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Pseudorabies virus (PRV) is an important swine virus that has a significant 
impact on the global swine industry. PRV is a member of the herpesvirus family, 
specifically the alphaherpesvirus subfamily, and has been extensively utilized 
as a prototype herpesvirus. Notably, recent studies have reported that PRV 
sporadically spills over into humans. The PRV genome is approximately 150 kb 
in size and is difficult to manipulate at the genomic level. The development of 
clustered regularly interspaced short palindromic repeat-associated protein 
(CRISPR/Cas9) technology has revolutionized PRV genome editing. CRISPR/Cas9 
has been widely used in the construction of reporter viruses, knock-out/knock-in 
of genes of interest, single virus tracking and antiviral strategies. Most importantly, 
for vaccine development, virulence gene knockout PRV vaccine candidates can 
be obtained within 2 weeks using CRISPR/Cas9. In this mini-review, we provide a 
concise overview of the application of CRISPR/Cas9 in PRV research and mainly 
share our experience with methods for efficiently editing the PRV genome. 
Through this review, we hope to give researchers better insight into the genome 
editing of pseudorabies virus.
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Introduction

The swine industry suffers significant financial losses worldwide due to the presence of 
pseudorabies virus (PRV), which is a crucial pathogen for pigs (1, 2). PRV is a highly contagious 
virus that affects the nervous system of pigs, leading to neurological symptoms, such as paralysis 
and death (1, 2). The virus is highly contagious and can spread rapidly among pigs through 
direct contact or through contact with contaminated objects. Moreover, there has been a 
concerning trend regarding the increased ability of PRV to transmit across different species, as 
evidenced by outbreaks of PRV variants. This poses a significant risk to humans, a fact that has 
been well documented in several recent reviews (3–5). PRV belongs to the alphaherpesvirus 
group, which is closely related to herpes simplex virus-1 (HSV-1) and varicella-zoster virus 
(VZV). These viruses are known for their neurotropism and ability to establish lifelong latency 
in their natural hosts (6, 7). Consequently, PRV is frequently utilized as a model to understand 
the molecular details of alphaherpesviruses and examine the functions of the nervous system in 
mammals (8, 9).
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Due to its large genome, which contains more than 70 genes with 
varying functions, the genomic manipulation of PRV was a major 
challenge in herpesvirus research prior to the emergence of CRISPR 
technology (10). In early studies, the genome of herpesviruses was 
manipulated by subjecting the infected cells to a range of physical, 
chemical, or biological conditions (11, 12), but the resulting mutation 
is not site-specific and is often randomly scattered throughout the 
whole genome. Furthermore, the mutation frequency is extremely low, 
and acquiring interesting mutations is always time-consuming and 
labor-intensive (11, 12). When the recombination strategy was 
introduced to manipulate the herpesvirus genome, precise 
manipulation of the desired specific gene became possible. By 
transfecting an interesting DNA fragment with homologous arms into 
infected cells or cotransfecting it with viral genomic DNA, the 
homologous DNA fragment recombined with the target herpesvirus 
genome. However, the efficiency of homologous recombination using 
these methods was extremely low (ranging from 1 in 106 to 1 in 107). 
The development of bacterial artificial chromosome (BAC) technology 
has revolutionized the genetics of herpesviruses (11–15). Advances in 
BAC-based genome editing have been instrumental in helping us gain 
insight into herpesvirus gene function and vaccine development, thus 
furthering our knowledge of herpesviruses and paving the way for 
more effective vaccines and treatments (this is well reviewed by Xia 
and coworkers (16)). Despite its advantages, BAC-based mutagenesis 
has some drawbacks. For instance, it can only be  used after an 
infectious BAC has been created, and in some cases, the BAC vector 
must be removed from herpesviruses (10, 17, 18).

The emergence of genome editing technologies, specifically 
programmable nucleases such as zinc finger nucleases (ZFNs), 
transcription activator-like effector nucleases (TALENs), and the 
CRISPR/Cas9 RNA-guided endonuclease system, has opened up a 
wide range of possibilities for their use in various life science 
applications (19–21). In regard to editing at specific sites, ZFNs and 
TALENs use DNA-binding proteins and the FokI nuclease domain, 
whereas CRISPR/Cas9 utilizes guide RNAs and the Cas9 protein. The 
fundamental concept behind these technologies is to cut DNA in a 
site-specific manner, which generates double-strand breaks (DSBs) at 
targeted sites. DSBs then stimulate the activation of endogenous DNA 
repair systems, which can lead to targeted genome modification 
through either homology-directed repair (HDR) or error-prone 
nonhomologous end joining (NHEJ). In this mini-review, we focus on 
the application of CRISPR/Cas9 technology in studies of PRV and 
mainly concentrate on strategies to efficiently edit the PRV genome.

CRISPR/Cas9 technology and its 
application in PRV

As a versatile genetic modification tool, CRISPR/Cas9 has 
emerged as a valuable tool for genetic engineering in a variety of 
organisms (22, 23). CRISPR–Cas systems have been discovered in 
numerous bacterial and archaeal organisms, which use these systems 
as a means of protecting themselves against mobile genetic elements, 
which utilize the RNA-guided Cas9 nuclease to selectively target and 
cleave specific foreign DNA sequences (24, 25). The CRISPR–Cas9 
system offers a simple and efficient method for manipulating cells in 
diverse organisms, including those relevant to medicine, agriculture, 
and scientific investigation. This approach is applicable to virtually all 

cell types, which makes it a versatile tool for researchers in various 
fields (24, 25). The mechanism of DNA editing by CRISPR/Cas9 
involves creating DSBs in the targeted DNA, which then triggers the 
activation of cellular repair pathways such as NHEJ and 
HDR. Knock-out and knock-in of genes of interest can be achieved by 
utilizing both repair pathways. In comparison to BAC and homologous 
recombination (HR) methods, CRISPR/Cas9 presents more 
advantages for the editing of DNA viruses because it only requires the 
design of effective single-guide RNA (sgRNA) (26).

Large-genome DNA viruses, including adenovirus (27), herpes 
simplex virus 1 (17, 27–29), and Epstein–Barr virus (30–32), have 
been manipulated using the CRISPR/Cas9 system. In fact, CRISPR/
Cas9 for PRV editing was first conducted by Xu et  al. (33). The 
application of CRISPR/Cas9  in PRV includes the construction of 
reporter viruses (34–38), vaccine development (39–47), the 
exploration of virulence genes (48, 49), the studying of viral protein 
function (49–56), single virus tracking (57), and the development of 
CRISPR/Cas9-based antiviral strategies (58, 59).

Improving PRV editing efficacy by 
CRISPR/Cas9

sgRNA design

In CRISPR/Cas9 editing, effective sgRNA is critical for successful 
editing. Many software and online tools can be utilized to predict the 
effectiveness and suitability of sgRNA, but the predictive power of 
these computing tools is not sufficient. Therefore, it is essential to 
conduct reliable systematic testing of the cleavage efficiency of sgRNA 
and Cas9. There are several methods to measure the efficacy of 
sgRNA. In our previous studies, we used the px330 plasmid, which 
harbors both sgRNA and the Cas9 expression cassette simultaneously. 
First, an effective sgRNA could cleave viral DNA efficiently and then 
inhibit the replication of PRV. We first transfected designed potential 
sgRNAs into cells and then infected the transfected cells 24 h later at 
a lower multiplicity of infection (MOI). The viral titer was then 
quantified to identify the most effective sgRNA. The lower MOI 
(always lower than 0.01) is important because the inhibitory effect of 
sgRNA may be limited due to the efficacy of sgRNA-mediated cleavage 
or transfection. When a high MOI is used, it is difficult to differentiate 
between effective and noneffective sgRNAs. Second, a reporter virus 
with either EGFP or firefly luciferase is used to evaluate the 
effectiveness of the sgRNA. This approach is straightforward and 
suitable for large-scale, high-throughput screening, and it is also cost-
effective and can be  implemented with minimal resources. Third, 
we can cotransfect tested sgRNA with the plasmid that eukaryotically 
expresses the target gene into HEK293T cells and then detect target 
gene expression by Western blot or immunofluorescence assays to 
select an effective sgRNA.

Transfection-infection-based editing

Genome editing of pseudorabies virus is mainly achieved by 
two methods: transfection-infection-based editing and viral 
genomic DNA cotransfection-based editing (Figure  1). For 
transfection-infection-based editing, transfected cell lines should 
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have high transfection efficacy, which could increase the 
opportunity for the coexistence of sgRNA and virus and maximize 
the probability of virus editing. Transfection of plasmids with 
sgRNA and Cas9 into HEK293T cells is better than transfection into 
Vero cells due to the high transfection efficacy of HEK293T cells. 
Twenty-four hours post transfection, a lower MOI (always lower 
than 0.01) is used to infect the transfected cells. According to our 
experience, a lower MOI is critical for observing the PRV-induced 
cytopathic effect (CPE), and a lower dose of PRV infection requires 
multiple cycles of replication. We speculated that this increases the 
likelihood of the coexistence of PRV and the CRISPR system during 
multiple rounds of replication. However, infection at a lower MOI 
is only suitable for PRV knockout mediated by the NHEJ repair 
pathway. For PRV recombination-mediated HDR, infection at a 
higher MOI increases the recombination rate (26). We hypothesize 
that this is due to a higher chance of coexistence between the viral 
DNA and donor plasmid when a higher MOI is used, which in turn 
increases the homologous recombination (HR) rate. Additionally, 
high-MOI infection always produces fewer viruses, which also 
increases the successful HR rate. We attribute this to the strong CPE 
of PRV, which kills infected cells rapidly, preventing them from 
completing the full viral life cycle and therefore producing fewer 
viruses. Notably, for infection at a higher MOI, the maximum 
recombination efficiency was only approximately 0.09% in our 
previous work (60). This finding indicated that transfection-
infection-based editing may not be suitable for HR. The next step 
is plaque purification, which is also very important. Generally, wild-
type PRV replicates faster than knock-out viruses and generates 
large plaques, whereas the knock-out virus produces smaller 
plaques. Plaque purification in 10-cm2 dishes may be better than 
that in 6-well plates because large dishes allow easy separation of 
plaques from each other. If plaques are easily separated, only one 
round of purification is enough. When a single plaque is purified 

and amplified in a 12-well plate, we only need to identify the virus 
by Western blotting at the protein level or DNA sequencing at the 
DNA level.

Genomic DNA cotransfection-based 
editing

Another method for PRV editing is genomic DNA cotransfection-
based editing. This method requires the extraction of high-quality and 
intact viral genomes followed by cotransfection with specific sgRNAs 
(Figure 1). For gene knock-out or knock-in, the cotransfection-based 
method significantly increases the editing efficacy. In our previous 
studies, by utilizing a transfection-infection-based method, 
we knocked out several PRV genes, and a single sgRNA enabled us to 
achieve a knock-out rate ranging from 12.5 to 42.9% (39, 48). 
However, when we  used a cotransfection-based method, the 
knock-out rate of a single sgRNA reached 90.91% (26). A 
cotransfection assay can be used to introduce both the CRISPR system 
and the viral genome into the same cells, leading to improved PRV 
editing. However, when two sgRNAs were used, the ratio of 
nonessential gene knock-out reached 100%. We  have proposed a 
model to explain why two sgRNAs could produce 100% knockout in 
our previous study (26). Generally, two sgRNAs could break DNA into 
three fragments, and only when all three or two fragments, excluding 
the middle nonessential gene fragment, were ligated together could 
the virus survive; any other connections of fragments did not lead to 
a reproductive virus. The chances of the fragments connecting in the 
same way as the original virus were quite low; thus, we obtained 100% 
knock-out (Figure 2). Furthermore, two sgRNAs also significantly 
promoted HDR-mediated knock-in efficacy. For a single sgRNA, the 
highest knock-in efficiency reached 40%, whereas two sgRNAs yielded 
the highest knock-in efficiency of up to 86% (26). The use of two 

FIGURE 1

Two methods for PRV editing using CRISPR/Cas9 technology. One method is the transfection-infection-based method, which requires transfection of 
the CRISPR/Cas9 plasmid followed by infection of cells with PRV. Another method is the cotransfection method, which requires extraction of the high-
quality intact PRV genome and cotransfection of PRV genomic DNA with the CRISPR/Cas9 plasmid. In both methods, viral DNA is cleaved by CRISPR/
Cas9, and the cleaved DNA is repaired by nonhomologous end joining (NHEJ) or homology-directed repair (HDR).
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sgRNAs resulted in a high knock-in efficiency, which is attributed to 
a reduction in background viruses. Furthermore, the replication 
kinetics of background viruses directly impacted the HR efficacy. A 
faster replication of background viruses is associated with a lower 
HR efficacy.

Conclusion and future outlook

This mini-review describes how PRV may be edited efficiently by 
CRISPR/Cas9 and provides some insights for PRV researchers. In 
summary, we recommend using a genomic DNA cotransfection-based 
method and optimizing the use of two sgRNAs for knock out or knock 
in. However, CRISPR/Cas9 also has limitations, such as difficulty in 
single-base editing, whereas the BAC system can efficiently achieve 
single-base editing (61, 62). In future PRV research, a variety of 
genome editing tools should be  employed; for example, the 
combination of single-base editing and CRISPR mediates 
knockdown (63).
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FIGURE 2

Mechanism by which two sgRNAs generate 100% knockout PRV. Two sgRNAs could break DNA into three fragments, and only when all three or two 
fragments, excluding the middle nonessential gene fragment, are ligated together can the virus survive; no other connection of fragments lead to a 
reproductive virus.
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