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Novel therapies are needed for treatment of gliomas. Mebendazole previously 
demonstrated anti-neoplastic effects on canine glioma cell lines at in vitro 
mean inhibitory concentrations (IC50) of 10  ng/mL. Our study aimed to titrate the 
oral dose of mebendazole necessary to achieve concentrations ≥10  ng/mL in 
cerebrospinal fluid (CSF) of healthy dogs. We hypothesized that an oral dose up to 
200  mg/kg would be necessary. Phase one was a dose titration study using a total 
of 6 mixed breed dogs that described dose vs. plasma concentrations for 72  h 
after single oral dosing of either 50  mg/kg (n  =  2), 100  mg/kg (n  =  2), or 200  mg/
kg (n  =  2). Based on phase one, phase two dogs (total of 9) received 100  mg/kg 
(n  =  4) or 200  mg/kg (n  =  5) orally and blood samples were collected intermittently 
for 60  h with CSF samples collected intermittently for 24  h. Mebendazole was 
quantitated in plasma and CSF using high performance liquid chromatography. 
Median peak plasma concentrations (Cmax) were reached at 7  ±  2  h (100  mg/kg) 
of 220  ng/mL (81, 283) and at 15  ±  4  h (200  mg/kg) of 147  ng/ml (112, 298). The 
respective area under the curve (AUC: ng/ml/h) reported as a median was 2,119 
(1,876, 3,288) vs. 3,115 (1,559, 4,972). Median plasma concentrations (ng/ml) for 
100 vs. 200  mg/kg were 47 (32, 52) vs. 65 (35, 104), respectively. For CSF, the 
median value for Cmax (at 100  mg/kg vs. 200  mg/kg) was 8 (2, 28) vs. 21 (12, 27) 
and AUC was 87 (22, 157) vs. 345 (92, 372), respectively. Relative bioavailability 
in CSF vs. plasma was 4 to 10%. Although several animals demonstrated clinical 
signs indicative of gastrointestinal upset [i.e., vomiting (n  =  2), diarrhea (n  =  2), 
or both (n  =  1)], these events were not considered serious. The in vitro IC50 for 
gliomas can be reached in CSF at 100  mg/kg (n  =  1), however a 200  mg/kg dose 
yielded more consistent concentrations.
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1. Introduction

Gliomas are primary brain tumors arising from glial cells that differentiate into astrocytomas, 
oligodendrogliomas, or ependymomas. These tumors are common in both humans and canines 
(1–4). Canine gliomas are typically presumptively diagnosed based on magnetic resonance 
imaging (MRI) features of the lesion, as definitive diagnosis with a biopsy is not commonly 
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obtained (5). As such, their aggressive nature and intra-axial location 
limit the effectiveness of available treatment options in both veterinary 
and human medicine which often involves multiple treatment 
modalities including surgery, radiation therapy, and/or 
chemotherapeutic agents such as temozolomide (5–8). Despite the 
limited effectiveness of these treatment options, owners of dogs with 
presumed glial tumors are becoming more interested in treatment 
options for their canine companions, particularly those that are less 
invasive and cost conscious to allow for increased survival and 
preservation of quality of life. Due to this interest, continued research 
into novel therapies for gliomas is an important focus that has a 
potential to benefit both human and veterinary medicine.

Benzimidazoles (BZDs), such as fenbendazole and mebendazole, 
were originally developed as anthelmintics for use in human and 
veterinary medicine (9–13). Recently it has been discovered that BZDs 
have multiple anti-neoplastic properties against various cancer cell lines 
in vitro as well as in vivo (13–21). Their primary mode of action targets 
tubulin, one of the main building blocks of a cell that is crucial for cell 
division (13, 14). More specifically, BZDs inhibit the polymerization of 
tubulin and disrupt the formation of microtubules which leads to cell 
arrest (14–16). Additional anti-neoplastic properties of BZDs include 
inhibition of the hedgehog pathway, inhibition of kinases (such as 
MAPK14/p38a), and antiangiogenic effects (15–23). In recent human 
literature, BZDs have been found to inhibit the growth and development 
of several cancers including non-small-cell lung cancers, adrenocortical 
carcinoma, chemoresistant melanoma, colon cancer, hepatocellular 
carcinoma, and central nervous system (CNS) neoplasms such as 
glioblastoma, other gliomas, and medulloblastoma (13–26).

Previous research has demonstrated in vitro anti-tubulin and anti-
neoplastic effects of fenbendazole and mebendazole on three canine 
glioma cell lines, establishing a mean inhibitory concentration (IC50; 
MIC) for each drug (12). The in vitro IC50 of mebendazole was found 
to be 10 ng/ml vs. approximately 150 ng/ml for fenbendazole (12), 
demonstrating mebendazole to be a more potent drug compared to 
fenbendazole. Additionally, previous studies have shown that dosages 
of 11–110 times the anthelmintic dose of 22 mg/kg/day of 
mebendazole given to dogs daily for 2 months produced no adverse 
reactions or effects on liver function (10). Unpublished data from a 
previous study using fenbendazole in our lab revealed profound 
gastrointestinal upset in the cohort of healthy dogs. These findings 
make mebendazole a better drug of choice for additional study as an 
anti-neoplastic agent.

Documenting mebendazole concentrations in the cerebrospinal 
fluid (CSF) of healthy dogs and comparing those to what has been 
shown to produce increased glioma cell line death in vitro is a crucial 
step in the formulation of a clinical trial in canine glioma patients. 
Without showing that mebendazole is capable of crossing the blood 
brain barrier and achieving detectable concentrations in healthy 
canine CSF, there is little support that BZDs would have any use as a 
potential therapy for canine gliomas. The objectives of this study were 
to describe the time course of mebendazole concentrations in the 
plasma and CSF when administered orally to healthy dogs, and 
subsequently, to determine an oral dose of mebendazole necessary to 
achieve and maintain concentrations predicted to be therapeutic for 
the treatment of gliomas in dogs. We hypothesized that 1) canine 
plasma mebendazole concentrations will increase in a dose dependent 
manner and that 2) an oral dose up to 200 mg/kg will achieve in vivo 
concentrations of at least 10–20 ng/ml in the CSF of a healthy dog, 

which was considered therapeutic concentrations for the treatment of 
canine gliomas based on the previous in vitro study (12).

2. Materials and methods

2.1. Animals

A total of six (age range: 2–10 years) healthy female (4 intact, 2 
spayed) mixed breed dogs were acquired from a laboratory purpose-
bred breeding colony at the Auburn University College of Veterinary 
Medicine (AUCVM) for use in phase 1 of this study. Three additional 
healthy male intact mixed breed dogs (age range: 2–8 years) were 
acquired in addition to the original six female dogs (n = 9) for use in 
phase 2 of this study. Upon entry into the hospital on Day 0 of each 
phase of the study, dogs were given ≥12 h to acclimate prior to 
starting blood collection (and CSF collection – phase 2 only). All 
dogs were apparently healthy and had unremarkable physical and 
neurological examinations (performed by the same investigators 
throughout the entirety of the study) prior to drug administration. 
A complete blood count (CBC), serum chemistry panel, and 
urinalysis were additionally performed prior to drug administration 
to assess baseline health status. Exams were performed daily until 
the end of blood collection for each phase of the study. Monitoring 
of vitals (temperature, heart rate, respiratory rate), mentation, and 
any signs of pain or discomfort (e.g., vocalization, elevation in vitals, 
etc.) were assessed every 6–8 h during both phases of the study. The 
dogs were hospitalized during the collection phases of the study and 
were returned to the breeding colony kennels between phases of the 
study and ultimately at the conclusion of phase 2 of the study. All 
procedures were approved by the Auburn University Institutional 
Animal Care and Use Committee.

2.2. Vascular access

On Day 0 of each phase of the study, all dogs had intravenous 
catheters placed in either the left or right cephalic veins. All dogs were 
then heavily sedated with dexmedetomidine (5 μg/kg) and 
butorphanol (0.2 mg/kg) for placement of jugular catheters, as 
described elsewhere (27), to provide vascular access for collection of 
blood samples. Jugular catheters were placed 12–24 h prior to the 
initiation of sample collection. Catheters were flushed with 
heparinized sterile saline (0.9% NaCl) once daily and subsequently 
flushed with sterile saline and monitored for patency and cleanliness 
every 6 h. Routine bandaging of the catheter was implemented and 
replaced as indicated by sample collection design or as needed based 
on the patient. Catheters were removed immediately after the last 
blood sample was obtained and catheter sites were inspected for any 
evidence of infection. Pressure bandages were placed over the catheter 
site for 30 min following removal and were subsequently removed 
prior to return to the colony kennels.

2.3. Mebendazole administration

Mebendazole was supplied by a collaborator, Dr. Gregory Riggins, a 
Professor of Neurosurgery and Oncology at Johns Hopkins University, 
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in a powdered formulation. While it still retains FDA approval for use in 
dogs, mebendazole is no longer readily commercially available in the 
United States of America at the present time. Based on known therapeutic 
dosing (10, 11) and the study’s aimed CSF concentration, a dose of 50 mg/
kg, 100 mg/kg, or 200 mg/kg was compounded into capsules for each dog 
(one dose per dog as randomly assigned for each phase of the study) by 
the Auburn University Small Animal Veterinary Teaching Hospital 
Pharmacy. During phase 1 (Dose Determination, n = 6 total), two dogs 
were randomly assigned to receive either a 50, 100, or 200 mg/kg single 
oral mebendazole dose. During phase 2 (Pharmacokinetics, n = 9 total), 
dogs were randomized to receive a single oral mebendazole dose of either 
100 mg/kg (n = 4) or 200 mg/kg (n = 5). At the time of administration in 
both studies, a minimal amount of food was used to allow for ingestion 
of the dose; animals were not given a full meal until 6 h post-
administration during phase 1 and not until roughly 12–14 h post-
administration due to the frequent anesthetic periods during phase 2 to 
reduce the risk of regurgitation/aspiration.

2.4. Blood collection

During phase 1, blood samples were collected from all dogs at 
times 0, 0.5, 1, 2, 4, 6, 8, 12, 16, 20, 24, 48, and 72 h post mebendazole 
administration. During phase 2, this was similar, but concluded at 60 h 
(instead of 72 h) post-administration. The described “three-syringe 
technique” was used to sterilely collect blood at each collection time 
and the catheters were flushed with 3 ml of sterile saline (0.9% NaCl) 
afterwards (28). Blood samples did not exceed 6 ml at each collection 
time. Packed cell volume and total solids were monitored every 24 h 
to ensure we did not exceed 7% blood volume sampled of body weight 
over 24 h. Blood samples were initially stored in Sarstedt S-Monovette® 
Neutral Z/4.9 ml tubes. Blood samples were stored at 0°C for no more 
than 10–20 min prior to centrifugation. Plasma was properly obtained 
via centrifugation for 5 min at 1,500 × g. Plasma samples were 
transferred via plastic pipette to a Sarstedt screw cap 1.5 ml micro tube 
and were then placed into −80°C for storage until processing was 
performed. Samples were stored for approximately 3 months.

2.5. CSF collection

During phase 2, CSF samples were collected from all dogs at times 
1, 2, 3, 6, 12, and 24 h post mebendazole administration. All dogs were 
placed under general anesthesia for CSF collection. Dogs received an 
injection of butorphanol (0.2 mg/kg) and dexmedetomidine (5 μg/kg) 
as a pre-medication. Propofol (3–6 mg/kg IV to effect) was used for 
induction and the dogs were then intubated using an endotracheal 
tube. Dogs were maintained on isoflurane in oxygen titrated to effect. 
Dogs were kept under a single anesthetic event for collection times 
1–3 h. For samples at hour 6, 12, and 24, they were placed under 
separate anesthetic events for a total of 4 anesthetic events over a time 
period of 24 h. A sterile 22-gauge, 1.5-inch spinal needle was used to 
obtain approximately 1 ml of CSF from the atlantooccipital junction 
at each collection time. This volume of CSF removed was deemed safe 
as canine CSF production has been determined to be 0.047 ml/min or 
around 68 ml/day (29). When there was evidence of gross blood 
contamination, a few drops of CSF were discarded until the fluid 
became clear and then collection began. CSF samples were not 

analyzed for protein, red blood cell, or white blood cell counts as part 
of this study. Samples were collected into a Sarstedt screw cap 1.5 ml 
micro tube and stored at 0°C for no more than 10–20 min prior to 
being placed into −80°C for storage until processing was performed. 
Samples were stored for approximately 3 months.

2.6. Pharmacokinetic analysis

Dog plasma and cerebrospinal fluid (CSF) were analyzed for 
mebendazole concentrations by high performance liquid 
chromatography (HPLC) with ultraviolet (UV) detection (30–33). The 
HPLC system consisted of a Waters 2,695 separation module and a 2,489 
UV–Visible detector (Waters Corporation™, Milford, MA, USA). 
Separation was achieved with a Gemini C6, 5 μm, 150 × 3 mm column 
(Phenomenex®, Torrance, CA, USA) at 40°C (31–35). The mobile phase 
consisted of 75:25, 20 mM Ammonium formate buffer (pH adjusted to 
3.0 w/formic acid):Acetonitrile (VWR®, Radnor, PA, USA) with the flow 
rate set to 1.5 ml/min (30, 34). The retention time for mebendazole was 
6.8 min and UV absorbance was monitored at 314 nm (30–33). The 
standard curve was generated ranging from 10 to 1,000 ng/ml for canine 
plasma, and 5 to 500 ng/ml for CSF by fortifying canine plasma and 
saline, respectively, with known amounts of mebendazole (Sigma-
Aldrich®, St. Louis, MO, USA) reference standard and accepted if the 
coefficient of determination (r2) was at least 0.99 and the predicted 
concentrations were within ±10% of the actual concentrations (30). 
Briefly, mebendazole was quantitated in canine plasma and CSF based 
on modifications of previously developed assays (30–35). For plasma and 
CSF samples, 1,000 and 700 μl of acetonitrile was added to tubes 
containing 500 and 350 μl of canine plasma and CSF, respectively (30, 31). 
The contents of each tube were mixed vigorously for 30 s through 
vortexing, then subjected to centrifugation for 10 min at 16,000 × g. The 
clear supernatant was transferred to a clean glass tube, then evaporated 
to dryness under a gentle stream of nitrogen for 40 min at 45°C (31). The 
residue was reconstituted with 250 μl of mobile phase, vortexed for 20 s, 
and then the solution was centrifuged at 16,000 × g for 5 min. The 
supernatant was transferred into the vial, and 100 μl were injected into 
the chromatographic system (30–32, 35).

The linear correlation coefficient for mebendazole in canine 
plasma and CSF was 0.999. The limit of detection was 5 and 2.5 ng/ml 
for canine plasma and cerebrospinal fluid (CSF), respectively. The 
lower limit of quantification was 10 and 5 ng/mL for canine plasma 
and CSF, respectively. The precision (CV %) for mebendazole in 
canine plasma at 14, 26, 60, 120, and 800 ng/mL was 4.37, 2.69, 1.16, 
5.90, and 1.51%, respectively. The accuracy (% recovery) for 
mebendazole in canine plasma at 14, 26, 60, 125, and 800 ng/mL was 
104.34, 99.40, 99.38, 100.28, and 101.64%, respectively. The precision 
(CV %) for mebendazole in canine CSF at 5, 15, 75, and 300 ng/mL 
was 7.70, 2.63, 2.44, and 2.11%, respectively. The accuracy (% 
recovery) for mebendazole in canine CSF at 5, 15, 75, and 300 ng/mL 
was 106.55, 100.10, 99.83, and 99.25%, respectively.

Plasma and CSF mebendazole concentration vs. time data were 
subjected to non-compartmental analysis using computer software 
(Phoenix® WinNonLin® V7, Pharsight, Cetara, Princeton, NJ, USA). 
Area under the curve (AUC) to infinity was determined using the 
log-linear trapezoidal method. The actual maximum concentration 
(Cmax) occurring at time to maximum concentration (Tmax) was 
recorded. The slope of the terminal component of the drug vs. time 
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curve was based on non-linear regression. Because mebendazole was 
not given intravenously, the terminal component could not 
be confirmed to total elimination and thus both the elimination rate 
constant and half-life were reported as disappearance. Half-life was 
reported as harmonic mean + pseudostandard deviation. Furthermore, 
neither clearance (CL) nor volume of distribution (Vd) could 
be  determined. Other parameters included mean residence time 
(MRT) and the percentage of the AUC that was extrapolated from the 
terminal component of the curve. The relative bioavailability 
(percentage) of mebendazole in CSF to plasma was calculated based 
on the ratio of the AUC (AEV1/AEV2).

2.7. Statistical analysis

The Kolmogorov–Smirnov test was used to determine normality 
between data sets. Descriptive statistics were reported as 
mean ± standard deviation (SD) or median and range (minimum, 
maximum) when not normally distributed. Comparisons were made 
between 100 and 200 mg/kg dosages for either plasma or CSF (and 
between these two sources) for key pharmacokinetic parameters using 
student t-tests and between CSF and plasma using a paired t-test. 
Differences were considered statistically significant at p ≤ 0.05.

3. Results

3.1. Phase 1 (dose determination)

Plasma mebendazole concentrations were detected in all dosing 
groups, with peak plasma concentrations (Cmax [ng/ml] (median; 
range) at Tmax [hrs]) reported for each respective dose being 132 ng/
ml (65; 10, 235) at 3 h (50 mg/kg), 161 ng/ml (57; 6, 181) at 5 h 
(100 mg/kg), and 241 ng/ml (78; 9, 333) at 2 h (200 mg/kg). These 
findings appeared to be  dose-dependent. Variability was marked 
among paired subjects for each dose, and concentrations dropped 
below the limits of detection by 24 h at all doses (Figure 1). Based on 
this data, phase 2 of the study was implemented at a single dose of 
either 100 mg/kg or 200 mg/kg to maximize plasma and 
CSF concentrations.

3.2. Phase 2 (pharmacokinetics)

The pharmacokinetics for each dose during Phase 2 are listed in 
Table 1. Drug concentration vs. time graphs for 100 vs. 200 mg/kg 
doses achieved in plasma (Figure 2) and CSF (Figure 3) are provided. 
Significant differences in plasma samples between the two doses were 
limited to Tmax (p = 0.01). Plasma Tmax was 7 +/− 2 vs. 15 +/− 4 
(with 100 vs. 200 mg/kg dose, respectively). For CSF, significant 
differences were limited to the area under the curve (AUC; p = 0.016). 
Relative bioavailability (%) of mebendazole in CSF compared to 
plasma was lower at 100 mg/kg (4 ± 3) compared to 200 mg/kg (10 ± 5), 
which was trending towards significance (p = 0.06). AUC revealed a 
difference in plasma and CSF concentrations however a moderate 
amount of variability was noted based on SD information comparing 
plasma and CSF. The Cmax_D (Cmax adjusted per dose) was higher 
in plasma at the 200 mg/kg vs. 100 mg/kg dose (p = 0.04).

No profound adverse events were noted for these healthy dogs 
receiving mebendazole during this study. During phase 1, one dog 
developed stool with specks of frank blood and another had one 
episode of mucoid diarrhea, which resolved without any further 
interventions. Five of the six dogs were noted to pass green stool at 
least once in the course of the study post-drug administration, related 
to the green color of the gelatin capsules used for drug administration. 
During phase 2, mild gastrointestinal upset was noted in five total 
dogs characterized by diarrhea (n = 2, both in 200 mg/kg group), 
vomiting (n = 2, one in 100 mg/kg group and one in 200 mg/kg group), 
with an additional dog from the 100 mg/kg group having both 
vomiting and diarrhea); all resolving without further treatment. For 
those that experienced vomiting, one vomited at the time of induction 
(~20 min) post-administration however no traces of the medication 
were grossly observed in the vomitus. The other episodes were several 
hours post-administration (7 h vs. 12 h+). The episodes of diarrhea 
occurred at 8-, 19- and 36-h post-administration, respectively. In 
phase 2, six out of nine dogs developed at least one episode of green 
stool during the blood collection period.

FIGURE 1

Phase 1 plasma mebendazole concentrations following a single 
50  mg/kg, 100  mg/kg and 200  mg/kg oral dose, respectively. Peak 
plasma concentrations were at variable time points between doses.
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4. Discussion

This study demonstrates a dose concentration relationship for 
mebendazole after oral administration in healthy dogs and that the in 
vitro IC50 (0.03–0.08 μM, i.e., 10–20 ng/ml) for gliomas (12) can 
be reached in CSF at 100 mg/kg (n = 1 out of 4 in this study), although 
200 mg/kg may allow for more consistent (i.e., ≥10 ng/ml) therapeutic 
benefit. A dose-dependent change in area under the curve (relative 
bioavailability) could not be demonstrated for either plasma or CSF 
because the dogs only received one dose of the drug (both doses must 
be  given to determine relative bioavailability for each dog); 
numerically however, based on comparison of mean values, 
mebendazole AUC was higher in plasma and especially CSF when 
dogs were dosed at 200 mg/kg vs. 100 mg/kg. There was pronounced 
individual variability preventing the ability to generate a dose 
dependent curve given the small sample population.

The second peak demonstrated in our plasma concentration vs. 
time curves (Figure  2) after oral administration may represent 
individual variations of metabolism or likely a second pass metabolic 
process (i.e., enterohepatic circulation). Additional time points to 
evaluate for further elimination may be of benefit. It is also unclear 
how the effects of anesthesia on gastrointestinal motility or food could 
play a role in the total absorption and/or clearance of this drug in our 
study. Unpublished data from a previous study using fenbendazole in 
our lab may suggest better absorption with food. All dogs were 
withheld a full meal for the first 6 h during the sample collection of the 
first phase of the study and until after a minimum of 12 h for the 
second phase of the study trying to remove the effects of food on drug 
metabolism. Furthermore, a total of 5 dogs experienced 
gastrointestinal upset (n = 2 vomiting, n = 2 diarrhea, n = 1 both); 
however, these dogs had the highest or next to highest area under the 
curve for their dosing groups, suggesting this did not negatively 
influence the absorption of this drug. A limitation of this study is the 
lack of intravenous (IV) administration of this drug, which precluded 
determining intravenous-dependent parameters including, volume of 
distribution and clearance, as well as confirming that the terminal 
component of the plasma drug concentration vs. time curve reflected 
elimination (rather than absorption as occurs with a “flip-flop” 
model). There may be benefit to increase the frequency of dosing to 
provide a further steady state of mebendazole concentration in plasma 
and CSF, and would require further investigation to better understand 
the effect of food on absorption of this particular benzimidazole.

Another limitation to this study could be related to CSF collection 
and analysis. For this study, CSF samples were not analyzed for protein 
or cell counts (i.e., red blood cells or white blood cells) as the focus 
was on drug concentration. As such, some gross blood contamination 
was observed during the CSF collection period. To attempt to limit the 
effects of this, the sample was allowed to flow until grossly clear 
however it is unclear if this could impact achieved CSF concentrations 
nor if this could impact future samples. This occurred in a total of 5 
dogs (n = 1 from the 100 mg/kg group at the 1-h time point and n = 4 
from the 200 mg/kg group). For the dogs in the 200 mg/kg group, 
blood contamination occurred at the 2-h and 3-h time point in one 
dog, at the 3-h and 12-h point in one dog, at 12 h in one dog, and at 
sample points 3-, 6-, 12-, and 24- h in one dog. Due to the variability 
observed in the CSF concentrations in relation to the relative 
bioavailability of these samples, it does not appear obvious that blood 
contamination significantly contributed to these values.T
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From this study, the question remains if an in vitro IC50 will 
correlate with in vivo activity and if brain tissue concentrations will 
mirror the CSF concentrations as well to ultimately target the 
tumor cells. Although these two doses were able to achieve 
detectable CSF concentrations, optimal target concentrations in the 
CSF for treatment of canine gliomas remains to be determined and 
this does not support sustained CSF concentrations nor the ability 
to penetrate brain tissue rather than CSF. Determining whether or 
not we could achieve therapeutic concentrations of mebendazole 
within the plasma and CSF in healthy canines was the first step 
towards further investigating the use of this drug as a novel 
treatment for gliomas. Ideally, a follow up study to determine if 
consistent dosing of 200 mg/kg could consistently achieve CSF 
concentrations considered therapeutic in dogs with gliomas. 
However, given the limitation of patient access and ethical concerns 
regarding a pharmacokinetic study in client-owned dogs with a 
likely fatal CNS neoplasm, the data here may be  sufficient to 
support a phase II efficacy study in afflicted dogs. Ultimately, the 
information from this study would be utilized to determine the 
efficacy of mebendazole as an adjunctive therapy for canine gliomas 
to prolong survival time in canines with this fatal disease.
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