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Introduction: Super-enhancers (SEs) are clusters of enhancers that act 
synergistically to drive the high-level expression of genes involved in cell identity 
and function. Although SEs have been extensively investigated in humans and 
mice, they have not been well characterized in pigs.

Methods: Here, we identified 42,380 SEs in 14 pig tissues using chromatin 
immunoprecipitation sequencing, and statistics of its overall situation, studied 
the composition and characteristics of SE, and explored the influence of SEs 
characteristics on gene expression.

Results: We observed that approximately 40% of normal enhancers (NEs) form 
SEs. Compared to NEs, we found that SEs were more likely to be enriched with 
an activated enhancer and show activated functions. Interestingly, SEs showed 
X chromosome depletion and short interspersed nuclear element enrichment, 
implying that SEs play an important role in sex traits and repeat evolution. 
Additionally, SE-associated genes exhibited higher expression levels and stronger 
conservation than NE-associated genes. However, genes with the largest SEs had 
higher expression levels than those with the smallest SEs, indicating that SE size 
may influence gene expression. Moreover, we  observed a negative correlation 
between SE gene distance and gene expression, indicating that the proximity of 
SEs can affect gene activity. Gene ontology enrichment and motif analysis revealed 
that SEs have strong tissue-specific activity. For example, the CORO2B gene with 
a brain-specific SE shows strong brain-specific expression, and the phenylalanine 
hydroxylase gene with liver-specific SEs shows strong liver-specific expression.

Discussion: In this study, we  illustrated a body map of SEs and explored their 
functions in pigs, providing information on the composition and tissue-specific 
patterns of SEs. This study can serve as a valuable resource of gene regulatory 
and comparative analyses to the scientific community and provides a theoretical 
reference for genetic control mechanisms of important traits in pigs.
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1. Introduction

Pigs are important livestock animals, and pork is the most widely consumed meat in Asia 
and Europe (1). Pigs also are valuable biomedical models for studying human diseases, pathogen 
responses, xenotransplantation, and drug development (2–4). To understand the genetic 
underpinnings of the complex characteristics and disease phenotypes in pigs and their potential 
applications in medical research, it is crucial to systematically annotate and functionally 
elucidate the regulatory elements in non-coding genomes (5).

Enhancers are distal regulatory elements that control cell type-specific gene expression (6, 7). 
Enhancers contain a cluster of binding sites for sequence-specific transcription factors (TFs) and 
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co-activators, which can be several hundreds to thousands of base pairs 
(bp) in length (8, 9). Enhancers play a key role in controlling 
transcriptional programs that regulate development, cell identity, and 
evolutionary processes by increasing the transcription of specific target 
genes (10). Enhancers are often flanked by histone modifications, such 
as histone H3 lysine 4 monomethylation (H3K4me1) and H3K27 
acetylation (H3K27ac) (11). Therefore, histone modifications serve as 
beacons for the detection of potential enhancers. High ratios of 
H3K4me1 to histone H3 lysine 4 trimethylation have been used to 
predict probable enhancers (12). H3K27ac is a well-characterized 
histone marker associated with enhanced activity (13, 14). Supported 
by advances in next-generation sequencing technologies, chromatin 
immunoprecipitation followed by sequencing (ChIP-seq) has revealed 
approximately one million putative enhancers in the human genome 
across tissues (15). These findings have sparked considerable interest 
in the functional and characteristic analyses of these putative 
enhancers. The different features and functions of enhancers in mice 
and humans have been thoroughly studied (16–19). Genome-wide 
association studies have revealed that the majority of disease-associated 
variations in non-coding regulatory DNA, particularly in regions 
enriched in enhancers (20–22). Various human diseases, including 
polydactyly and cancer, are affected by enhancer failure caused by 
genetic, structural, and epigenetic processes (19, 23, 24).

Super-enhancers (SEs) are a distinct category of enhancers (25) that 
have a high TF density and large size compared to typical enhancers (26, 
27). SEs are large enhancer clusters filled with key TFs, cofactors, 
histone modification markers, and chromatin modification molecules 
(28, 29). SEs have a stronger ability to drive target gene transcription 
than typical enhancers (29) and play an important role in the 
maintenance of cellular properties, determination of cell fate, and 
disease occurrence (25, 30, 31). For instance, SEs maintain stem cell 
pluripotency in mammals, and their disruption causes a loss of stem cell 
pluripotency (32, 33). Additionally, functional analysis of the Vsx2 SE 
has revealed the distinctive roles of the Vsx2 enhancer components in 
promoting proliferation and cell fate specification during retinal 
development (34). Recent studies have revealed that SEs are frequently 
responsible for the continuous and robust transcription of oncogenes in 
cancer cells, such as those that cause melanoma, esophageal cancer, 
gastric cancer, hepatocellular carcinoma, and colorectal cancer (35–37). 
In addition to cancer, several studies have demonstrated that SEs play 
crucial roles in various disorders (38, 39). For instance, single-nucleotide 
polymorphisms (SNPs) linked to systemic lupus erythematosus are 
enriched in SEs found in B cells (30). Moreover, SEs are linked to 
hereditary risk factors for complicated diseases such as type 2 diabetes 
and coronary artery disease (40, 41). SEs have been widely identified 
and characterized in human and mouse genomes (42).

The genetic background of pig traits may be useful for annotating 
human enhancers and diseases (43). The SEs of some tissues (e.g., 
liver, brain, muscle, and adipose) have been reported in previous 
studies (44–47). To advance our understanding of SEs and their 
possible functions in pigs, we systematically identified SEs in 14 pig 
tissues by integrating ChIP-seq data labeled with H3K27ac signals and 
five types of enhancer annotations (48). Additionally, we analyzed the 
features, gene expression, gene ontology (GO) enrichment, and tissue 
specificity of SEs. Our study provides a map of SEs in pigs and reveals 
their potential functions in the regulation of tissue-specific gene 
expression. These results provide support for the interpretation of the 
biological functions of specific tissues and the analysis of genetic 
control mechanisms in pigs.

2. Materials and methods

2.1. Public data resources

H3K27ac and H3K4me3 ChIP-seq raw data were downloaded 
from a paper by Pan et al. (49) for fourteen pig tissues, including 
adipose, cecum, cerebellum, colon, cortex, duodenum, hypothalamus, 
ileum, Jejunum, liver, lung, muscle, spleen, and stomach. The data 
processing method was the same as the study in Pan et al. (49). All 
work presented in this study was based on susScr11 reference genome.

2.2. Identification of super-enhancers

Enhancers were classified into five categories: strong active 
enhancers (EnhA), methylation active enhancers with ATAC 
(EnhAMe), weak active enhancers (EnhAWk), activate enhancer on 
heterochromatic (EnhAHet), and poised enhancers (EnhPois) 
(Supplementary Figure S1) (50). In each tissue, the five kinds of 
enhancers which contain all the enhancers have been combined in a 
gff file. Then SEs were identified using ROSE (v1.3.1) (48) with default 
parameters based on the H3K27ac signals of each sample in each 
tissue. Next, SEs were overlapped among samples within the same 
tissue. A total of 8,173 non-redundant of SEs were detected after 
combining and merging (at least overlap of 10 K bp) them across all 
tissues. Tissue-specific SEs was then detected using the same approach 
as above for tissue-specific regulatory elements. The clustering of SEs 
was conducted using k-means (n = 10) in ComplexHeatmap 
(v.2.9.3) (51).

2.3. Enrichment of states in pig 
super-enhancers

The enrichment of states in pig SEs was assessed by (C/A)/(B/D) 
(52), where A was the size of segments in a state, B was the size of 
segments in a genomic feature, C is the size of segments in the 
overlapped region of the state and the genomic feature, D was the 
size of segments in the entire genome. The overlapped region used 
intersect function in BEDTools (v2.26.0) (53). The genomic features 
also included X chromosome and repeat sequences. The repeat 
sequences were identified using RepeatMasker (v.4.0.8) (54). And 
we chose this sequence content originates from retrotransposition 
of SINE (short interspersed nuclear element), LINE (long 
interspersed nuclear element) and LTR (long terminal repeat) 
transposable element superfamilies, as well as direct transposition 
of genomic DNA (55, 56).

 
fold enrichment C A

B D= ( )
( )

/
/

2.4. Factors affecting gene expression

The SEs expression, tau and conservation were compared 
difference between genes with and without super-enhancers. The gene 
conservation score was sequence identity (%) from pig gene to the 
orthologous huma gene. The non-redundant 8,173 SEs were arranged 
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from small to large in size and evenly divided into five groups 
including G1, G2, G3, G4, and G5 (Supplementary Figure S2A), then 
used intersect function in BEDTools (v2.26.0) (53) with parameter of 
-w to get the gene corresponding and expression levels of SEs. The 
distance between the SEs and the transcription start site (TSS) were 
obtained using BEDTools closest (53) with parameter of -D 
(Supplementary Figure S2B). Next, they were sorted from small to 
large and divided into five groups: two groups of downstream T1 
(n = 4,225) and T2 (n = 1,982), one group of T3 (n = 1,000) with the 
distance of 0, and two groups of upstream T4 (n = 2,688) and T5 
(n = 4,244), and obtained the gene corresponding and expression 
levels. And the T3 was used as the reference group to compare the 
effect of distance on gene expression. The gene expression was 
expressed as the mean Transcript per million (TPM) of the gene in 
14 tissues.

2.5. GO enrichment and motif analysis

The Gene Ontology (GO) enrichment analysis of genes with SEs 
was performed using WebGestalt.1 The motif analysis and annotation 
used Homer’s findMotifsGenome (v.4.11) (30) with FDR < 0.05.

3. Results

3.1. Identification and summary of pig SEs

SEs are generally defined as a class of regulatory regions with an 
unusually strong enrichment of transcription coactivator binding that 
play a biological role in controlling gene expression programs in 
tissues (transcriptional regulation, including health and disease) (48, 
57). In this study, we  investigated the features of SEs in 14 tissue 
samples (Figure 1A). We identified an average of 3,027 SEs across 
tissues, ranging from 2,193 in the muscle to 3,712 in the cecum, by 
integrating H3K27ac signals and enhancers (all five types of 
enhancers) (Figure 1B). The SEs had an average size of 56,862 bp, 
covering 42% of all enhancers and 6.85% of the pig genome. Moreover, 
each SE had a median of 43 enhancers and an average size of 
approximately 682 bp, with an average gap of 625 bp between adjacent 
enhancers (Figure 1C).

3.2. Characteristics of SEs in pigs

To further explore the features of SEs, we analyzed composition 
of the identified SEs. The SEs were large domains containing clusters 
of constituent enhancers (e.g., EnhA, EnhAMe, EnhAWk, EnhAHet, 
and EnhPois). Concerning the relationship between SEs and normal 
enhancers (NEs), we observed that approximately 40% of normal 
enhancers (NEs) formed SEs (Figure 2A). It was noted that among the 
five types of enhancers, SEs had many EnhA and EnhAHet, and fewer 
EnhPoIs than the other four types of enhancers (Figure  2B). 
Subsequently, we investigated the chromosomal distribution of SEs by 

1 http://www.webgestalt.org/

calculating and comparing the fold enrichment of SEs on the 
autosomes and X chromosomes. The results showed that the fold 
enrichment of SEs on autosomes was approximately 1.06, whereas that 
on the X chromosome was only 0.2 (Figure 2C). The findings the 
extensive depletion of SEs in the X chromosome. Furthermore, 
we  examined the association between SEs and repeat sequences. 
Repeat sequences comprise a high percentage of the genomes and are 
involved in tissue-specific transcriptional regulation (58, 59). Among 
the four major classes of transposable elements, which include short 
interspersed nuclear elements (SINEs), long interspersed nuclear 
elements (LINEs), long terminal repeats (LTRs), and direct 
transposition of genomic DNA, we observed that SINEs, which had 
higher divergence values, had the highest fold enrichment of SEs 
compared to the other classes (Figure 2D). Furthermore, SINE/MIR 
sequences showed the highest fold enrichment of SEs among the 
repeat sequences. We  speculated that there were many repeat 
sequences of SINE that were older than other types in the SEs of 
pigs (60).

3.3. Influence of SEs characteristics on 
gene expression

To investigate the effects of SE characteristics on gene expression, 
we compared the expression of SEs and NEs, SEs of different lengths, 
and SEs at different distances to TSS. Genes regulated by SEs showed 
significantly higher expression, were less tissue-specific (tau), and 
were more conserved than those regulated by NEs (Figure 3A and 
Supplementary Figure S3). This finding was in agreement with 
previous findings in humans and chickens (50, 61). The estimation of 
SE size revealed that gene expression regulated by the longest SE group 
was significantly higher than the shortest group (Figure  3B). 
Furthermore, a negative correlation was evident between the 
proximity of SEs to their TSS and the expression levels of the target 
genes (Figure 3C). Gene expression in the groups with longer (i.e., T1, 
T5) distances to SEs was significantly lower than that in the groups 
with shorter (i.e., T2, T4) distances. These results suggest that SEs 
features influence gene expression.

3.4. Tissue-specific pattern of SEs

To better understand the functions of SEs, the tissue-specific 
pattern of SEs was determined using GO and motif analyses. First, 
the SEs from the 14 tissues were merged to obtain 8,173 
non-redundant SEs. Of these SEs, 27.9% (n = 2,281) were identified 
in one tissue and only 2.46% (n = 201) were identified in all tissues 
(Supplementary Figure S4). These SEs showed strong tissue-specific 
activity. Next, all SEs were clustered based on their activities in all 
14 tissues. We found the phenomenon that some SEs were variable 
among tissues and revealed distinct tissue-sharing patterns for each 
SE cluster (Figure 4A). GO enrichment analysis of the putative target 
genes of these SE clusters revealed a distinct biological function of 
each cluster (Figure 4B). Genes targeted by SEs in C3 (Cluster 3), 
which are broadly active in most tissues, are involved in essential 
biological functions, such as homeostatic processes. SEs in C8 are 
specifically active in the cerebellum and their target genes are 

https://doi.org/10.3389/fvets.2023.1239965
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
http://www.webgestalt.org/


Yang et al. 10.3389/fvets.2023.1239965

Frontiers in Veterinary Science 04 frontiersin.org

enriched in the regulation of locomotion and osmotic stress 
processes. SEs in C4, specific to the cerebellum, cortex, and 
hypothalamus, are involved in pallium development and regulation 
of embryonic development processes. Moreover, SEs in C1 are 
specifically active in intestinal tissues and correspond to 
phospholipid transport and glutamine family amino acid catabolic 
processes. SE-associated genes in C6 are specifically active in the 
lung and spleen and are involved in processes that include cellular 
responses to acid chemicals and negative regulation of blood 
circulation The SEs in C2 included those that were active in the lungs 
and spleen, in addition to those active in the intestinal tissues. The 
target genes of the C2 SEs are involved in lung morphogenesis, 
catechol-containing compound biosynthetic processes, and 
regulation of glucose transmembrane transport. The target genes of 
SEs in C5 are specifically active in the liver and were related to 
immune function (e.g., cellular response to cytokine stimulus). 
Similarly, SEs in C10 are specifically active in the cecum and are 
related to immune functions that include the Toll-like receptor 4 

signaling pathway. SEs in C7 are specifically active in the muscle and 
are related to muscle activity. Finally, SEs in C9 are responsive to 
hormones and are specifically active in adipose tissue. Some known 
genes associated with SEs of each cluster are shown in Figure 4B.

Motif enrichment analysis was performed for each SE cluster to 
further confirm that these identified enhancers functioned as tissue-
specific elements (Figure 4C). The BRUNOL5 motif enriched in C4 is 
associated with multiple brain diseases in humans (62). The PABPC1 
motifs enriched in C5 playes a role in the liver (63). The LRF motif 
enriched in C2 contributes to gut and immune tissues (64). Smad4 
enriched in C9 is important in adipogenic differentiation and has been 
described in human adipose tissue-derived stem cells (65). The CHOP 
motif enriched in C6 is related to pulmonary fibrosis and immune 
function in mice (66). The PCBP2 motif enriched in C10 also plays a 
role in immune function (67). Furthermore, we observed increased 
expression of genes with tissue-specific SEs in the corresponding 
tissues. These results demonstrate the importance of SEs in tissue 
specificity and function in pigs.

FIGURE 1

The summary of super-enhancers in pig. (A) The overview of the current study design. (B) Super-enhancers (SEs) identified by ROSE based on H3K27ac 
signal in each tissue. Super-enhancers are colored based on tissue, and show exceptionally high signal. Tissue color is the same with (A). (C) The 
distribution of number, size, H3K27ac signal intensity and genome coverage of super-enhancers, and the number of enhancers, origin size of 
enhancers and gap between enhancers based on super-enhancers of 14 tissues.
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3.5. Tissue-specific SEs in brain and liver 
tissues

To further illustrate the situation of SEs, we selected the tissue-
specific SEs in the brain and liver. Coronin 2B (CORO2B), a gene with 
brain-specific SEs, displayed obvious elevated H3K4me1 and H3K27ac 
signaling and gene expression in brain tissue (Figure 5A). This gene 
plays a prominent role in maintaining correct distribution of the 
cytoskeleton and neuronal migration (68). Moreover, the 
phenylalanine hydroxylase gene (PAH) has been linked to liver-
specific SEs with strong liver-specific H3K4me1 and H3K27ac 
signaling (Figure 5B), showing liver-specific expression. The PAH 
gene is specifically expressed in the human liver and is associated with 
phenylketonuria (69, 70). Overall, these results suggest that tissue-
specific SEs play important roles in the regulation of tissue-
specific functions.

4. Discussion

SEs can be useful genetic areas for selection and breeding because 
selection concentrates on functional SEs (71). The pig genome 
sequence is publicly available, enabling the systematic discovery and 
characterization of SEs in this species. In the present study, we utilized 
ChIP-seq data labeled with H3K27ac signals and five types of 
enhancer annotations to identify 42,380 SEs in 14 pig tissues. 
We compared the features and functions of the SEs and NEs and 
revealed gene expression, composition, pathway enrichment, and 
tissue specificity of the SEs. Our findings will aid in the understanding 
of the regulatory environment of porcine SEs and their potential 
applications in genomic selection.

We explored the composition of SEs from various perspectives. 
Our results demonstrate that SEs are distinct from NEs in terms of the 
size and content of TFs and transcriptional activity. SEs were 

FIGURE 2

The composition of super-enhancers in pig. (A) The percent of enhancer in normal-enhancers and super-enhancers. (B) The percent of each of five 
enhancer types in super-enhancers and normal enhancers. (C) The fold enrichment of super-enhancers in autosomes and X chromosome. (D) The 
fold enrichment of super-enhancers in four repeat sequences types.
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significantly larger and more likely to be enriched with the activation 
enhancer. Previous studies have demonstrated that contacts between 
the enhancers that make up these super-regulatory elements are 
functionally influential (72), and that individual enhancer elements 

within the SEs have additive or synergistic relationships (72, 73). 
Further studies are needed to clarify the interactions of individual 
enhancer elements within SEs. Moreover, we observed that SEs were 
seriously depleted in the X chromosome, indicating that SEs were not 

FIGURE 3

The gene expression influenced by super-enhancers. (A) Genes with (11,514) and without (11,886) super-enhancers differed in the expression, tau, and 
conservation. The gene conservation score was sequence identity (%) from pig gene to orthologous human gene. (B) The effect of SE length on the 
gene expression, categorized into five groups (G1–G5) based on increasing SE size. (C) The expression of genes with different distances to SEs, 
classified into five groups (T1–T5) based on ascending distance values: two groups of downstream genes T1 (n  =  4,225) and T2 (n  =  1,982), one group 
of genes overlapping with SEs T3 (n  =  1,000), and two groups of upstream genes T4 (n  =  2,688) and T5 (n  =  4,244).

FIGURE 4

Tissue-specific pattern of super-enhancers. (A) Clustering of 8,173 non-redundant super-enhancers based on their activity in each tissue. (B) GO 
function and representative genes in each super-enhancers cluster. (C) Motifs enriched in each super-enhancers cluster.
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present on the X chromosome. This finding may be related to our data 
from male pigs (49). In the present study, the repeat sequences of the 
pig genome were mainly composed of SINEs and LINEs, followed by 
DNA retrotransposons and LTR transposons. This is consistent with 
earlier research that demonstrated a high percentage of LINE and 
SINE retrotransposons in repetitive sequences of mammalian 
genomes (74). The SINE/MIR sequences had the highest fold 
enrichment of SEs compared to the other repeats. This could 
be because SINE/MIR sequences displayed were derived from a family 
of ancient SINEs and are distributed among a wide range of species 
(60), indicating that the SEs of SINE/MIR may play important roles in 
species evolution.

Genes regulated by SEs were significantly more highly expressed, 
less tissue-specific, and more conserved than those regulated by NEs. 
These results are consistent with those of earlier studies in humans and 
chickens (50, 61). We investigated the effects of various SE features on 
gene expression. Our preliminary results indicated that SE length 
influences gene expression. According to an earlier study, the 
complexity of a regulatory task is correlated with an increase in 
enhancer length and number of TF-binding sites (75). SEs may have 
features similar to those of enhancers, which require further study. 
Additionally, we examined the relationship between the expression 
levels of the target genes and the distance between the SEs and the 
TSS. We observed that gene expression positively correlated with the 
proximity of SEs to TSS, indicating a proximity effect of SEs on gene 
regulation. Collectively, these results suggest that SE features can 
influence gene expression.

Clustering of all SEs based on their activities in all 14 tissues 
revealed that some SEs were variable among tissues and displayed 
distinct tissue-sharing patterns for each SE cluster. SEs are not fixed 
entities but are dynamic and context-dependent (76). For example, 
SEs are regulated genes that specify cell fate and identity by the 
sequential addition or removal of enhancers during differentiation 
(77). Therefore, the phenomenon reflects the complexity and diversity 
of gene regulation. GO enrichment analysis and motif analyses were 
performed to investigate the tissue specificity of SEs. Intestine-specific 
SEs were found to be involved in the circulatory system and nutrient 
absorption, matching the function and biology of the intestine. These 
SEs may play key roles in the growth and development of pigs. We also 
identified liver- and cecal-specific SEs that are associated with the 
regulation of immune function and the development and suppression 
of diseases such as diabetes and liver cancer (30). Pallium development 
is strongly correlated with the presence of brain-specific SEs. 
We  identified a brain-specific SE in the CORO2B gene, which is 
important in neuronal migration in mice, and shows strong brain-
specific expression (68, 78). Neuronal migration during cortical 
development is essential for maintaining normal brain function and 
structure. Impairments in neuronal migration can lead to various 
neurodevelopmental and neuropsychiatric disorders in humans, such 
as Timothy syndrome, schizophrenia, and autism spectrum disorders 
(79–81). Moreover, we found that PAH genes with liver-specific SEs 
exhibited strong liver-specific expression. The PAH gene codes for the 
enzyme phenylalanine hydroxylase (70). Pathogenic variants of the 
PAH gene can result in phenylketonuria, which causes liver 

FIGURE 5

Super-enhancers in brain and liver tissues. (A) A brain-specific super-enhancer present at the CORO2B locus (chr1:166,239,933-167,241,533). (B) A 
liver-specific super-enhancer present at the PAH locus (chr5:81,236,096-81,453,790). Following sections are Hi-C, chromatin state, H3K4me1, 
H3K27ac, and RNA-seq. Vertical scale of UCSC tracks shows normalized signal from 0 to 100 for RNA-seq, 0 to 150 for H3K27ac, and 0 to 50 for 
H3K4me1. The red boxed areas are the range of SEs.
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dysfunction (82). The results reveal the tissue specificity of SEs and 
provide insights into the regulatory mechanisms of disease in pigs.

In conclusion, our analysis of SEs in the pig genome provides a 
body map of SEs and clarifies their features and functions. The 
findings will support the identification of the biological functions of 
particular tissues and provide a valuable resource for transcriptional 
regulation studies in pigs.
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