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In sheep, body weight is an economically important trait. This study sought to map 
genetic loci related to weaning weight and yearling weight. To this end, a single-
trait and multi-trait genome-wide association study (GWAS) was performed using 
a high-density 600 K single nucleotide polymorphism (SNP) chip. The results 
showed that 43 and 56 SNPs were significantly associated with weaning weight 
and yearling weight, respectively. A region associated with both weaning and 
yearling traits (OARX: 6.74–7.04 Mb) was identified, suggesting that the same 
genes could play a role in regulating both these traits. This region was found to 
contain three genes (TBL1X, SHROOM2 and GPR143). The most significant SNP 
was Affx-281066395, located at 6.94 Mb (p = 1.70 × 10−17), corresponding to 
the SHROOM2 gene. We also identified 93 novel SNPs elated to sheep weight 
using multi-trait GWAS analysis. A new genomic region (OAR10: 76.04–77.23 
Mb) with 22 significant SNPs were discovered. Combining transcriptomic data 
from multiple tissues and genomic data in sheep, we found the HINT1, ASB11 and 
GPR143 genes may involve in sheep body weight. So, multi-omic anlaysis is a 
valuable strategy identifying candidate genes related to body weight.
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1. Introduction

GWAS have been widely used in gene mapping research to understand the genetic 
mechanisms governing economically important traits in sheep, including weight, reproductive 
fitness, horn number, ear type, hair color, and disease resistance (1–6). The first study to use this 
approach in sheep focused on horn shape and revealed that the RXFP2 gene is related to horn 
type in sheep (7).

Body weight is the most important index of growth and development in farmed sheep. 
Studies have noted heritabilities of 0.30–0.35 for weaning weight and 0.40–0.45 for yearling 
weight, indicating that the heritability of these traits is moderately (8). Based on GWAS, 
Gholizadeh et al. (9) who used the Illumina ovine SNP50 BeadChip in 96 Baluchi sheep 
discovered the candidate genes TRBP and TRAMIL1 for birth weight; APIP and DAAM1 for 
weaning weight; PHF15, PRSS12, and MAN1A1 for 6-month weight; and SYNE1, WAPAL, 
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and DAAM1 for yearling weight. Al-Mamun et al. (10) used data 
from 1781 Australian Merino sheep genotyped with the Illumina 
Ovine SNP 50 K BeadChip and found that the genes LAP3, NCAPG, 
and LCORL are related to body weight traits in sheep. Similarly, 
using GWAS, Ghasemi et al. (11) demonstrated that RAB6B and 
GIGYF2 are candidate genes for birth weight using Illumina Ovine 
SNP50 Bead Chip from 132 Lori-Bakhtiari sheep, and Lu et al. (1) 
performed a genome-wide associations of birth, weaning, yearling, 
and adult weights of 460 fine-wool sheep were determined using 
resequencing technology. The results showed that 113 single 
nucleotide polymorphisms (SNPs) reached the genome-wide 
significance levels for the four body weight traits and 30 genes were 
annotated effectively, including AADACL3, VGF, NPC1, 
and SERPINA12.

When traits are highly correlated with each other, multi-trait 
analysis is more advantageous than single-trait analysis. Because 
multi-trait GWAS involves only one statistical test and considers both 
the intra- and inter-trait variance components of multiple traits (12), 
it can reduce the errors caused by multiple testing (13). Hence, it 
improves the accuracy (14, 15) and precision of parameter estimation 
(16). Multi-trait GWAS also increases the statistical power by 
exploiting the genetic correlation between different traits.

In this study, we used the Affymetrix Ovis600K genotyping bead 
chip to identify candidate genes related to weaning weight and 
yearling weight using multi-trait and single-trait GWAS. Our findings 
provide a reference for understanding the inheritance mechanism of 
weight traits in sheep.

2. Materials and methods

2.1. Ethics statement

All experimental procedures were in accordance with animal 
welfare legislation and were approved by the Experimental Animal 
Care and Use Committee of Xinjiang Academy of Agricultural and 
Reclamation Sciences (Shihezi, China, Ethics committee approval 
number: XJNKKXY-2020-34; December 30, 2020).

2.2. Sample collection and genotyping

A total of 218 ewes (a composite line bred from Australian Suffolk 
sheep, Chinese Hu sheep, and Chinese Kazakh sheep) were collected 
from the Xinjiang Academy of Agricultural and Reclamation Science. 
We recorded their weights at two stages: weaning and yearling. All 
sheep were fasted for 12 h before their weaning weights and first 
yearling weights were measured.

Single nucleotide polymorphisms (SNPs) were examined using 
the Affymetrix Ovis600K genotyping bead chip, which contains 
604,721 SNPs. Plink 1.9 software (17) was used to control the quality 
of genotype data; (1) minor allele frequency (MAF) ≥5% SNPs, (2) 
SNP call rate ≥ 95%, (3) individual call rate ≥ 90%, and (4) SNPs 
mapped to X chromosomes and autosomes were evaluated. After the 
quality control was performed on the raw genotypes, a total of 218 
animals and 479,470 SNPs were obtained. In this study, Beagle 
software was used to fill in the missing genotypes. The Haploview 
software (18) was used to analyze the linkage disequilibrium (LD). The 

haplotype block recognition algorithm proposed by Gabriel et al. (19), 
their criterion is that the one-sided upper 95% confidence bound on 
D′ is >0.98 and the lower bound is >0.70.

2.3. Estimation of genetic parameters of 
weaning weight and yearling weight

GCTA was developed as a method for estimation the variance 
explained by all the SNPs on a chromosome or on the whole genome 
for a complex trait (20). In this study, −-reml and −-reml-bivar were 
set to calculate heritability and genetic correlation, respectively. Using 
SAS9.4 (21), descriptive statistics were performed for these two traits, 
including mean, standard deviations, coefficients of variation.

2.4. Single-trait and multi-trait GWAS

In this study, a mixed linear model was used to analyze the 
association between SNPs and body weight traits, including weaning 
weight and yearling weight. The model used was as follows:

 Y Xb Kp Ms Za Qc e= + + ∑ + + + +µ ,

where Y is the phenotype value vector, b is the fixed effect vector 
(year effect), p is the top three eigenvectors of principal component 
analysis (PCA), s is the SNP effect vector and SNP genotypes coded as 
0, 1 and 2 for aa, Aa and AA, a is the individual residual polygene 
effect (random effect), c is the birth weight vector (covariant), e is the 
random residual effect vector, and X, K, Z, Q are the design matrices 
of b, p, s, a, and c, respectively.

Multivariate mixed linear models (mvLMMs) were used to 
conduct joint association analysis between SNPs and two traits due to 
strong genetic correlation between weaning weight and 
yearling weight.

GEMMA software (16) was used to perform single-trait and 
bi-trait GWAS. The Wald test was used to evaluate the significance of 
each genetic marker. In order to reduce false positives, the Bonferroni 
correction method was applied correction, and the threshold value 
was p = 0.05/479470 = 1.04 × 10−7 (single-trait) and p = 0.05/479470/2 
= 5.70 × 10−8 (bi-trait).

2.5. Function annotations

In this study, we first downloaded the sheep Ovis aries (Oar_v3.1) 
gene annotation information1 from the Ensembl database (22), then 
used the intersect parameter of BEDTools 2.1.2 software to annotatin 
the significant SNPs and identifying gene within 200 kb upstream and 
downsteam of these SNPs (23). We collected quantitative trait loci 
(QTLs) related to sheep weight traits from the animal QTL database.2

1 https://www.ensembl.org/Ovis_aries/Info/Index

2 http://www.animalgenome.org/cgi-bin/QTLdb/OA/browse
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2.6. Expression analysis

We collected RNA-Seq data from the European Bioinformatics 
Institute (EBI) for 17 tissues, including muscle long dorsal, muscle 
biceps, spleen, lung, pituitary gland, brain, hypothallamus, mammary 
gland, kidney cortex, kidney medulla, heart, rectum, abomasum, 
uterus, colon, rumen, ovary tissues of juvenile and adult sheep 
(BioProject number: PRJEB6169). There are more than 3 samples 
each tissues of juvenile or adult sheep. After using Trimmomatic to 
remove adapter and low-quality sequences (24), all RNA-Seq datasets 
were processed using FastQC v0.11.33 and quality inspection was 
conducted. Reads were aligned to the sheep reference genome 
(OARv3.1) using STAR v.2.7.6a (25) and counted with the RNA-Seq 
by Expectation Maximization (RSEM) software v. 1.3.3 (26). The 
DESeq2 package in R was used to DEGs with significant differences 
between different samples (27). The tissue specificity index (τ) of the 
candidate genes was calculated, which is defined as

 
τ =

−( )
−

=∑i
N

ix

N
1 1

1

where xi  is the expression profile component normalized by the 
maximal component value and N is the number of tissues (28).

3. Results

3.1. Descriptive statistics and genetic 
parameters

In this study, the descriptive statistics of weaning weight and 
yearling weight traits were analyzed including mean, standard 
deviations, coefficients of variation (Table 1). Based on SNP genotype, 
we used the GCTA software calculate genetic parameter of weaning 
and yearling weight traits. We found the heritability of weaning weight 
and yearling weight was 0.54 and 0.44, respectively. There was a 
significant positive genetic correlation between weaning weight and 
yearling weight with a correlation coefficient of 0.73 (p < 0.05).

3.2. Single-trait GWAS

In this study, single-trait GWAS was conducted for weaning 
weight and yearling weight based on a linear mixed model. 
We identified 43 and 56 SNPs significantly related to weaning weight 

3 http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

and yearling weight (Table  2), respectively. The corresponding 
Manhattan and quantile-quantile (Q-Q) plots are shown in Figure 1. 
For weaning weight, significantly SNPs were detected on the 
chromosomes OAR9, OAR13, OAR17 and OARX. These SNPs were 
located nearest to the genes including ESRP1 (Epithelial Splicing 
Regulatory Protein 1), MPP7 (MAGUK P55 Scaffold Protein 7), 
WDR66 (WD Repeat-containing protein 66), SHROOM2 (Shroom 
Family Member 2). For yearling weight, significantly SNPs were 
located on OAR1, OAR9, OAR13, OAR17, OAR20 and OARX. The 
following genes are annotated FOXD3 (Forkhead box D3), ESRP1, 
MPP7, WDR66, DOCK11 (Dedicator Of Cytokinesis 11).

In this study, 43 SNPs significantly associated with both traits 
(weaning weight and yearling weight), such as Affx-2809971786 
(OARX: 13.58 Mb), Affx-281271848 (OARX: 15.57 Mb), and Afffx-
281246794 (OARX: 21.47 Mb), located within the GRPR (Gastrin-
releasing peptide receptor), HMGA2 (High mobility group A 2), and 
ZFX (Zinc finger protein X-linked) genes, respectively. A 0.3-Mb 
region (6.74–7.04 Mb) on the X chromosome was the lagest region 
significantly associated with weaning weight and yearling weight 
(Figure  2). In this region, 27 and 30 SNPs were associated with 
weaning weight and yearling weight, respectively. These SNPs showed 
strong LD relationships with each other (r2 = 0.99). Moreover, this 
region contained the TBL1X (Transducing β-like 1 X-linked), GPR143 
(G-protein coupled receptor143), and SHROOM2 genes. The most 
significant SNP was Affx-281066395, located at 6.94 Mb (Pweaning weight 
= 8.09 × 10−11 and Pyearling weight = 1.70 × 10−17) on the SHROOM2 gene. 
These findings suggest that this genetic region may have 
pleiotropic effects.

In addition, we also found two SNPs that were only related to 
yearling weight, i.e., Affx-281233109 and Affx-28153321.

3.3. Multi-trait GWAS results

Since there are significant highly genetic correlation between 
weaning weight and yearling weight, the multuvariate model is more 
accurate. We used bi-traits GWAS to identify novel significant SNPs. 
In this study, 138 SNPs related to sheep weight were identified, and the 
Q-Q and Manhattan plots are displayed in Figure 1. In contrast to 
single-trait GWAS, multi-trait GWAS identified 93 novel SNPs 
(Table 3), which were mainly located on five chromosomes, including 
OAR3, 8, 10, 16, and 18.

Using multi-trait GWAS, we identified a new genomic region at 
76.04–77.23 Mb on chromosome 10 containing 22 significant SNP loci 
(Figure 3). These loci were missed in the single-trait GWAS analysis. 
However, the observed odds ratios of the two traits showed sufficient 
deviations, and the statistical significance could only be identified after 
considering the joint statistics of the two phenotypes (Figure 4). These 
results showed that multi-trait GWAS can increase statistical power and 
complement the results of single-trait GWAS. Of those significant SNPs, 
Affx-280892681, located at 76.34 Mb on the PCCA (Propionyl-CoA 

TABLE 1 Descriptive statistics of body weight.

Trait Mean Standard 
deviation (SD)

Maximum value Minimum value Coefficient of 
variation (%)

Weaning weight (kg) 23.74 4.69 30.50 15.00 19.76

Yearling weight (kg) 40.89 8.03 62.20 28.00 19.64
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TABLE 2 Significant loci and genes identified using single-trait GWAS.

Trait Top-SNP Chromosome Position (Mb) Beta SE p value Candidate 
gene

Distance 
(kb)

Weaning weight Affx-280934168 9 82.30 −12.41 2.17 6.21 × 10−8 ESRP1 6.70

Affx-281160655 13 35.58 15.36 2.67 5.17 × 10−8 MPP7 Intron

Affx-280817808 17 52.92 18.32 2.84 1.78 × 10−9 WDR66 13.79

Affx-280850001 17 70.28 20.70 2.94 8.09 × 10−11 IGLV4-60 Intron

Affx-281066395 X 6.94 20.70 2.94 8.09 × 10−11 SHROOM2 Intron

Affx-280971786 X 13.58 18.32 2.84 1.78 × 10−9 GRPR Intron

Affx-280750675 X 14.69 14.82 2.43 1.01 × 10−8 REPS2 26.57

Affx-281271848 X 15.57 16.31 2.65 7.65 × 10−9 HMGA2 117.45

Affx-281246794 X 21.47 20.70 2.94 8.09 × 10−11 ZFX Exon

Affx-281100183 X 25.79 20.70 2.94 8.09 × 10−11 – –

Affx-280837435 X 40.90 20.70 2.94 8.09 × 10−11 NDP 85.12

Affx-280944812 X 59.02 16.87 2.61 1.66 × 10−9 FAM155B 1.11

Affx-280773186 X 60.72 18.25 2.79 1.00 × 10−9 TAF1 Intron

Affx-280784773 X 61.24 20.70 2.94 8.09 × 10−11 RTL5 79.14

Affx-281227833 X 70.46 18.25 2.86 2.51 × 10−9 POU3F4 149.90

Affx-281119406 X 110.63 16.19 2.56 3.32 × 10−9 DOCK11 Intron

Yearling weight Affx-281233109 1 38.36 17.11 2.40 2.61 × 10−11 FOXD3 1.88

Affx-281153321 1 232.51 16.37 2.41 1.62 × 10−10 THOC2 Intron

Affx-280934168 9 82.30 12.94 1.92 2.28 × 10−10 ESRP1 6.70

Affx-281160655 13 35.58 19.15 2.27 1.19 × 10−14 MPP7 Intron

Affx-280817808 17 52.92 21.67 2.26 9.10 × 10−18 WDR66 13.79

Affx-280850001 17 70.28 21.68 2.28 1.70 × 10−17 IGLV4-60 Intron

Affx-280818224 20 30.99 13.12 1.77 4.76 × 10−12 SLC17A1 1.59

Affx-280871230 X 6.72 13.15 1.75 3.01 × 10−12 TBL1X 0.04

Affx-281066395 X 6.94 21.68 2.28 1.70 × 10−17 SHROOM2 Intron

Affx-281021986 X 12.75 9.75 1.59 6.27 × 10−9 ASB11 Exon

Affx-280971786 X 13.58 21.14 2.32 1.96 × 10−16 GRPR Intron

Affx-280750675 X 14.69 18.61 2.32 1.40 × 10−13 REPS2 26.57

Affx-281271848 X 15.57 20.80 2.34 8.07 × 10−16 HMGA2 117.45

Affx-281246794 X 21.47 21.68 2.28 1.70 × 10−17 ZFX Exon

Affx-281100183 X 25.79 21.68 2.28 1.70 × 10−17 – –

Affx-280975370 X 27.47 21.84 2.37 9.16 × 10−17 MAGEB2 5.58

Affx-280837435 X 40.90 21.68 2.28 1.70 × 10−17 NDP 85.12

Affx-280901032 X 53.35 9.33 1.64 5.67 × 10−8 SSX2 3.48

Affx-280944812 X 59.02 19.44 2.30 1.11 × 10−14 FAM155B 1.11

Affx-280773186 X 60.72 20.90 2.34 5.74 × 10−16 TAF1 Intron

Affx-280784773 X 61.24 21.68 2.28 1.70 × 10−17 RTL5 79.14

Affx-281227833 X 70.46 20.98 2.29 1.63 × 10−16 POU3F4 149.90

Affx-281174947 X 78.06 16.04 2.31 7.09 × 10−11 ZNF517 40.95

Affx-281019020 X 84.68 18.29 2.61 4.95 × 10−11 SLITRK2 Exon

Affx-280983473 X 92.32 18.55 2.08 7.60 × 10−16 – –

Affx-281119406 X 110.63 21.15 2.20 9.18E × 10−18 DOCK11 Intron

Affx-281112347 X 129.06 15.83 2.04 6.93 × 10−13 – –
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carboxylase subunit alpha) gene, was the most significant loci (p = 1.43 
× 10−212). But all near loci with it is not significant, we speculate that it is 
a false positive loci related to body weight. In this region, there are 12 
significant SNP loci at 76.40–76.90 Mb were strongly linkage 
disequilibrium (r2 = 0.89). The Affx-122835917 SNP, located near the 
HINT1 gene, was associated with BW (p = 9.22 × 10−10).

3.4. Expression profiles of candidate genes 
across multiple tissues

To validate biological function of these candidate genes in this 
study, we explored RNA-Seq data of multi-tissues of juvenile and adult 

sheep. We found there were 13 and 6 genes expressed in all 17 tissues 
of juvenile and adult stages, respectively. Of these genes, ARID1B 
(AT-Rich Interaction Domain 1B), DNM1L (Dynamin 1 Like), 
FANCM (Fanconi anemia complementation group M), HINT1 
(Histidine Triad Nucleotide Binding Protein 1), and ZCCHC17 (Zinc 
Finger CCHC-Type Containing 17) were expressed in all development 
stages, and the expression of HINT1 gene was highest. According 
STRING Interaction Network database, the fatty acid-binding protein 
family gene, including FABP3, FABP5, FABP7 proteins, were 
interacted with HINT1. So we  deem the HINT1 gene might play 
important role involving in body weight.

The expression patterns each gene varied in different tissues of 
different development stages. We calculated index of tissue specificity 

FIGURE 1

Manhattan and QQ plots for single- and multi-trait GWAS. Multi-trait (A,B); weaning weight (C,D); and yearling weight (E,F).
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each genes. The results shown ASB11 (Ankyrin Repeat And SOCS Box 
Containing 11), KIAA1549L (KIAA1549 Like), GPR143, UNC79 
(Unc-79 Homolog, NALCN Channel Complex Subunit) were 
specifically expressed in muscle biceps, brain, hypothalamus, and 
pituitary tissues of juvenile and adult stages, respectively.

By difference expression analysis, we  found ASB11 gene was 
significantly higher expressed in muscle biceps tissue of juvenile sheep 
(p = 6.69 × 10−4), and GPR143 gene was significantly higher expressed 
in hypothalamus tissue of adult sheep (p = 1.64 × 10−4).

4. Discussion

Multi-trait GWAS is usually used to detect QTLs associated with 
multiple traits, when there is a covariance between traits. The higher 
the genetic and phenotypic correlation between traits, the higher is the 
statistical power of multi-trait GWAS. In this study, our results showed 
that the genetic correlation between weaning weight and yearling 
weight was 0.73 and Singh et al. (29) found the genetic correlation 
between the two traits in marwari sheep was 0.56. These findings 
indicate that there is a positive genetic correlation between weaning 
weight and yearling weight in sheep. To improve the power of GWAS 
results, we  conducted bi-trait GWAS for two correlated traits. In 

comparison single trait GWAS, we yielded 93 novel SNPs related to 
these traits. Using the same strategy, Zhou et al. (30) conducted multi-
trait GWASs for chest, abdominal, and waist circumferences in Duroc 
Pig populations and detected four additional SNPs. Yan et al. (31) 
identified 16 novel loci associated with hematological traits in the 
White Duroc × Erhualian F2 resource population; Bolormaa et al. (32) 
discovered that multi-trait analysis improves the detection of 
polymorphic QTLs for 32 traits in beef cattle. Together with our 
findings, these results show that multi-trait GWAS can complement 
single-trait GWAS results and thus increase the statistical power of 
GWAS, when there is genetic correlation between different traits.

Very few studies have examined SNPs or QTLs related to weaning 
weight and yearling weight in sheep. According to the SheepQTLdb 
database (as of April 25, 2023), there are 11 QTLs and 4 QTLs related to 
weaning weight and yearling weight in sheep, respectively, based on QTL 
mapping or GWAS. These QTLs are distributed on OAR2–OAR4, OAR7, 
OAR9, OAR15, OAR19, and OAR24 (1, 9, 10, 33). Our study expanded 
this list considerably, identifying 148 SNPs that are significantly correlated 
with weaning weight and yearling weight through a combination of 
single- and multi-trait GWAS. However, we found that the candidate 
genetic markers of body weight identified in this study were less consistent 
than those reported from previous GWAS. This difference may be due to 
differences in the genetic background and breeds of sheep or their size 

FIGURE 2

Association mapping results for SNPs significantly related to weaning weight and yearling weight located at 6.74–7.04 Mb on chromosome X. YW: 
yearling weight; WW: weaning weight.
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TABLE 3 Novel significant loci identified using multi-trait GWAS.

SNP Chromosome Position (Mb) p value Candidate gene Distance (kb)

Affx-280755999 1 52.11 1.23 × 10−9 ST6GALNAC3 0.81

Affx-280791722 1 66.84 1.42 × 10−16 ZNF326 191.97

Affx-281090386 1 74.53 1.69 × 10−28 ZCCHC17 19.66

Affx-280867761 1 178.77 1.33 × 10−25 LSAMP 58.79

Affx-281226034 1 248.89 2.28 × 10−12 NME9 Intron

Affx-280821432 2 32.86 2.63 × 10−8 – –

Affx-280856574 2 219.05 1.50 × 10−90 TNS1 Intron

Affx-281268994 3 93.11 1.27 × 10−13 ZNF638 Exon

Affx-281114490 3 175.87 2.71 × 10−16 BTBD11 25.21

Affx-122820109 3 181.88 4.54 × 10−201 DNM1L Intron

Affx-281054367 3 187.97 1.66 × 10−109 ITPR2 Intron

Affx-280981488 4 47.91 2.34 × 10−40 PIK3CG 83.44

Affx-280901247 4 74.18 7.37 × 10−16 – –

Affx-280776832 4 100.73 2.65 × 10−11 PTN 52.69

Affx-281218321 5 52.25 1.87 × 10−165 – –

Affx-122856956 8 13.44 5.86 × 10−49 RNF217 117.55

Affx-280967487 8 15.58 2.55 × 10−24 PKIB 7.08

Affx-281261983 8 53.17 7.74 × 10−9 THEMIS 39.57

Affx-281048989 8 76.25 2.96 × 10−93 MYCT1 11.08

Affx-122857334 8 80.13 1.40 × 10−22 ARID1B Intron

Affx-280965921 10 73.42 1.88 × 10−96 HS6ST3 11.93

Affx-281173612 10 74.53 8.96 × 10−23 FARP1 36.29

Affx-280892681 10 76.34 1.43 × 10−212 PCCA Intron

Affx-122835917 10 76.85 9.22 × 10−10 HINT1 16.84

Affx-280950308 12 20.81 1.67 × 10−11 LYPLAL1 Intron

Affx-280946111 12 77.47 1.21 × 10−21 CAMSAP2 17.41

Affx-122843631 13 35.93 3.49 × 10−76 MKX 5.06

Affx-280906468 13 63.98 1.61 × 10−22 EDEM2 Intron

Affx-281176659 13 72.38 1.83 × 10−71 HNF4A 5.52

Affx-280976876 14 9.89 1.31 × 10−42 MBTPS1 Intron

Affx-280812512 15 41.44 1.98 × 10−08 EIF4G2 Intron

Affx-280868473 15 62.29 2.45 × 10−12 KIAA1549L Intron

Affx-280962571 16 21.09 3.69 × 10−22 PLK2 177.834

Affx-280934775 16 36.13 8.59 × 10−15 EGFLAM 60.56

Affx-281116412 16 54.92 6.86 × 10−17 – –

Affx-280870352 16 59.26 5.96 × 10−146 DNAH5 Intron

Affx-280741710 16 61.07 2.49 × 10−40 – –

Affx-280771553 17 10.43 2.11 × 10−27 EDNRA Intron

Affx-280903822 17 37.64 1.05 × 10−13 – –

Affx-281077042 18 5.24 1.27 × 10−10 CERS3 Intron

Affx-281124791 18 8.24 6.34 × 10−71 – –

Affx-281117901 18 9.28 2.26 × 10−107 – –

Affx-280975510 18 53.86 8.22 × 10−11 FANCM Intron

Affx-281012099 18 57.17 8.52 × 10−73 UNC79 Intron

(Continued)
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and population structure. Differences in the detection platforms or 
algorithms used for analysis and random or technical errors in some 
analyses may have also contributed to these differences. Nevertheless, this 
suggests that many important genetic markers and candidate genes of 
weight traits in the sheep genome remain to be discovered.

In this study, we performed a genome-wide association study of 
body weights of 218 ewes. This is a small study. Although, many 
researchers insist on a large sample, and “the larger the sample, the 
more reliable is the result” is their dictum. Multiple problems have 

been cited with the studies on a small sample (34, 35). Whether based 
on a small sample or a large sample, no single study is considered 
conclusive. A large number of small studies can be done easily in 
different condition. Anderson and Vingrys (36) argued that small 
samples may be enough to show the presence of an effect but not for 
estimating the effect size. If most of small studies point toward the 
same direction, a possibly robust conclusion can be drawn through a 
meta-analysis. Animal experiments can be done in highly controlled 
conditions to nearly eliminate all the confounders, thus it may be used 

FIGURE 3

Linkage disequilibrium (LD) blocks of the novel loci detected using multi-trait GWAS. Manhattan plot (top) and LD plot (bottom) of the 76.04–77.23 Mb 
genomic region on chromosome 10.

SNP Chromosome Position (Mb) p value Candidate gene Distance (kb)

Affx-280999698 22 40.15 8.67 × 10−59 IL11 74.71

Affx-281231501 22 45.21 4.45 × 10−12 C10orf90 99.50

Affx-280930203 22 50.00 1.26 × 10−25 INPP5A 53.989

Affx-122833966 23 24.82 1.80 × 10−17 ERVW-1 27.38

Affx-281156572 23 45.10 4.74 × 10−11 SETBP1 144.56

Affx-281178806 26 1.65 5.41 × 10−36 – –

Affx-280838398 X 26.99 1.09 × 10−83 IL1RAPL1 104.56

TABLE 3 (Continued)
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small sample to establish the cause-effect relationship (37). When 
more confounders were under control, sufficient power is achieved 
with a smaller sample. This study was only few confounders, such as 
birth year of ewes. So far, there are many examples exist of useful 
studies on small samples. For example, significant associations with 
body weight, growth-related and body conformation traits were 
identified by GWAS in 96 Baluchi sheep (38), 69 Egyptian Barki sheep 
(39), 150 Dazu Black goats (40), respectively. Furthermore, we also 
deem that estimated effects, confidence intervals and exact p values 
should be considered when interpreting a study’s results, but only 
sample size (41), and some exact methods of statistical analysis may 
help in reaching more valid conclusions for small sample size.

In contrast to long-held notions whereby single genes were believed 
to encode single functions, most genes are now recognized to have 
multiple qualitatively distinct functions. This phenomenon is termed 
pleiotropy (42). Pleiotropy is defined as a condition in which a single locus 
affects two or more distinct phenotypic traits (43, 44). It is very common 
phenomenon in nature for pleiotropism. The present study also found an 
interesting phenomenon where both the GPR143 and SHROOM2 genes 

were significantly associated with weaning weight and yearling weight. 
Hence, these two genes appear to be pleiotropic. Lu et al. (1) also revealed 
that GPR143 and SHROOM2 are associated with birth weight, weaning 
weight, yearling weight, and adult weight in sheep, which is consistent 
with the results of the present study. Zhang et al. and Jahejo et al. also 
found SHROOM2 gene is closely associated with tibial cartilage dysplasia 
(45, 46). It is of great significance to make a profound study of the 
pleiotropy so that it can reveal common genetic mechanisms between 
closely related phenotypes, as well as the molecular functions of genes. So, 
further functional data are required for the validation of these findings.

Due to high conservation across species, the identified genes 
related to body weight traits in humans and other animals may also 
be  important for sheep growth and development. In this study, 
we  found that some of these genes, including ARID1B, ASB11, 
DNM1L, HNF4A (Hepatocyte Nuclear Factor 4 Alpha), MKX 
(Mohawk Homeobox), PKIB (CAMP-Dependent Protein Kinase 
Inhibitor Beta), TBL1X and TMTC4 (Transmembrane 
O-Mannosyltransferase Targeting Cadherins 4) may be  related to 
sheep body weight traits (Table 4). Liu et al. (47) found that ARID1B 
mutations are strongly associated with growth and weight traits in 
humans. ASB11 is a major regulator of human embryonic and adult 
regenerative myogenesis (48). Increased expression levels of the 
DNM1L proteins may correlate with the degree of weight gain, and is 
closely related to the development of obesity (49–52). HNF4A 
mutations are associated with a considerable increase in birth weight 
and macrosomia, and the gene acts in the intestine and kidney to 
promote white adipose tissue energy storage (53–56). MKX is a 
potential regulator of brown adipose tissue development associated 
with obesity-related metabolic dysfunction in children (57). PKIB 
plays a central role in human obesity and metabolism (58, 59). TBL1X 
mainly plays an important role in maintaining precursor adipocytes 
in an undifferentiated state by inhibiting adipogenesis (60). Ma et al. 
(61) showed that TMTC4 is significantly related to the formation of 
human skeletal muscle. From the above elementary description of the 
candidate genes, we find some of them are more or less associated with 
muscle development and body weight in different species, which 
allows us to predict the genes might take part in similar processes in 
sheep genome. Subsequent studies, such as functional verification, will 
be done in the candidate genes, which could ultimately reveal the 
causal mutations underlying body weigh traits in sheep.

FIGURE 4

Scatter plot comparing all Beta/SE values for the two traits across the 
genome. Novel loci detected by muti-trait GWAS are marked at the 
edges of the plot.

TABLE 4 Basic functions of the identified genes.

Gene ID Position(kb) Full name Function

ARID1B OAR8:80106814–80481520 AT-rich interaction domain 1B Linked to human growth disorders (47)

ASB11 OARX:12753078–12782477 Ankyrin Repeat And SOCS Box Containing 11 A major regulator of human embryonic and adult regenerative 

myogenesis (48)

DNM1L OAR3:181841759–181886894 Dynamin 1 Like Related to the development of obesity (49–52)

HNF4A OAR13:72383636–72412129 Hepatocyte Nuclear Factor 4 Alpha Associated with a considerable increase in birth weight and 

macrosomia (53–56)

MKX OAR13:35933444–35998635 Mohawk Homeobox A potential regulator of brown adipose tissue (57)

PKIB OAR8:15590257–15710072 CAMP-Dependent Protein Kinase Inhibitor Beta Related to obesity and metabolism in humans (58, 59)

TBL1X OARX:6723480–6835914 Transducin Beta Like 1 X-Linked Inhibiting adipogenesis (60)

TMTC4 OAR10:76587978–76636800 Transmembrane O-mannosyltransferase 

targeting cadherins 4

Skeletal muscle formation (61)
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5. Conclusion

In this study, we identified 148 significant SNPs related to weaning 
weight or yearling weight based on single-trait and multi-trait 
GWAS. Two important chromosomal regions were discovered, including 
the 6.74–7.04 Mb interval on chromosome X and the 76.04–77.23 Mb 
interval on OAR10. Our results suggest that multi-trait GWAS is a 
powerful statistical tool for identifying novel loci missed by conventional 
single-trait GWAS. Incorporated transcript expression data of candidate 
genes, HINT1, ASB11 and GPR143 genes may involve in sheep body 
weight. This study show multi-omic anlaysis is a valuable strategy 
identifying candidate genes. Moreover, they provide key insights into the 
genetic determinants of weight traits in sheep.
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