reached 
approximately 80% confluency. Then the cells were harvested with 
0.25% Trypsin-EDTA solution (Boster, China) and further passaged. 
All experiments were performed in cells of passage 3.

2.3. Flow cytometry analysis

For fluorescence-activated cell sorting (FACS) analysis, 1 × 106 
cells from feline UC-MSCs were used to detect the expression of cell 
surface markers CD44, CD90, CD34, and CD45. The cells were 
trypsinized, counted and centrifuged (1,000 rpm/min for 5 min), and 
washed twice with DPBS. Information of antibodies used for staining 
is shown in Table 1. 5 μL of each antibody solution was added to 
100 μL of cell suspension. Cells were incubated at room temperature 
in the dark for 20–30 min, then washed twice with DPBS, vortexed, 
and centrifuged again (1,000 rpm/min for 5 min). Finally, cells were 
resuspended in 1 mL of DPBS for FACS analysis. At least 10,000 events 
were recorded for each sample and analyzed with a FC 500 flow 
cytometer (Beckman, United  States). Kaluza Analysis software 
(Beckman, United States) was used for FACS data analysis.
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2.4. In vitro mesodermal differentiation

2.4.1. Osteogenesis
Three types of cells (C3H10T1/2, feline UC-MSCs, and feline 

fibroblasts) were seeded into 6-well plates (Corning, United States) at 
a density of 5 × 105 cells/well. The original culture medium was 
discarded the second day, and the osteogenic medium consisting of 
DMEM supplemented with 20% FBS, 1% P/S, 55 μM 
β-mercaptoethanol, 0.1 μM dexamethasone, 2 mM β-glycerophosphate 
(Wako, 048-34,332, JPN), and 0.1 mM L-ascorbic acid phosphate 
(Wako, 013-12,061, JPN) was added for induction. As a negative 
control, cells were cultured in a normal medium deprived of the 
differentiation factors. Cells were cultured for 14–21 days and 
differentiation medium was changed every 2 days. At the end of the 
differentiation period cells were stained with Alizarin Red (1%, pH 
4.2, Solarbio, China) for 30 min and imaged in an inverted fluorescence 
microscope (Leica, Germany) and the differences among the three 
types of cells were assessed visually.

2.4.2. Adipogenesis
Three types of cells (C3H10T1/2, feline UC-MSCs, and feline 

fibroblasts) were seeded into 6-well plates at a density of 5 × 105 cells/
well. The original medium was discarded when the cells reached 90% 
of confluence. The adipogenic medium consisting of DMEM 
supplemented with 20% FBS, 1% P/S, 55 μM β-mercaptoethanol, 
0.1 μM dexamethasone, 0.1 mM L-ascorbic acid phosphate, 0.5 mM 
3-Isobutyl-1-methylxanthine (Sigma, I5879, United States), 60 μM 
indomethacin (Sigma, I7378, United States) and 10 μg/mL insulin 
(Solarbio, I8830, China) was added into the cells. As a negative 
control, cells were cultured in a normal medium deprived of the 
differentiation factors. Cells were cultured for 7–21 days and 
differentiation medium was changed every 2–3 days. When the lipid 
droplets in the cytoplasm were observed, the medium was carefully 
discarded. The cells were washed with DPBS twice, fixed in 4% 
paraformaldehyde (PFA, Solarbio, China) for 20 min, stained with Oil 
red O (Solarbio, China) for 30 min, and photographed under an 
inverted fluorescence microscope. The differences among the three 
types of cells were assessed visually.

2.4.3. Optimization for osteogenic and 
adipogenic differentiation of feline UC-MSCs

Feline UC-MSCs were seeded into 6-well plates at a density of 
5 × 105 cells/well. When the cells achieved appropriate confluency, 
osteogenic, and adipogenic differentiation were induced according to 
the optimized protocols: (1) The optimal osteogenic medium 
consisting of α-MEM supplemented with 20% FBS, 1% P/S, 55 μM 
β-mercaptoethanol, 0.1 μM dexamethasone, 10 mM 
β-glycerophosphate, and 0.2 mM L-ascorbic acid phosphate. (2) The 

optimal adipogenic medium consisting of α-MEM supplemented with 
20% FBS, 1% P/S, 55 μM β-mercaptoethanol, 10 μM dexamethasone, 
0.1 mM L-ascorbic acid phosphate, 0.5 mM 3-Isobutyl-1-
methylxanthine, 60 μM indomethacin, and 10 μg/mL insulin. After 
2 weeks, osteogenic differentiation was detected by Alizarin Red 
staining while adipogenic differentiation was detected by Oil Red O 
staining. Differentiated cells were then photographed under an 
inverted fluorescence microscope.

2.5. Establishment of the oxidative stress 
model for feline UC-MSCs and feline 
fibroblasts

2.5.1. In vitro model of H2O2-induced oxidative 
stress

Feline UC-MSCs and feline fibroblasts were seeded into 6-well 
plates at a density of 5 × 105 cells/well. When the cells grew to the 
appropriate confluence, the original medium was replaced and H2O2 
(3%, Sigma, United States) was added at the concentration of 100 μM, 
300 μM, 500 μM, 700 μM, and 900 μM to the culture, with a control 
group being set up at the same time. All groups were cultured for an 
additional 8 h under constant experimental conditions before analyses.

2.5.2. Cell viability assay
The cell viability of feline UC-MSCs and feline fibroblasts after 

H2O2 treatment was evaluated using Cell Counting Kit-8 (CCK-8, 
Beyotime Biotechnology, China). Cells were seeded into 96-well plates 
(Corning, United States) at a density of 5 × 103 cells/well. The original 
medium was replaced and different concentrations of H2O2 were 
added for 8 h. Next, 10 μL of CCK-8 solution was added into each well 
and incubated for 2 h at 37°C, after which the absorbance was 
measured at 450 nm using a microplate reader (Molecular Devices, 
United States). The blank control consisted of CCK-8 reagent and 
complete medium with no cells. Each experiment was repeated four 
times and the optical density (OD) was calculated as follows:

 

( ) A450 of the experimental groupCell Viability % –A450 of the blank group
A450 of the control group/ –A450 of the blank group

 =  
 
 
 
 

2.5.3. Detection of intracellular ROS
The levels of intracellular ROS were determined using an ROS 

assay kit (Beyotime Biotechnology, China) following the 
manufacturer’s protocol. The peroxide-sensitive fluorescent probe 

TABLE 1 Data on antibodies used for FACS analysis.

Cell surface 
marker

Conjugation Antibody clone Isotype Catalog 
number

Source RRID

CD44 PE IM7 Rat IgG2b 103,023 Biolegend USA AB_493686

CD90 PE 5E10 Mouse IgG1 328,109 Biolegend USA AB_893442

CD34 FITC 581 Mouse IgG1 343,503 Biolegend USA AB_1731923

CD45 FITC HI30 Mouse IgG1 304,005 Biolegend USA AB_314393
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2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) was used to 
measure the intracellular levels of ROS in H2O2-treated feline 
UC-MSCs and feline fibroblasts. Cells were seeded into 6-well plates 
at a density of 5 × 105 cells/well and treated with different 
concentrations of H2O2. Eight hours later, the cells were harvested and 
then washed twice with DPBS and incubated with diluted DCFH-DA 
(10 μmol/L) at 37°C for 30 min in the dark for final analysis by 
inverted fluorescence microscope. The fluorescence intensity of the 
cells was quantified via Image-Pro Plus (RRID:SCR_007369) software.

2.5.4. Detection of oxidative and antioxidative 
parameters

Cells were seeded into 6-well plates at a density of 5 × 105 cells/
well. The feline UC-MSCs and feline fibroblasts were treated for 8 h 
with various concentrations of H2O2 (100 μM, 300 μM, and 500 μM). 
Following H2O2 treatment, cells were collected for the determination 
of four oxidative/antioxidative biomarkers. The MDA level, and 
activities of CAT, SOD2, and GSH-Px were detected using 
commercially available assay kits (Shanghai Enzyme Linked 
Biotechnology, China) following the manufacturer’s instructions.

2.6. Quantitative real-time polymerase 
chain reaction (qRT-PCR)

Feline UC-MSCs were treated with H2O2 (100 μM, 300 μM, and 
500 μM) alone or together with NF-κB inhibitor BAY 11-7,082 (20 μM, 
Selleck, United States) for 8 h. Cells were lysed with 1 mL of TRIzol 
reagent (TaKaRa, JPN), and cDNA was synthesized with the 
PrimeScript™RT reagent Kit (TaKaRa, JPN). The reaction conditions 
were as follows: 95°C for 30 s, followed by 42 cycles at 95°C for 5 s and 
at 60°C for 30 s. The gene specific primers were designed with the 
Primer 5.0 program and NCBI Primer-BLAST (Table 2). The mRNA 
level of GAPDH was determined for the normalization of the IκB, p50, 
MnSOD, and FHC mRNA expression values. Data were quantified 
using 2−ΔΔCt method.

2.7. Western blot

Cells were collected and lysed using radio immunoprecipitation 
assay (RIPA) buffer (Beyotime Biotechnology, China). The protein 

samples were separated with the 10% sodium dodecyl sulfate-
polyacrylamide gel and then transferred onto nitrocellulose (NC) 
membranes (Boster, China). Afterwards, the blocking of membranes 
was done with 5% skimmed milk for 2 hours and the membranes were 
inoculated overnight with primary antibodies against Rabbit anti-IκB 
Alpha (1:2000, Proteintech, United  States, Cat#10268-1-AP, 
RRID:AB_2151423), Rabbit anti-Phospho-IκB Alpha-S32 (1:2000, 
ABclonal, China), Rabbit anti-NF-κB p50 (1:1000, Proteintech, 
United  States, Cat# 14220-1-AP, RRID:AB_2153393), Rabbit anti-
Phospho-NF-κB p50-S337 (1:2000, ABclonal, China), Rabbit anti-
MnSOD (1:20000, Proteintech, United  States, Cat# 24127-1-AP, 
RRID:AB_2879437), Rabbit-anti-FHC (1:500, Boster, China), and 
Rabbit anti-GAPDH (1:20000, Proteintech, United States, Cat# 10494-
1-AP, RRID:AB_2263076) in TBST at 4°C. The membranes were then 
washed and incubated with goat anti-rabbit HRP-conjugated secondary 
antibody (1:1000, Solarbio, China, Cat# SE134, RRID:AB_2797593) at 
room temperature for 1 h. The protein bands were visualized with an 
ECL reagent kit (Boster, China). The densities of protein blots were 
quantified by using Image J software (NIH, Bethesda, United States, 
RRID:SCR_003070) and normalized to the level of GAPDH.

2.8. Statistical analysis

Statistical differences were analyzed using the SPSS software 
version 21 (IBM Corp., Armonk, United States, RRID:SCR_019096), 
and GraphPad Prism 9 (San Diego, United States, RRID:SCR_002798). 
The comparison between two or more groups was conducted by t-test 
or one-way analysis of variance (ANOVA). Data were expressed as 
mean ± standard deviation (SD) and p < 0.05 was considered as 
statistically significant.

3. Results

3.1. Isolation and proliferation of feline 
UC-MSCs

At day 10 of primary culture, a small number of adhered cells 
could be  observed migrating from the boundary of WJ tissue 
fragments from feline umbilical cord, and exhibited a long spindle 
shape similar to fibroblasts (Figure  1A). After passaging, the 

TABLE 2 Primer sequence information.

Gene name Primer sequences (5′-3′) Accession no. Product (bp)

GAPDH F: TCATCCATGACCACTTCGGC  

R: AGATCCACGACGGACACATTG

NM_001009307.1 247

IκB F: CCTCGTGTCGCTTTTGTTGA  

R: CGTCCTCTGTGAACTCTGACTC

XM_003987542.6 203

P50 F: TGGCACTGGAGAAGATGAAGTT  

R: CACTGCGTAGTCAAAAAGGGC

XM_023252904.2 142

MnSOD F: TCACATCAACGCCCAGATCAT  

R: CCAGCGCCTCTCGATACC

XM_023254547.2 101

FHC F: AACGACCCCCATTTGTGTGA  

R: GCCATGCCAGATTCGGGAGT

NM_001048151.1 125
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proliferation rate increased exponentially, and the cells reached 80% 
confluence on the second day (Figure 1B). With the passaging of the 
cells, the cell morphologies were gradually uniform, which were 
consistent with the characteristics of MSCs (Figure 1C).

3.2. Expression of feline UC-MSCs 
phenotypical markers

To confirm that the isolated and cultured cells from feline 
umbilical cord tissue corresponded to MSCs, we tested the expression 
of several MSCs phenotypical markers including CD44, CD90, CD34, 
and CD45. FACS analysis revealed that feline UC-MSCs were 
prominently positive for CD44 and CD90, and negative for 
hematopoietic lineage markers including CD34 and CD45 (Figure 2).

3.3. Mesodermal differentiation potential of 
feline UC-MSCs

We evaluated the morphological characters of three types of cells 
after osteogenic and adipogenic induction, here C3H10T1/2 being the 
positive control while feline fibroblasts being the negative control. 
After osteogenic induction, the shapes of C3H10T1/2 and feline 
UC-MSCs changed from fibrous shapes to polygons and scales 
(Figures 3B,E). In the control wells without osteogenic induction, 
C3H10T1/2, feline UC-MSCs, and feline fibroblasts only showed an 
increase in density (Figures 3A,D,G). All three types of cells were 
stained with Alizarin Red, and the red calcium nodules appeared in 
C3H10T1/2 and feline UC-MSCs after 14 and 21 days of induction, 
respectively (Figures 3C,F). Less accumulation of calcium nodules in 
feline UC-MSCs was observed compared to C3H10T1/2, which 

FIGURE 1

Morphological characteristics of feline UC-MSCs isolated and cultured with the tissue adhesion method. Feline UC-MSCs migrated from adherent 
tissue on the tenth day (A). Morphology of feline UC-MSCs after passaging for 48 h (B). Morphological characteristics of the third-generation feline 
UC-MSCs (C). Scale bar: 200 μm.

FIGURE 2

Analysis by flow cytometry of the expression levels of cell surface markers CD44, CD90, CD34, and CD45 in feline UC-MSCs. The purple histograms 
represent isotype controls and red histograms represent cell surface marker staining.
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FIGURE 3

Osteogenic differentiation of three types of cells. No osteogenic cells were detected in C3H10T1/2 (A), feline UC-MSCs (D), and feline fibroblasts 
(G) under the uninduced control treatment. Morphological changes were detected in C3H10T1/2 (B), feline UC-MSCs (E), and feline fibroblasts 
(H) during osteogenesis. Images of Alizarin red staining in C3H10T1/2 (C), feline UC-MSCs (F), and feline fibroblasts (I). Scale bar: 200 μm.

suggested that the osteogenic induction condition for feline UC-MSCs 
needed to be optimized. However, feline fibroblasts did not change in 
morphology (Figure 3H), and no calcium nodules were observed after 
staining procedure (Figure 3I).

After adipogenic induction, lipid droplets were observed in 
C3H10T1/2 and feline UC-MSCs at the 6th and 9th day, respectively 
(Figures  4B,E). In the control wells without adipogenic induction, 
C3H10T1/2, feline UC-MSCs, and feline fibroblasts only showed an 
increase in density (Figures 4A,D,G). Oil red O staining results showed 
that the red lipid droplets were clearly observed in C3H10T1/2 and 
feline UC-MSCs after 7 and 21 days of induction, respectively 
(Figures 4C,F). Less accumulation of lipid droplets in feline UC-MSCs 
appeared compared to C3H10T1/2, which suggested that the 
adipogenic induction condition for feline UC-MSCs needed to 
be optimized. In feline fibroblasts, more and more cells died and no 
lipid droplets appeared during the adipogenic induction (Figures 4H,I).

3.4. Osteogenic and adipogenic 
differentiation of feline UC-MSCs in 
optimized conditions

When the β-glycerophosphate and L-ascorbic acid phosphate 
concentration further increased, the results of Alizarin Red staining 

on day 14 showed that the calcium nodules were more clustered, 
compact, and numerous (Figures  5B,D) than before optimization 
(Figures 5A,C), which suggested the optimized osteogenic medium 
significantly enhanced the osteogenesis of feline UC-MSCs and 
reduced the induction time from 21 days to 14 days.

We optimized the adipogenic medium based on the increase of 
dexamethasone concentration and compared the lipid accumulation 
of feline UC-MSCs after adipogenic induction. As shown in 
Figures 5F,H, the lipid droplets were more numerous and clearer than 
before optimization (Figures  5E,G). Moreover, the optimized 
adipogenic medium reduced the induction time from 21 days to 
14 days.

3.5. H2O2-induced morphological changes 
of feline UC-MSCs and feline fibroblasts

As shown in Figure 6, the morphology of feline fibroblasts and 
feline UC-MSCs did not show obvious change in 100 μM H2O2-treated 
group. When the concentration of H2O2 was up to 300 μM, feline 
fibroblasts were wrinkled, damaged, and loosely arranged, and lacked 
a fibrous shape. Plenty of feline fibroblasts were detached and floated 
in culture media and the number of cells was significantly reduced in 
500 μM, 700 μM, and 900 μM H2O2-treated groups. By comparison, 
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feline UC-MSCs treated by 300 μM H2O2 displayed a spindle shape, 
which did not show obvious morphological change. Although feline 
UC-MSCs showed changes such as shrinking, irregular morphology 
and uneven size when the concentration of H2O2 was up to 500 μM, 
700 μM, and 900 μM, some cells remained alive. The results 
demonstrated that feline UC-MSCs had higher resistance to H2O2 
compared with feline fibroblasts.

3.6. Effects of H2O2 on cell viability in feline 
UC-MSCs and feline fibroblasts

The effects of H2O2 on feline UC-MSCs and feline fibroblasts 
viability were shown in Figure 7. The cell survival rate of feline 
UC-MSCs was significantly higher than that of feline fibroblasts 
in 300 μM, 500 μM, and 700 μM H2O2-treated group (p < 0.01). 
When the concentration of H2O2 was up to 700 μM or 900 μM, the 
survival rate of feline fibroblasts or feline UC-MSCs decreased to 
nearly zero, respectively. Therefore, the treatment with the 
concentration of 100 μM, 300 μM, and 500 μM H2O2 for 8 h was 
chosen as the model condition of oxidative stress for 
subsequent studies.

3.7. Effects of H2O2 on ROS level in feline 
UC-MSCs and feline fibroblasts

The intracellular ROS change tendency was similar between feline 
UC-MSCs and feline fibroblasts, but the ROS level in feline UC-MSCs 
was lower than that in feline fibroblasts in the control group and 
100 μM H2O2 group (p < 0.05) (Figure 8A). Compared with the control 
group, after treated with 300 μM and 500 μM of H2O2 for 8 h, the ROS 
content significantly increased both in feline UC-MSCs and feline 
fibroblasts (p < 0.01) (Figure 8B).

3.8. Effects of H2O2 on the activities of CAT, 
SOD2, GSH-Px and level of MDA in feline 
UC-MSCs and feline fibroblasts

As shown in Figure 9, compared to the corresponding control 
group, after treated with 100 μM and 300 μM of H2O2 for 8 h, the 
MDA level significantly increased by 11.71 and 16.06% in feline 
UC-MSCs (p < 0.05), and by 20.38 and 21.47% in feline fibroblasts 
(p < 0.01), respectively. Compared to the control group, after feline 
UC-MSCs were treated with 500 μM H2O2, the CAT activity 

FIGURE 4

Adipogenic differentiation of three types of cells. No adipogenic cells were detected in C3H10T1/2 (A), feline UC-MSCs (D), and feline fibroblasts 
(G) under the uninduced control treatment. Morphological changes were detected in C3H10T1/2 (B), feline UC-MSCs (E), and feline fibroblasts 
(H) during adipogenesis. Images of Oil red O staining in C3H10T1/2 (C), and feline UC-MSCs (F), and negative results of adipogenic differentiation in 
feline fibroblasts (I). Scale bar: 100 μm.
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FIGURE 5

Optimization for osteogenic and adipogenic differentiation of feline 
UC-MSCs. Comparison of Alizarin red staining areas in feline UC-
MSCs under previous conditions (A) and optimized conditions (B). 
Comparison of calcium nodules in feline UC-MSCs under previous 
conditions (C) and optimized conditions (D). Comparison of the 
accumulation of lipid droplets in feline UC-MSCs under previous 
conditions (E) and optimized conditions (F). Comparison of lipid 
droplets staining in feline UC-MSCs under previous conditions 
(G) and optimized conditions (H). Scale bar: 100 μm, 200 μm.

significantly decreased by 25.36% (p < 0.01). While in the control 
group and 100 μM H2O2-treated group, the CAT activity in feline 
UC-MSCs was significantly higher than that in feline fibroblasts 
(p < 0.05). Compared to the control group, the SOD2 activity of 
feline UC-MSCs decreased significantly, and was significantly lower 
than that of feline fibroblasts in 100 μM H2O2-treated group 
(p < 0.05). But the SOD2 activity of feline UC-MSCs increased 
significantly by 17.56% (p < 0.05), and was significantly higher than 
that of feline fibroblasts in 300 μM H2O2-treated group (p < 0.01). 
Compared to the control group, after feline UC-MSCs were treated 
with 100 μM and 300 μM of H2O2, the GSH-Px activity significantly 
increased by 18.47 and 26.80% (p < 0.01), and significantly higher 
than that in feline fibroblasts (p < 0.01 or p < 0.05). The activities of 
CAT and GSH-Px did not change in feline fibroblasts after being 
treated with 100 μM, 300 μM, and 500 μM H2O2.

3.9. Effects of NF-κB inhibitor on the 
H2O2-induced morphological changes of 
feline UC-MSCs

We observed the morphological changes of feline UC-MSCs after 
adding 500 μM H2O2 alone or together with NF-κB inhibitor BAY 
11-7,082. As shown in Figure 10, there were more abnormal even dead 
cells, appearing cell fragmentation, cell dissolution, cell shrinkage, cell 
floating, and so on, in 500 μM H2O2 + BAY 11-7,082 group compared 
with 500 μM H2O2-treated group. It suggested that NF-κB signaling 
pathway was involved in the antioxidative process of feline UC-MSCs 
responding to H2O2 stimulus.

3.10. Effects of H2O2 on the mRNA 
expression levels of NF-κB pathway related 
genes in feline UC-MSCs

As shown in Figure 11, compared with the control group, the 
expression of IκB mRNA significantly decreased by 23.95 and 21.44% 
in 100 μM and 300 μM H2O2-treated group, respectively (p < 0.05). 
The expression of p50 mRNA significantly increased by 45.94, 107.40, 
and 240.98% in 100 μM, 300 μM, and 500 μM H2O2-treated group, 
respectively (p < 0.01). The expression of MnSOD mRNA significantly 
increased by 26.23, 58.52, and 40.24% in 100 μM, 300 μM, and 
500 μM H2O2-treated group, respectively (p < 0.01). The expression of 
FHC mRNA significantly increased by 69.30 and 89.11% in 300 μM 
and 500 μM H2O2-treated group, respectively (p < 0.01). BAY 
11-7,082, an inhibitor of IκB-α phosphorylation, had strong 
inhibitory effects on NF-κB regulated genes like IκB, p50 and MnSOD 
(p < 0.05 or p < 0.01).

3.11. Effects of H2O2 on the expression 
levels of NF-κB pathway related proteins in 
feline UC-MSCs

The expression changes of proteins related to NF-κB pathway were 
shown in Figure 12. Compared with the control group, the protein 
levels of p-IκB significantly increased by 83.90, 90.23, and 113.81% in 
100 μM, 300 μM, and 500 μM H2O2-treated group, respectively 

(p < 0.01). The protein levels of IκB significantly increased by 99.07% 
in 500 μM H2O2-treated group (p < 0.01). The ratio of p-IκB to total 
IκB significantly increased by 81.70 and 82.82% in 100 μM and 300 μM 
H2O2-treated group, respectively (p < 0.01). The protein levels of p-p50 
significantly increased by 61.19, 141.28, and 161.39% in 100 μM, 
300 μM, and 500 μM H2O2-treated group, respectively (p < 0.01). 
The protein levels of p50 significantly decreased by 38.16% in 300 μM 
H2O2-treated group (p < 0.01) but increased by 26.44% in 500 μM 
H2O2-treated group (p < 0.01). The ratio of p-p50 to total p50 increased 
by 97.67, 289.80, and 106.42% in 100 μM, 300 μM, and 500 μM H2O2-
treated group, respectively (p < 0.05 or p < 0.01). The protein levels of 
MnSOD significantly increased by 23.89 and 44.07% in 300 μM, and 
500 μM H2O2-treated group (p < 0.05). The protein levels of FHC 
significantly increased by 53.68, 102.69, and 190.22% in 100 μM, 
300 μM, and 500 μM H2O2-treated group (p < 0.05 or p < 0.01). The 
upregulations of these NF-κB signaling pathway-related proteins 
induced by 500 μM H2O2 were significantly reversed by the addition 
of BAY 11-7,082 (p < 0.05 or p < 0.01).
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4. Discussion

4.1. Surface markers and differentiation 
potential of feline UC-MSCs

In this study, feline UC-MSCs were isolated successfully and 
showed characteristics of typical MSCs including fibroblast-like 
morphology, surface markers and differentiation potential. Although 
it seemed there were a small number of heterogeneous cells in the 
isolated feline UC-MSCs from Wharton’s jelly of feline umbilical cord 
at P0, which because the original feline umbilical cord tissue contains 
round epithelial cells, they were replaced by long spindle UC-MSCs 
after passage as previously reported (20). All the feline UC-MSCs 
could adhere to the bottom of the culture bottle and show an extremely 

rapid proliferative capacity. It suggested that the harvested cells in this 
study might be feline UC-MSCs, which could proceed to the next step 
of identification.

The surface markers for defining MSCs in animals have not been 
established as they are in human (21). According to the results 
reported in the literature about feline MSCs isolated from different 
tissues: adipose, amniotic fluid, and bone marrow, feline MSCs 
basically all express CD44 and CD90, but lack the expression of CD34, 
while other expression markers are different in various studies (12, 
21–23). Our study showed that most of the feline UC-MSCs expressed 
MSCs surface markers CD44 and CD90, and lacked the expression of 
hematopoietic markers (CD34 and CD45).

Differentiation capacity is another important feature of MSCs. 
At present, it is widely known that BM-MSCs and UC-MSCs are 

FIGURE 6

Effects of different concentrations of H2O2 on cell morphology in feline UC-MSCs and feline fibroblasts. Scale bar: 200 μm.
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FIGURE 7

Effects of different concentrations of H2O2 on cell viability in feline 
UC-MSCs and feline fibroblasts. All data are presented as mean ± SD 
and n = 4 in each group. **p < 0.01.

FIGURE 8

Effects of different concentrations of H2O2 on ROS production in feline UC-MSCs and feline fibroblasts. (A) Observation of ROS fluorescence. Scale 
bar: 200 μm. (B) Quantitative analysis of the mean fluorescence intensity (MFI). All data are presented as mean ± SD and n = 3 in each group. *p < 0.05, 
**p < 0.01.

involved in many physiological processes, whose differentiation 
potential plays a critical role in tissue repair, wound healing, and 
regenerative medicine (24, 25). Many researchers support the 

hypothesis that MSCs and fibroblasts are indistinguishable in terms 
of morphology, cell surface markers, immunologic properties, and 
differentiation potential, whereas according to some evidences 
MSCs retain a multipotent differentiation capacity, but fibroblasts 
seem to display only limited, or no such multipotent differentiation 
(26). The distinction among these cell types in terms of ability to 
differentiate is also crucial to recognize specific cell precursor at the 
origin of many pet diseases. For the first time, we compared the 
differentiation potential of three types of cells, among which 
C3H10T1/2 as a positive control and feline fibroblasts as a negative 
control, with the same differentiation media and methods used for 
the osteogenic and adipogenic induction. Both C3H10T1/2 and 
feline UC-MSCs exhibited similar mineral deposits and lipid 
droplets, while fibroblasts isolated from feline did not differentiate 
toward the osteogenic or adipogenic lineage. One possible reason 
for the difference in differentiation ability between feline UC-MSCs 
and feline fibroblasts might be that MSCs populations are more 
intrinsically heterogeneous than fibroblasts (27), which contributes 
to their multi-directional differentiation potential. Although feline 
UC-MSCs were able to differentiable into not only osteocytes but 
also adipocytes, there were less stained areas in osteogenic and 
adipogenic differentiation than in C3H10T1/2. It suggested that the 
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optimal differentiation induction system of MSCs derived from 
different species and different parts was discrepant, which was 
confirmed by our subsequent optimized system of osteogenic and 
adipogenic induction for feline UC-MSCs.

In previous studies, differentiation potential was shown to depend 
on various factors, including tissue of origin and concentration of 
inducible factors (28–30). In the study, we  explored the optimal 
differentiation conditions of feline UC-MSCs and further understand 

FIGURE 9

Effects of different concentrations of H2O2 on intracellular MDA, CAT, SOD2, and GSH-Px levels in feline UC-MSCs and feline fibroblasts. All data are 
presented as mean ± SD and n = 3 in each group. *p < 0.05, **p < 0.01.

FIGURE 10

Morphological changes of feline UC-MSCs treated by H2O2 alone or together with BAY 11-7,082. Scale bar: 200 μm.
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FIGURE 11

Effects of H2O2 alone or together with BAY 11-7,082 on mRNA expression of NF-κB pathway-related genes including IκB, p50, MnSOD, and FHC in 
feline UC-MSCs. All data are presented as mean ± SD and n = 6 in each group. *p < 0.05, **p < 0.01.

the differentiation mechanism. Previous study demonstrated that 
alkaline phosphatase (ALP) activity and ability to form mineralized 
deposits were higher in MEM cultures than in DMEM cultures (31). 
Zainal et al. and Salehinejad et al. also revealed that α-MEM supported 
the expansion and differentiation of MSCs more strongly than DMEM 
(32, 33). So, we  decided to use MEM instead of DMEM in the 
optimized osteogenic and adipogenic medium. Moreover, among 
osteogenic agents, the differentiation factors such as L-ascorbate acid 
phosphate and β-glycerophosphate are widely used in cell 
differentiation (34). β-glycerophosphate is closely associated with 
osteogenic signaling and mineralization of cells (35) and L-ascorbate 
acid phosphate is vital for MSCs differentiation and bone formation 
(36). Therefore, we also enhanced L-ascorbate acid phosphate and 
β-glycerophosphate concentrations in the optimized osteogenic 
medium. Results from phase contrast microscopy revealed that more 
nodule formation was observed preferentially at day 14 post-
differentiation induction when compared to the previous osteogenic 
medium. Dexamethasone is a glucocorticoid hormone and an 
important regulator of lipid differentiation of mesenchymal stem cells 
(37). Our results showed that the optimized adipogenic medium with 

dexamethasone significantly stimulated the accumulation of lipid 
droplets. These results are in line with those previously published 
studies, showing that dexamethasone contributes to the increased 
adipocyte number and lipid accumulation (38). In conclusion, the 
optimal condition reduced the induction time and showed more 
efficient osteogenic and adipogenic differentiation ability as compared 
to the previous condition in feline UC-MSCs, which should be helpful 
in the development of stem cell therapy.

4.2. Antioxidant capacity and mechanism 
of feline UC-MSCs

It is known that the antioxidant and immunomodulatory 
functions of MSCs through paracrine are very important for their 
application in regenerative medicine. In vitro, MSCs can reduce 
oxidative stress-induced injury in cardiomyocytes, renal cells, 
endothelial cells, immune cells, hepatocytes, islet cells, fibroblasts, and 
skeletal muscle (3). According to these studies, MSCs have antioxidant 
properties by scavenging free radicals directly, promoting endogenous 

https://doi.org/10.3389/fvets.2023.1203012
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Zhai et al. 10.3389/fvets.2023.1203012

Frontiers in Veterinary Science 13 frontiersin.org

antioxidant defenses, and suppressing the immune system to prevent 
oxidative injury (3). Although MSC treatments are unequivocally 
proven to reduce levels of oxidative stress in cells and animal models, 
most of the data come from human and mouse studies. Currently, the 
antioxidant role and mechanism in feline UC-MSCs has not been 
reported. H2O2 is often used as a model drug for oxidative damage due 
to its relatively stable properties in vitro (39). Therefore, feline 
UC-MSCs and feline fibroblasts were modeled with a certain 
concentration of H2O2 to compare their antioxidant capacity in this 
study. ROS as a signal molecule supports normal physiological 
activities, but the excessive ROS will cause cell death and oxidative 
stress (40). MDA is one of the most frequently measured biomarkers 
of oxidative stress, and generally, the increase of MDA content 
indicates the degree of oxidative stress damage of cytoplasmic 
membrane (41). In the present study, the treatment with H2O2 
significantly increased the levels of ROS and MDA in feline UC-MSCs 

and feline fibroblasts throughout of 8 h, which indicated that oxidative 
stress was induced. It was worthy to note that the results of 
morphological change and cell viability indicated that feline UC-MSCs 
had higher resistance to H2O2 compared with feline fibroblasts, which 
might be related to the stronger enhancement of antioxidant capacity 
in MSCs by the pretreatment with a certain concentration of H2O2 
(42). SOD and GSH-Px are the main antioxidant enzymes that 
scavenge ROS, protecting against ROS-induced damage (43). Several 
recent studies suggested that MSCs can upregulate the levels of 
antioxidant enzymes SOD1, SOD2, and GSH-Px in vitro, thus 
ensuring their tolerance to oxidative environments or inflammatory 
injury (3, 44–46). The activities of SOD2 or/and GSH-Px showed 
significantly increase in feline UC-MSCs when treated with 100 μM 
and 300 μM H2O2 and the CAT activity of feline UC-MSCs was higher 
than that of feline fibroblasts in the control group and 100 μM H2O2-
treated group, which might contribute to the greater antioxidant 

FIGURE 12

Effects of H2O2 alone or together with BAY 11-7,082 on NF-κB pathway in feline UC-MSCs. (A) Western blot analysis of p-IκB, IκB, p-p50, p50, MnSOD, 
FHC, and GAPDH. (B) Quantitative analysis of p-IκB, IκB, p-IκB/IκB, p-p50, p50, p-p50/p50, MnSOD, and FHC relative levels. All data are presented as 
mean ± SD and n = 3 in each group. *p < 0.05, **p < 0.01.
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FIGURE 13

Schematic diagram illustrating the isolation and identification of feline umbilical cord-derived mesenchymal stem cells (UC-MSCs), and antioxidant 
mechanism by NF-κB signaling pathway under H2O2 stimulation. This graphic was created with BioRender.com.

capacity of feline UC-MSCs than feline fibroblasts. One of the main 
functions for SOD is to scavenge O2

− and transform it into H2O2 (47), 
which might explain the decrease of SOD2 activity in feline UC-MSCs 
after treated with 100 μM H2O2 via feedback mechanism. Although 
the main functions of both CAT and GSH-Px are to neutralize H2O2 
(48), the activity of CAT did not increase in feline UC-MSCs after 
treated with 100 μM and 300 μM H2O2, which suggested that the 
GSH-Px might be important for the antioxidant response of feline 
UC-MSCs. Surprisingly, there was no change for the level of MDA and 
the activities of SOD2 and GSH-Px while the activity of CAT decreases 
in 500 μM H2O2-treated feline UC-MSCs, which suggested that the 
other antioxidant mechanisms and the consequent feedback roles 
might be existed.

Given the desirable antioxidant properties of MSCs, whose 
mechanisms are usually associated with numerous oxidant pathways, 
such as Nrf2/HO-1, MAPK, and NF-κB signaling pathway (49–51), 
we tested the effects of NF-κB inhibitor BAY 11-7,082 on the H2O2-
induced morphological changes of feline UC-MSCs. The results 
suggested that NF-κB pathway was involved in the antioxidative 
process of feline UC-MSCs. The subsequent results of qRT-PCR and 
Western Blot showed that the NF-κB pathway was activated in feline 
UC-MSCs in response to H2O2 stimuli. NF-κB can be activated when 
its inhibitor, IκB, is phosphorylated and degraded from the cytoplasm 
(52). We found an obvious effect of H2O2 on p-IκB protein levels in 
feline UC-MSCs, and the significant increases of p-IκB were reversed 
after the addition of BAY 11-7,082. Activated NF-κB forms a variety 

of homo- or heterodimers with transcriptional activity, of which p65 
and p50 are the most common (53). We did not monitor the mRNA 
expression level of p65, which was consistent with the results of 
Western Blot. However, the increases of p-p50 protein were observed 
with H2O2 stimulation, indicating the subsequent potential 
translocation into the nucleus, whereas BAY 11-7,082 reversed the 
change, indicating that the phosphorylation activation of p50 was 
caused by IκB phosphorylation/degradation. The changes of IκB and 
p50 mRNA/protein induced by 500 μM H2O2 were basically 
upregulated except for IκB mRNA and were reversed by BAY 11-7,082, 
but irregular in 100 μM or 300 μM H2O2 group, suggesting that the 
involved mechanism was complicated, which needed to be further 
investigated. NF-κB signaling pathway can activate antioxidant genes, 
express antioxidant proteins and maintain the redox environment of 
cells (54). This expressional upregulation of MnSOD and FHC 
mRNA/protein in H2O2-treated group indicated that the activated 
p-p50 might be an early response to oxidative stress to protect cells via 
upregulating the downstream antioxidant targets in feline UC-MSCs. 
Under stress conditions, MnSOD and FHC play an integral role in 
antioxidant activity. MnSOD converts superoxide radicals into oxygen 
and hydrogen peroxide, whereas ferritin minimizes iron-catalyzed 
ROS production from hydrogen peroxide by binding free iron (19). 
The effects of H2O2 on the MnSOD and FHC mRNA/protein were 
weakened to different degrees by inhibitor-BAY 11-7,082, which 
confirmed the regulation relationship of p-p50 and both of them in 
feline UC-MSCs. Combining these results, NF-κB signaling pathway 
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plays a crucial role in the response of feline UC-MSCs to H2O2 
stimulus, which shed new light on the antioxidation mechanism in 
feline UC-MSCs. Certainly, in practical application, we must consider 
that the downstream target genes of NF-κB also include inflammatory 
factors, although studies have shown that MSCs can secrete anti-
inflammatory cytokines. Therefore, a holistic study is needed to find 
the right balance and further formulate the use stage and dosage of 
MSCs in clinical application.

5. Conclusion

In summary, we successfully isolated and identified mesenchymal 
stem cells derived from feline umbilical cord, and optimized the 
osteogenic and adipogenic induction system for feline UC-MSCs. 
Feline UC-MSCs exhibited greater anti-oxidative capacity compared 
with feline fibroblasts upon H2O2 treatment. The antioxidant effect of 
feline UC-MSCs depended at least in part on the activation of NF-κB 
signaling pathway (Figure 13). These findings may provide important 
evidence for elucidating the antioxidant mechanism of UC-MSCs and 
promoting the clinical application of feline UC-MSCs.
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