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Hypoglycemia is a condition associated with neonatal diarrhea in calves, leading 
to increased mortality and neurological clinical signs. The aim of the present 
study was to determine the development of brain damage in hypoglycemic calves 
with neonatal diarrhea and the diagnostic and prognostic significance of these 
biomarkers. Ten healthy and 50 hypoglycemic calves with diarrhea were included 
in the study. Clinical examination, blood gases and complete blood count were 
performed at admission. Blood serum calcium-binding protein B (S100B), neuron-
specific enolase (NSE), glial fibrillary acidic protein (GFAP), ubiquitin carboxyl-
terminal hydrolysis isoenzyme-1 (UCHL-1), activitin A (ACT), adrenomodullin (AM) 
concentrations, and creatine kinase-BB (CK-BB) enzyme activity were measured 
using commercial bovine-specific ELISA kits to assess brain damage. Of the 
hypoglycemic calves enrolled in the study, 13 (26%) survived and 37 (74%) died. 
In addition, 32 (64%) of the calves had severe acidosis and 24 (48%) had sepsis. 
S100B, GFAP, UCHL-1, CK-BB (p  <  0.001) and NSE (p  <  0.05) concentrations were 
significantly higher in hypoglycemic calves compared to healthy calves, while ACT 
concentrations were lower. Blood glucose concentration was negatively correlated 
with serum S100B, GFAP, UCHL-1, and CK-BB enzyme activity and positively 
correlated with ACT in hypoglycemic calves (p  <  0.01). Brain injury biomarkers 
were not predictive of mortality (p  >  0.05). Morever, severe hypoglycemia, severe 
acidosis and sepsis variables were not found to have sufficient capacity to predict 
mortality when considered alone or together (p  >  0.05). In conclusion, brain 
damage may develop as a consequence of hypoglycemia in calves. S100B, NSE, 
GFAP, UCHL-1, ACT, and CK-BB concentrations can be used to diagnose brain 
damage in hypoglycemic calves. However, the variables of severe hypoglycemia, 
severe acidosis, and sepsis together with the biomarkers of brain injury have a 
limited value in predicting the prognosis of neonatal calves with diarrhea.
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1. Introduction

Neonatal diarrhea remains an important herd health problem in suckling calves, which can 
lead to mortality and economic losses (1). Hypoglycemia, azotemia, hyponatremia, 
hyperkalemia, septicemia, hyperlactatemia, and strong ion (metabolic) acidosis are the most 
common laboratory complications in calves with diarrhea (2, 3). Among these complications, 
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hypoglycemia has been reported to occur in a very small percentage 
of cases of acute diarrhea and is associated with increased mortality (4).

Under physiological conditions, glucose is the primary energy 
substrate for the brain in both animals and humans. Decreased plasma 
glucose levels for various reasons impair brain glucose metabolism, 
resulting in functional brain damage (5). In addition, hypoglycemia 
can cause dysfunction of blood–brain barrier (BBB) permeability (6) 
and structural and functional disturbances in the peripheral nervous 
system (5). Therefore, it has been reported that the risk of permanent 
brain damage in hypoglycemic neonates is high (7, 8).

Recently, brain injury biomarker concentrations have been used 
in the diagnosis and prognosis of various central nervous system 
(CNS) disorders (9–12). Among these biomarkers, calcium-binding 
protein B (S100B) and neuron-specific enolase (NSE) have been 
reported to have increased concentrations in hypoglycemic newborns 
in association with the development of brain injury (8). Concentration 
of glial fibrillary acidic protein (GFAP), an intermediate cytoskeletal 
filament protein specific for astrocytes, have been found to increase as 
a result of glial damage during abnormal glucose homeostasis (11, 13). 
Ubiquitin C-terminal hydrolase-1 (UCHL-1) is a reliable biomarker 
that is widely expressed in neurons and neuroendocrine cells (14). 
Clinical studies in calves (12) have reported that UCHL-1 is a useful 
biomarker for the detection of hypoxic–ischemic encephalopathy. 
Activin A (ACT) protein has an important biological effect on 
neuronal cell differentiation (15). It has been found that ACT 
concentrations increase after neuronal damage related to oxygen–
glucose deprivation, and exogenous administration of ACT has a 
neuroprotective effect by preventing apoptosis in neurons (10). 
Adrenomodullin (AM), a hypotensive vasodilator peptide, is 
synthesized in the organism as preproadrenomodulin. Studies in the 
rat model showed that oxygen and glucose deprivation increased 
AM in several brain regions compared to control animals (9). Creatine 
kinase-BB (CK-BB) is an isoenzyme that is found in astrocytes (16), 
and it has been reported that the activity of the CK-BB enzyme is 
significantly increased in infants with neurological disorders (17).

Although our knowledge of the brain damage caused by 
hypoglycemia in human medicine is now well advanced, the studies 
in veterinary medicine are still limited. The present study was designed 
with the hypothesis that hypoglycemia may lead to brain damage in 
neonatal calves. The aim of this study was to evaluate brain damage in 
hypoglycemic calves using brain-specific biomarkers and to determine 
their diagnostic and prognostic significance.

2. Materials and methods

The study was conducted between January 2022 and March 2023 
at the Department of Internal Medicine, Faculty of Veterinary 
Medicine, Selcuk University, Konya, Türkiye. The study protocol was 
approved by the Institutional Ethics Committee of the Faculty of 
Veterinary Medicine, Selcuk University (No. 2022/07).

2.1. Study groups

Ten healthy calves (8 Holstein and 2 Simmental), > 280 days 
gestation, 2–14 days old, were enrolled in the study as a control group. 
Calves were considered healthy based on clinical examination and 
laboratory findings (18). Calves were born naturally at the faculty 

farm. Calves with dystocia, prematurity, congenital abnormalities, 
hypoglycemia, acidemia, and suspected infection were excluded from 
the study.

Fifty calves with diarrhea (26 Holstein, 12 Simmental, 7 Brown 
Swiss, and 5 Charolais), > 280 days gestation, 2–14 days old were 
enrolled in the study as the hypoglycemic group. All calves were 
hospitalized for 3 days and received standard care and a feeding 
protocol after admission to the neonatal intensive care unit (19). 
Criteria for hypoglycemia were defined as a blood glucose 
concentration < 79.2 mg/dL. Mild hypoglycemia and severe 
hypoglycemia were also defined as blood glucose concentrations 
between 36 and 79 mg/dL and < 36 mg/dL, respectively (20). In the 
first step, the results of the study (blood gas analysis, CBC and brain 
related biomarkers) were compared between healthy (n = 10) and 
hypoglycemic (n = 50) calves. The hypoglycemic calves were then 
divided into mild hypoglycemic (n = 8) and severe hypoglycemic 
groups (n = 42) and the concentrations of brain related biomarkers 
were compared. Next, brain-related biomarker concentrations were 
compared between surviving (n = 13) and non-surviving (n = 37) 
hypoglycemic calves. Finally, calves with sepsis, severe acidosis 
(pH < 7.20) (21), and severe hypoglycemia were adjusted to find a 
model for mortality. Sepsis was described as the existence of systemic 
inflammatory response syndrome (SIRS) and a suspected or proven 
infection. Definitions for SIRS were based on the presence of the two 
or more of the following abnormalities: leukocyte count (leukocytosis 
or leukopenia, or band neutrophils >10%), abnormal rectal 
temperature, tachycardia, and tachypnea (22).

2.2. Clinical examination

All clinical examinations followed a standardized protocol and 
were performed by the same investigators (MI and AE) on admission 
and during hospitalization. Degree of enophthalmos (none, mild to 
moderate, severe), mental status (alert, depressed, comatose), suckling 
reflex (strong, weak, absent), and posture (standing, sternal, lateral 
recumbency) were assessed. Heart rate (beats/min), rectal temperature 
(°C), respiratory rate (breaths/min), mucous membranes (hyperemic 
or cyanotic), and capillary refill time were also recorded (4, 19).

2.3. Collection of blood samples

Blood samples were collected from the calves at the time of 
admission. Blood samples for blood gas analysis, complete blood 
count (CBC), and biomarkers of brain injury were collected from the 
jugular vein. For blood gas measurements, plastic syringes containing 
sodium heparin were used. Tubes containing K3EDTA were used to 
analyze the CBC. Blood gas and CBC measurements were performed 
within 5 to 10 min after the sample was collected. Non-anticoagulant 
tubes were used for serum collection. Blood samples collected for 
biomarker analysis were kept at room temperature for 15 min and then 
centrifuged at 20 × g for 10 min. Sera were collected and stored 
at −80°C.

2.3.1. Blood gas analysis
Venous blood pH, partial carbon dioxide pressure (pCO2), partial 

oxygen pressure (pO2), oxygen saturation (SO2), potassium (K), 
sodium (Na), calcium (Ca), chlorine (Cl), glucose (Glu), lactate (Lac), 
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base deficit (BE), and bicarbonate (HCO3) were measured using an 
automated blood gas analyzer (ABL 90 Flex, Radiometer, Brea, CA, 
United States).

2.3.2. Complete blood count (CBC) analysis
Total leukocytes (WBC), lymphocytes (Lym), monocytes (Mon), 

granulocytes (Gra), erythrocytes (RBC), hematocrit (HCT), 
hemoglobin (Hb), and platelets (PLT) were measured using an 
automated cell counter (MS4e, Melet Schlosing Laboratories, Osny, 
France).

2.3.3. Evaluation of brain-related biomarkers
Serum S100B, UCHL-1, (Bioassay Technology Laboratory, 

Shanghai, China), NSE, GFAP, ACT, AM (MyBioSource, San Diego, 
CA, United States), and CK-BB (ELK Biotechnology Co., Ltd., Wuhan, 
China) concentrations were measured using commercial bovine-
specific ELISA test kits according to the manufacturer’s instructions. 
Bovine S100B commercial ELISA kit (Bioassay Technology 
Laboratory, Shanghai, China, Lot: 202110012), bovine NSE 
commercial ELISA kit (MyBioSource®, San Diego, CA, United States, 
Lot: 36379821), bovine GFAP commercial sandwich ELISA kit 
(MyBioSource®, San Diego, CA, United States, Lot: 34358721), bovine 
UCHL-1 commercial ELISA kit (Bioassay Technology Laboratory, 
Shanghai, China, Lot: 202110012), bovine ACT commercial ELISA kit 
(MyBioSource®, San Diego, CA, United  States, Lot: 20211022C), 
bovine AM commercial ELISA kit (MyBioSource®, San Diego, CA, 
United States, Lot: 38400921), and bovine CK-BB commercial ELISA 
kit (ELK Biotechnology, Wuhan, China, Lot: 20330054610) were used 
for biomarker ELISA analyses. The intra-assay coefficient of variation 
(CV), inter-assay CV, and minimum detectable concentrations 
(MDC) for biomarkers were ≤ 8%, ≤ 10%, and 0. 26 ng/mL for S100B, 
≤ 8%, ≤ 12% and > 0.06 ng/mL for NSE, ≤ 8%, ≤ 12% and > 0.06 ng/
mL for GFAP, ≤ 8%, ≤ 10%, and 35.7 ng/mL for UCHL-1, < 10%, < 
10% and 1.0 pg/mL for ACT, ≤8%, ≤12% and 5 pg/mL for AM, 
and < 8%, < 10% and 0.59 ng/mL for CK-BB, respectively.

2.4. Statistical analysis

2.4.1. Power analysis
The 95% confidence interval (CI) and effect size (margin of error) 

for the hypoglycemic calves with diarrhea were included in the 
calculation. Previous study in neonatal calves with asphyxia has 
demonstrated brain damage in 50% calves (12). Based on this 
assumption, 50 neonatal calves were considered necessary to identify 
brain damage associated with hypoglycemia with 80% power and 5% 
alpha error level using a 2-tailed test.

2.4.2. Analysis of variances
The SPSS 25 statistical program (IBM Corp®, 2017, Armonk, NY, 

United  States) was used to evaluate the data. The Kolmogorov–
Smirnov test was used to determine normality of variables and 
homogeneity of variances. Parametric data were expressed as 
mean ± SD and evaluated by Student’s t-test. Non-parametric data 
were expressed as median (minimum/maximum) and evaluated using 
the Mann–Whitney U test. The Spearman correlation test was used to 
determine the correlation between variables. Binary logistic regression 

was used to evaluate the association of severe hypoglycemia, severe 
acidemia, and sepsis with mortality. The goodness of fit of the model 
was assessed using Pearson chi-squared. Receiver operating 
characteristic (ROC) analysis was performed to determine the 
prognostic cut-off, sensitivity, and specificity of the variables in 
non-surviving and surviving hypoglycemic calves. In addition, the 
same test was used to evaluate the ability of severe hypoglycemia, 
severe acidosis, and sepsis to predict mortality. Statistical significance 
was considered as p < 0.05.

3. Results

3.1. Clinical findings

Fifty hypoglycemic calves with diarrhea and 10 healthy calves 
were included in the study. The mean body weight of the calves was 
42.37 ± 2.79 in the hypoglycemic group and 44.54 ± 2.35 in the healthy 
group. The most prominent clinical signs in hypoglycemic calves were 
hypothermia, lethargy, lateral recumbency, loss of suckling reflex, 
severe depression, and coma. CNS-related symptoms such as 
convulsions, opisthotonos, and nystagmus were seen in 6 (12%) 
hypoglycemic calves. Of the hypoglycemic calves, 37 (74%) did not 
survive and 13 (26%) survived. It was determined that 42 (84%) of the 
hypoglycemic calves had severe hypoglycemia. In addition, 32 (64%) 
and 24 (48%) calves had severe acidosis and sepsis, respectively.

3.2. Blood gas and CBC analysis

At the time of admission, pH, pO2, SO2, glucose, BE, and HCO3 
levels of hypoglycemic calves were significantly lower and pCO2, 
lactate, and K levels were higher than healthy calves (p < 0.05). Total 
leukocytes, Lym, Mon, RBC, Hb, and PLT levels of hypoglycemic 
calves were significantly higher than healthy calves (p < 0.05) (Table 1).

3.3. Brain-related biomarkers analysis

Biomarker concentrations of healthy and hypoglycemic calves are 
shown in Table 2. S100B, GFAP, UCHL-1, CK-BB (p < 0.001) and NSE 
(p < 0.05) concentrations of hypoglycemic calves were significantly 
higher than the control group. ACT concentrations were significantly 
lower in hypoglycemic calves compared to healthy calves. There was 
no significant change in AM concentrations between hypoglycemic 
and healthy calves (p > 0.05) (Table 2). Additionally, no significant 
difference in brain-related biomarker concentrations was observed 
between mildly and severely hypoglycemic calves (Table 3).

3.4. Correlation analysis

There was a negative correlation between blood glucose 
concentration and serum S100B, GFAP, UCHL-1 concentration and 
CK-BB enzyme activity, and positive correlation with ACT (p < 0.01) 
(Figure 1). There was no association between glucose concentration 
and serum AM and NSE.
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3.5. Prognostic indicators analysis

3.5.1. Brain-related biomarker
None of S100B, NSE, GFAP, UCHL-1, ACT, AM, and CK-BB were 

found to be significant (p > 0.05) in predicting mortality in calves with 
hypoglycemia (Table 4; Figure 2).

3.5.2. Logistic regression analysis and capacity of 
the model

Logistic regression analysis showed that the presence of sepsis, 
severe acidosis (pH < 7.20), and severe hypoglycemia (glucose <36 mg/
dL) were not significantly associated with mortality when each 
variable was included in the analysis separately (Table 5). Furthermore, 
when sepsis, severe acidosis, and severe hypoglycemia were considered 
together, this model was found to be  inadequate in predicting 
mortality (R chi-squared = 2.789, p = 0.425).

The ROC curve for sepsis to predict mortality showed an area under 
the curve (AUC) (95% CI) of 0.512 (0.328–0.697), with a sensitivity of 
48% and a specificity of 54%. For severe hypoglycemia, the AUC (95% 
CI) was 0.496 (0.312–0.680), with 83% sensitivity and 16% specificity. 
For severe acidosis, the AUC (95% CI) was 0.621 (0.438–0.803), with a 
sensitivity of 70% and a specificity of 54% (Figure 3).

4. Discussion

In this study, S100B, NSE, GFAP, UCHL-1, ACT, 
AM concentrations, and CK-BB enzyme activity were measured in 
blood serum samples from hypoglycemic calves with neonatal 
diarrhea. Our results showed that significant changes in S100B, NSE, 
GFAP, UCHL-1, ACT concentrations, and CK-BB enzyme activity 
occurred in calves with diarrhea related to hypoglycemia, and 
hypoglycemia was associated with high mortality. However, the 
biomarkers of brain injury were not useful in the prediction of 
mortality in calves with hypoglycemia. In addition, severe 
hypoglycemia, severe acidosis and sepsis variables were found to 
be insufficient to predict mortality alone or together.

Hypoglycemia in calves is a condition resulting from neonatal 
diarrhea, endotoxemia and asphyxia and is associated with mortality (4, 
19, 23). The poor prognosis of severely hypoglycemic calves is explained 
by concurrent health problems including diffuse peritonitis, septicemia 
and acidosis (4). Trefz et al. (4) found that the survival rate was 74.0% for 
normoglycemic calves and 20.6% for calves with severe hypoglycemia. 
In the study, the survival rates of calves with plasma glucose 
concentrations <1 mmol/L and 1–1.9 mmol/L were 9.6 and 26.4%, 
respectively. In another study, the mortality rate of calves with severe 
hypoglycemia was reported to be 79.4% (19). In the present study, 26% 
of 50 hypoglycemic calves survived and 74% died. In addition, severe 
acidosis was observed in 64% and sepsis in 48% of hypoglycemic calves. 
The high mortality rate of hypoglycemic calves in our study may 
be related to malnutrition, sepsis and metabolic acidosis (4).

Hypoglycemia in humans and newborn calves is usually 
asymptomatic. Similar to previous studies (4, 24, 25), only 12% of 
enrolled calves had CNS-related clinical signs. The lower incidence of 
clinical signs related to the CNS in hypoglycemic calves may 

TABLE 1  Venous blood gas and CBC parameters of healthy and 
hypoglycemic calves.

Variable Study groups p value

Healthy 
calves

Hypoglycemic 
calves

pH 7.41 ± 0.03 7.11 ± 0.16 < 0.001

pCO2 (mmHg) 39.00 ± 7.60 56.50 ± 14.12 < 0.001

pO2 (mmHg) 49.20 (23.40–

97.10)

22.05 (12.40–62.50) < 0.001

SO2 (%) 96.20 (58.90–

101.30)

38.10 (6.00–89.50) < 0.001

K (mmol/L) 4.46 ± 0.30 5.19 ± 1.11 < 0.001

Na (mmol/L) 146.10 ± 4.17 146.42 ± 8.60 0.860

Ca (mmol/L) 0.96 ± 0.19 1.02 ± 0.18 0.425

Cl (mmol/L) 104.40 ± 4.55 101.32 ± 9.07 0.122

Glu (mg/dL) 103.00 (82.00–

137.00)

15.00 (1.00–55.00) < 0.001

Lac (mmol/L) 4.00 (2.60–5.20) 7.95 (0.10–24.00) 0.027

BE (mmol/L) 0.25 (−7.20–5.40) −8.95 (−26.20–6.50) < 0.001

HCO3 

(mmol/L)

24.96 ± 3.66 15.97 ± 5.87 < 0.001

WBC (cells/

mL)

7.95 (5.25–11.33) 13.13 (3.99–76.97) 0.005

Lym (cells/mL) 2.27 (1.70–3.53) 5.58 (1.82–72.89) < 0.001

Mon (cells/mL) 0.34 (0.18–0.84) 0.52 (0.09–4.74) 0.039

Gra (cells/mL) 4.76 (1.39–9.26) 5.43 (0.50–50.33) 0.539

RBC (×103 cells/

mL)

7.89 ± 0.81 9.39 ± 2.66 0.002

HCT (%) 33.10 ± 8.76 38.43 ± 12.49 0.122

Hb (g/dL) 9.55 ± 1.65 11.85 ± 3.52 0.003

PLT (cells/mL) 195.80 ± 34.40 273.46 ± 186.02 0.008

Partial carbon dioxide pressure (pCO2), partial oxygen pressure (pO2), oxygen saturation 
(SO2), potassium (K), sodium (Na), calcium (Ca), chlorine (Cl), glucose (Glu), lactate (Lac), 
base deficit (BE), bicarbonate (HCO3), total leukocytes (WBC), lymphocytes (Lym), 
monocytes (Mon), granulocytes (Gra), erythrocytes (RBC), hematocrit (HCT), hemoglobin 
(Hb), platelets (PLT).

TABLE 2  Biomarker concentrations findings in healthy and hypoglycemic 
calves.

Variable Study groups p value

Healthy 
calves

Hypoglycemic 
calves

S100B (ng/mL) 13.08 ± 3.51 24.18 ± 4.55 < 0.001

NSE (ng/mL) 3.59 ± 0.91 4.69 ± 2.08 0.013

GFAP (ng/mL) 1.44 ± 0.47 3.21 ± 1.76 < 0.001

UCHL-1 (ng/L) 837.10 ± 152.83 1726.22 ± 411.78 < 0.001

ACT (pg/mL) 6214.16 ± 913.51 3467.96 ± 1570.33 < 0.001

AM (pg/mL) 188.24 ± 76.95 178.91 ± 68.29 0.728

CK-BB (ng/

mL)
4.97 ± 1.63 9.59 ± 2.67

< 0.001

Calcium binding protein B (S100B), neuron-specific enolase (NSE), glial fibrillary acidic 
protein (GFAP), ubiquitin carboxyl terminal hydrolysis isoenzyme-1 (UCHL-1), activitin A 
(ACT), adrenomodullin (AM), creatine kinase-BB (CK-BB).
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be  explained by the fact that newborn dogs and calves are more 
tolerant to the deleterious effects of hypoglycemia due to their ability 
to use L-lactate as a fuel for the brain (26, 27).

Considering the potential adverse effects of hypoglycemia on the 
brain, this study investigated brain damage biomarkers in 
hypoglycemic calves with neonatal diarrhea. Because there is limited 
research on these biomarkers in the veterinary setting, our findings 
are discussed with the human literature.

Concurrent increases in the concentrations of S100B (released 
from astrocytes and oligodendrocytes) and NSE (released from 
neurons) have been interpreted as indicators of brain damage (28, 
29). However, data on the relationship between these biomarkers 
and brain damage due to glucose dysregulation is limited. While 
serum S100B concentrations do not change in diabetic patients with 
metabolically impaired BBB (30), elevated S100B and NSE 
concentrations after severe hypoglycemia have been evaluated as 
indicators of permanent neurological damage (31). Higher 
concentrations of S100B and NSE have been reported in 
hypoglycemic children admitted to the pediatric intensive care unit 
(8). In addition, in vitro studies have shown that long-term glucose 
deprivation increases S100B and NSE release independently of 
hypoxia (32–34). In this study, hypoglycemic calves had significantly 
higher S100B and NSE concentrations than healthy calves (p < 00.5). 
Simultaneous elevation of S100B and NSE concentrations in 
hypoglycemic calves has been associated with the development of 
brain damage (8, 31–34). However, as S100B and NSE are not 
entirely brain specific, it should not be overlooked that they may 
also originate from peripheral tissues (35).

TABLE 3  Comparison of brain biomarker concentrations in mild and 
severe hypoglycemic calves.

Variable Hypoglycemic calves p 
value

Severe 
hypoglycemia

Mild 
hypoglycemia

S100B (ng/

mL)
22.72 ± 3.90 24.46 ± 4.66 0.289

NSE (ng/mL) 4.01 ± 1.03 4.82 ± 2.21 0.124

GFAP (ng/

mL)
2.99 ± 0.75 3.25 ± 1.89 0.527

UCHL-1 

(ng/L)
1668.14 ± 279.63 1737.55 ± 434.72 0.572

ACT (pg/mL) 2892.47 ± 1873.36 3580.25 ± 1505.26 0.354

AM (pg/mL) 162.58 ± 31.23 182.10 ± 73.22 0.231

CK-BB (ng/

mL)
9.13 ± 2.66 9.68 ± 2.69 0.606

Calcium binding protein B (S100B), neuron-specific enolase (NSE), glial fibrillary acidic 
protein (GFAP), ubiquitin carboxyl terminal hydrolysis isoenzyme-1 (UCHL-1), activitin A 
(ACT), adrenomodullin (AM), creatine kinase-BB (CK-BB).

FIGURE 1

Correlation analysis graphs between blood glucose and serum concentrations of S100B (A), NSE (B), GFAP (C), UCHL-1 (D), ACT (E), AM (F), and CK-BB 
(G).
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Astrocytes play a critical role in maintaining neuronal homeostasis 
in the brain by providing alternative fuel to neurons under 
hypoglycemic conditions (36, 37). Glial fibrillary acidic protein 
(GFAP), an intermediate cytoskeletal filament protein specific for 
astrocytes, is a key indicator of astrocyte activation. Expression of this 
protein outside the CNS is quite low, and the main causes of high 
serum concentrations are astrocyte activation after brain injury and 
regional necrosis (13). It has been reported that hypoglycemia-
associated brain damage developed and GFAP release increased in rats 
experimentally induced with hypoglycemia (38). Similarly, an increase 
in the number of GFAP-positive astrocytes was found in rats with 
transient hypoglycemic coma (11). In contrast, GFAP expression was 
found to decrease in rat astrocytes with hyperglycemia (36, 37), and 
GFAP expression increased after correction of hyperglycemia (37). 
The authors suggest that astrocytes play a neuroprotective role during 
abnormal glucose homeostasis (36, 37). In the present study, GFAP 
concentrations were significantly higher in hypoglycemic calves than 
in healthy calves (p < 0.05). High GFAP concentrations have been 
associated with hypoglycemia-induced glial damage, astrocyte 
activation (11, 13) and neuroprotective role (36, 37).

Ubiquitin C-terminal hydrolase-1 (UCHL-1) is a highly abundant 
protein in neurons and neuroendocrine cells, constituting up to 
5–10% of total neuronal proteins (14). Elevated concentrations in 

blood and cerebrospinal fluid (CSF) are associated with neuronal 
damage and increased permeability of the BBB (39). In a study of 
asphyxiated calves, elevated concentrations were associated with 
hypoxic–ischemic encephalopathy (12). It has also been reported to 
play a neuroprotective role in the repair process of damaged axons and 
neurons (40). In the present study, UCHL-1 concentrations in 
hypoglycemic calves were significantly higher than in healthy calves 
(p < 0.05). The high UHCL-1 concentrations in hypoglycemic calves 
may be  due to neuroprotective properties rather than neuronal 
damage. In addition, it should be considered that neuroendocrine cells 
may be responsible for high UHCL-1 concentrations in hypoglycemic 
calves (14).

Activin A (ACT) has been shown as a neuronal protector in many 
CNS disorders (15, 41). In vitro and clinical studies have reported that 
high glucose concentrations increase ACT release (42–44). In contrast, 
ACT expression has been found to decrease after oxygen–glucose 
deprivation (10). Investigators (10, 42–44) have suggested a protective 
role for ACTs against the deleterious effects of inflammation, oxidative 
stress, and glucose dysregulation. In calves with perinatal asphyxia, 
low ACT concentrations were associated with species difference, 
oxidative stress, and overuse due to its role in repair (12). In the 
present study, serum ACT concentrations were found to be lower in 
hypoglycemic calves compared to healthy calves (p < 0.05). Low ACT 
concentrations in hypoglycemic calves may be  associated with 
oxidative stress and neuroprotective properties (10, 12, 42, 43).

In hypoxic ischemia and hypoglycemia, increased AM expression 
has been observed in central cortical neurons, endothelial and 
perivascular glial cells (9). Similarly, a significant increase in plasma 
AM concentrations has been reported in hyperglycemic infants (45). 
However, no significant change in circulating AM concentrations was 
observed in insulin-induced hypoglycemia (46). This has been 
attributed to factors such as AM being unstable, having a short half-
life of 20 min, and binding to some proteins in the circulation (47, 48). 
On the other hand, it has been suggested that AM concentrations are 
not affected by plasma glucose concentrations (49, 50). In the present 
study, there was no statistically significant difference in 
AM concentrations and no correlation with glucose concentrations 
(p > 0.05). These results suggest that AM does not play a role in the 
regulatory hormonal response to hypoglycemia (46, 49).

CK isoenzyme BB (CK-BB) is found at high levels in the brain and 
its activity is increased in peripheral blood in brain injury (17, 51). 

TABLE 4  The area under the curve (AUC), standard error, confidence interval (95%), optimal cut-off values, and corresponding sensitivity and specificity 
for predicting mortality in non-surviving calves with hypoglycemia.

Variable AUC Standard 
error

p value Asymptotic 95% 
confidence interval

Sensitivity Specificity Cut-off 
value

Lower 
band

Upper 
bound

S100B (ng/mL) 0.663 0.093 0.083 0.482 0.846 69 64 23.95

NSE (ng/mL) 0.377 0.089 0.193 0.203 0.551 53 42 4.29

GFAP (ng/mL) 0.405 0.086 0.314 0.237 0.573 53 45 2.88

UCHL-1 (ng/L) 0.470 0.091 0.751 0.292 0.648 61 48 1706.47

ACT (pg/mL) 0.571 0.095 0.455 0.384 0.757 61 56 3359.66

AM (pg/mL) 0.400 0.089 0.287 0.226 0.0573 61 51 179.34

CK-BB (ng/mL) 0.548 0.089 0.610 0.373 0.723 61 50 10.24

Calcium binding protein B (S100B), neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP), ubiquitin carboxyl terminal hydrolysis isoenzyme-1 (UCHL-1), activitin A (ACT), 
adrenomodullin (AM), creatine kinase-BB (CK-BB).

FIGURE 2

Receiver operating characteristic (ROC) curve analysis to 
discriminate between surviving and non-surviving hypoglycemic 
calves based on serum concentrations of brain biomarkers.
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CK-BB is expressed by astrocytic glial cells (16). Experimentally, 
CK-BB enzyme activity was found to increase during insulin-induced 
hypoglycemia and showed a positive correlation with insulin dose 
(17). The increase in CK-BB enzyme activity in hypoglycemic cases 
has been related to the role of CK in brain energy demand and ATP 
production (brain energy hemostasis) (16, 52, 53). In the present 
study, the serum CK-BB enzyme activity of hypoglycemic calves was 
higher than that of healthy calves (p < 0.05). The elevated CK-BB 
enzyme activity in hypoglycemic calves is thought to be a response to 
brain energy and ATP demands (16, 52, 53) due to increased 
glycolysis, oxidative phosphorylation and sympathetic activation as a 
result of hypoglycemia.

Acute hypoglycemia alters blood levels of brain-derived proteins 
due to brain damage and BBB dysfunction caused by endothelial 
dysfunction and increased oxidative stress (6, 13). In the present study, 
blood glucose concentrations correlated negatively with S100B, GFAP, 
UCHL-1 concentrations and CK-BB enzyme activity and positively 
with ACT concentration. The simultaneous increase or decrease in 
serum concentrations of brain damage biomarkers and the significant 
correlation of these biomarkers with blood glucose concentrations 
suggest that brain damage develops in hypoglycemic calves (S100B, 
NSE, GFAP) and neuroprotective mechanisms (GFAP, UCHL-1, ACT, 
CK-BB) are activated to prevent damage (13).

Histopathologically, severe degeneration of glial cells (astrocytes, 
oligodendrocytes) occurs as a result of hypoglycemia, whereas 

ischemic neuronal damage is rare (7). Assessing the cell types from 
which brain-derived proteins originate in the present study, it can 
be assumed that glial cell damage (S100B, GFAP, CK-BB) rather than 
neuronal damage (NSE, UCHL-1) occurs in hypoglycemic calves (7). 
However, histopathology studies are required to prove this in 
hypoglycemic calves.

In the present study, although there was a significant difference in 
brain injury biomarker concentrations between healthy and 
hypoglycemic calves, these biomarker concentrations were not good 
indicators for predicting mortality. Therefore, to determine the 
importance of other clinicopathologic variables on mortality, a logistic 
regression model was constructed. In the present study, the variables 
of severe hypoglycemia, severe acidosis, and sepsis were not significant 
in predicting prognosis when evaluated alone or together. 
Furthermore, when assessing model capacity, severe hypoglycemia, 
severe acidosis, and sepsis had low sensitivity and specificity in 
predicting mortality in hypoglycemic calves. These results are 
consistent with the view that laboratory parameters have limited value 
in predicting mortality, but the presence of specific clinical 
abnormalities provides valuable prognostic information (19). Based 
on our clinical experience, the survival of all calves within the first 12 h 
indicates that the duration of hypoglycemia could have a direct effect 
on mortality.

However, the study has some limitations, including (i) the absence 
of histopathologic evaluation of hypoglycemic calves for brain 

TABLE 5  Logistic regression for mortality comparing sepsis, severe hypoglycemia, and severe acidosis in hypoglycemic calves.

Variable B SE Wald df Sig. EXP (B) Confidence interval %95

Lower Upper

Sepsis 0.029 0.667 0.002 1 0.966 1.029 0.278 3.806

Severe hypoglycemia 

(< 36 mg/dL)
−0.610 0.967 0.398 1 0.528 0.543 0.082 3.617

Severe acidosis  

(< 7.20)
1.174 0.712 2.718 1 0.099 3.235 0.801 13.063

FIGURE 3

According to the results of ROC analysis, sepsis, severe hypoglycemia and severe acidosis have low sensitivity and specificity in predicting mortality.
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damage, (ii) the lack of measurement of CSF concentrations of the 
biomarkers used, and (iii) no inclusion of a group of non-hypoglycemic 
calves with diarrhea. All these aspects deserve to be addressed in 
further studies.

The results from the present study conclude that hypoglycemia-
associated brain damage developed in hypoglycemic calves with 
diarrhea. This damage occurred in glial cell populations rather than 
neurons and caused changes in serum concentrations of brain 
biomarkers. In addition, hypoglycemia increased mortality, but 
biomarkers of brain injury were not useful in predicting mortality due 
to low sensitivity and specificity, and severe hypoglycemia, severe 
acidosis, and sepsis variables alone or together were not effective in 
predicting mortality.
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