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Public health is a major concern for several developing countries due to infectious 
agents transmitted by hematophagous arthropods such as ticks. Health risks 
due to infectious agents transmitted by ticks infesting butcher-associated stray 
dogs (BASDs) in urban and peri-urban regions have been neglected in several 
developing countries. To the best of the authors’ knowledge, this is the first study 
assessing public health risks due to ticks infesting BASDs in Pakistan’s urban 
and peri-urban areas. A total of 575 ticks (390 from symptomatic and 183 from 
asymptomatic BASDs) were collected from 117 BASDs (63 symptomatic and 54 
asymptomatic); the ticks belonged to 4 hard tick species. A subset of each tick 
species’ extracted DNA was subjected to polymerase chain reaction (PCR) to 
amplify the 16S rDNA and cox1 sequences of the reported tick species, as well as 
bacterial and protozoal agents. The ticks’ 16S rDNA and cox1 sequences showed 
99–100% identities, and they were clustered with the sequence of corresponding 
species from Pakistan and other countries in phylogenetic trees. Among the 
screened 271 ticks’ DNA samples, Anaplasma spp. was detected in 54/271 
(19.92%) samples, followed by Ehrlichia spp. (n  =  40/271, 14.76%), Rickettsia spp. 
(n  =  33/271, 12.17%), Coxiella spp. (n  =  23/271, 4.48%), and Hepatozoon canis 
(n  =  9/271, 3.32%). The obtained sequences and phylogenetic analyzes revealed 
that the pathogens detected in ticks were Ehrlichia minasensis, Ehrlichia sp., 
Hepatozoon canis, Coxiella burnetii, Coxiella sp., Anaplasma capra, Anaplasma 
platys, Anaplasma sp., Rickettsia massiliae, “Candidatus Rickettsia shennongii” and 
Rickettsia aeschlimannii. Tick-borne pathogens such as E. minasensis, H. canis, 
A. capra, A. platys, and R. aeschlimannii, were detected based on the DNA for 
the first time in Pakistan. This is the first report on public health risks due to ticks 
infesting BASDs. These results not only provided insights into the occurrence of 
novel tick-borne pathogens in the region but also revealed initial evidence of 
zoonotic threats to both public health and domestic life.
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Introduction

The availability of survival resources (i.e., shelter, food, and water) 
affects the dog population in a region and directly correlates with the 
human population (1). Stray dogs are highly vulnerable to vector-borne 
diseases (VBDs) of zoonotic concern and, consequently, pose threats to 
human and animal health (2). Although the exact number globally is 
unknown, 75% out of 700 million dogs are considered stray dogs (3). 
They are the first farmed animals and are closely associated with humans 
on cultural, social, and economic levels (4). Pakistan is a developing 
country, and contemporary social issues have imposed an epidemic of 
stray dogs that may affect both the welfare of the animals and the public’s 
health, especially in urban and peri-urban areas (5). The exact number 
of these free-roaming stray dogs in the country is unknown, and the 
estimated stray dog population may have reached up to 3 million (6).

Tick species infesting stray dogs in the urban and peri-urban areas 
include Rhipicephalus sanguineus senso lato (s.l.), Haemaphysalis 
elliptica, Rhipicephalus microplus, Haemaphysalis erinacei, and 
Haemaphysalis parva (7, 8). Knowledge of tick identification is vital 
for surveillance to minimize the zoonotic consequences associated 
with tick-borne pathogens (9). Despite the morphological 
identification, genetic characterization using various genetic markers 
such as 16S rDNA and cox1 is a suitable approach to determine the 
taxonomic status of a tick species (10–16).

Stray dogs being important reservoirs for tick-borne zoonotic 
agents may pose a threat to public health by causing anaplasmosis, 
rickettsiosis, babesiosis, query fever (Q fever), and ehrlichiosis (17–19). 
The genus Ehrlichia has seven determined species: Ehrlichia canis, 
Ehrlichia chaffeensis, Ehrlichia ruminantium, Ehrlichia muris, Ehrlichia 
ewingii, Ehrlichia ovina, and Ehrlichia minasensis (20, 21). Ticks 
responsible for the transmission of Ehrlichia spp. include species of the 
genera Rhipicephalus, Hyalomma, Dermacentor, Amblyomma, and 
Ixodes (20, 22). Canine monocytic ehrlichiosis (CME) is the most 
common tick-borne zoonotic disease that affects dogs globally (23). 
The brown dog tick, Rh. sanguineus, primarily vectors the etiological 
agent of CME (23). Hepatozoon canis causes canine hepatozoonosis, 
which is widely distributed in South America, Africa, Asia, and South 
Europe (24). Q fever is a tick-borne infection caused by Coxiella 
burnetii (25). Tick species of the genera Rhipicephalus, Hyalomma, 
Amblyomma, Dermacentor, and Ixodes transmit this pathogen (26). 
Anaplasmataceae, consisting of different genera, such as Anaplasma, 
Ehrlichia, Neorickettsia, and Wolbachia, contains vector-borne bacteria 
that are mainly transmitted by ticks (27). Tick species belonging to the 
genera Amblyomma, Dermacentor, Haemaphysalis, Ixodes, and 
Rhipicephalus transmit Anaplasma spp. to various hosts, including dogs 
(8, 28). Anaplasma platys and Anaplasma phagocytophilum are the most 
commonly detected species in dogs responsible for zoonotic diseases 
(2). Dogs are reservoir hosts for various spotted fever group agents 
(SFG) transmitted by Rh. sanguineus ticks (20). Rickettsial infections 
transmitted by Rh. sanguineus include the spotted fever group 

rickettsiosis caused by R. massiliae (20, 29), Mediterranean spotted 
fever (MSF) caused by Rickettsia conorii (30), and Rocky Mountain 
spotted fever (RMSF) caused by Rickettsia rickettsii (23). Dogs and their 
associated ticks play a major role in the ecology and epidemiology of 
several Rickettsia species, including Rickettsia aeschlimannii (23, 30).

The percentage of stray or semi-domesticated dogs is inversely 
correlated with the gross domestic product (GDP) per capita. 
Additionally, the burden of canine zoonotic parasites has been 
correlated with poverty, but in some cases, accurate and updated 
estimates regarding this data are lacking (31). Raising community 
knowledge, raising awareness of unhealthy practices, and ensuring 
preventive measures against disease-causing agents are crucial for 
effectively controlling ticks and tick-borne pathogens (32). Stray dogs 
survive through edible wastes from humans, especially from butchered 
surroundings in urban and peri-urban areas, mostly in developing 
countries. An overabundance of butcher trash appears to result from 
the lack of proper waste management and disposal, mostly in 
low-income countries (33). The abundance of discarded meat trash 
that is readily available for feed mostly results in the presence of large 
numbers of butcher-associated stray dogs (BASDs) close to butcher 
shops. Pakistan is a low and middle-income country (LMIC) that is 
heavily populated and socioeconomically underdeveloped (6, 11, 29). 
Due to the lack of veterinary supervision and management of butcher 
waste, it attracts hungry stray dogs who feed upon it. In Pakistan, 
butcher shops on road and street sides are major reasons for the 
spread of ticks that infest BASDs. No previous study has assessed 
public health risks and the epidemiological status of ticks and tick-
borne pathogens on BASDs. This study aimed to identify the ticks 
infesting BASDs and to molecularly detect associated tick-borne 
pathogens that pose public health threats in urban and peri-
urban areas.

Materials and methods

Study model

This study was designed to detect infectious agents harbored by 
ticks infesting BASDs. Stray dogs were observed in or near butcher 
shops. To test the hypothesis that meat buyers in the study area might 
be at risk due to tick-borne pathogens, ticks were observed on BASDs 
mostly in or near butcher shops. Ticks were collected from these 
BASDs and subjected to molecular detection for various bacterial and 
protozoal pathogens (Figure 1).

Study area

This study was conducted in 14 districts: Charsadda (34°09′46.2”N, 
71°45′08.2″E), Mardan (34°11′41.8”N, 72°03′03.3″E), Malakand 
(34°33′31.4”N, 71°56′50.1″E), Lower Dir (34°53′20.1”N, 71°53′15.2″E), 
Buner (34°28′48.9”N, 72°31′13.5″E), Swabi (34°07′44.0”N, 
72°27′23.9″E), Nowshera (34°00′12.4”N, 71°59′42.1″E), Bajaur 
(34°45′55.6”N, 71°30′54.0″E), Mohmand (34°29′05.3”N, 71°21′41.3″E), 
Mansehra (34°19′44.4”N, 73°12′15.3″E), Abbottabad (34°10′39.4”N, 
73°14′09.4″E), Kohat (33°33′46.2”N, 71°28′20.4″E), Lakki Marwat 
(32°36′12.4”N, 70°54′22.1″E), and Tank (32°12′52.5”N, 70°23′09.8″E) 
in KP, Pakistan. The Global Positioning System (GPS) was used for the 

Abbreviations: BASDs, Butcher-associated stray dogs; BLAST, Basic local alignment 

search too; gltA, Citrate synthase; SFGR, Spotted fever group Rickettsia; VBDs, 

Vector-borne diseases; KP, Khyber Pakhtunkhwa; MEGA, Molecular evolutionary 

genetics analysis; NCBI, National Center for Biotechnology Information; CME, 

Canine monocytic ehrlichiosis; Q fever, Query fever; ompA, Outer membrane 

protein; PCR, Polymerase chain reaction; rDNA, Ribosomal DNA.
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geographical coordinates of the collection sites, and the study map was 
designed using ArcGIS v. 10.3.1 (ESRI, Redlands, CA, United States; 
Figure 2).

Tick collection and preservation

Ticks were collected from BASDs in or near butcher shops 
from June 2021 to May 2022 in 14 selected districts. They were 

carefully isolated from the host body using tweezers to avoid 
external damage to the specimens. The specimens were rinsed in 
distilled water, followed by 70% ethanol, and preserved in 100% 
ethanol.

The examined BASDs consisted of both symptomatic and 
asymptomatic dogs. Symptomatic dogs were characterized by 
accompanying symptoms such as diarrhea, vomiting, limb 
swelling, rashes, itching, seizures, fatigue, scabs or skin lesions, and 
hair loss.

FIGURE 1

Study model describing the possible risks related to butcher-associated stray dogs. Parts of the figures were drawn by using pictures from Servier 
Medical Art (http://smart.servier.com/), licensed under a Creative Commons Attribution 3.0 Unported License (accessed 02 May 2023).
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Morphology of ticks

The collected tick specimens were identified morphologically at 
the species level under a stereomicroscope (SZ61, Olympus 
Corporation, Tokyo, Japan) using standard morphological 
identification keys (29, 34).

DNA extraction and PCR

A total of 271 ticks (193 and 78 from symptomatic and 
asymptomatic BASDs, respectively) were randomly selected for 
molecular analyzes. Before DNA extraction, the specimens were 
washed in distilled water, followed by absolute ethanol. Then, they 
were kept in an incubator (30–45 min) until dry (20–30 min). Tick 
specimens were cut with sterile scissors and homogenized in 
phosphate-buffered saline using a micro pestle, and DNA was 
extracted by employing the phenol-chloroform method (35). A 
NanoDrop (Nano-Q, Optizen, Daejeon, South Korea) was used to 
quantify the DNA, and the DNA samples were stored at −20°C for 
further examination.

The extracted DNA was subjected to a polymerase chain reaction 
(PCR; GE-96G, BIOER, Hangzhou, China) to amplify mitochondrial 
16S ribosomal DNA (16S rDNA) and cytochrome C oxidase 1 (cox1) 
fragments for tick identification. Each PCR reaction mixture 
contained 25 μL volume, comprising 1 μL each primer (forward and 
reverse; 10 μM), 8.5 μL PCR water “nuclease-free,” 12.5 μL DreamTaq 

green MasterMix (2X; Thermo Scientific, Waltham, MA, 
United States), and 2 μL of template DNA (100 ng/μl).

The extracted DNA was utilized for screening various tick-borne 
pathogens based on different partial genes, such as 16S rDNA 
(Anaplasma/Ehrlichia spp.), groEL (Coxiella spp.), dsb (Ehrlichia spp.), 
18S rDNA (Hepatozoon spp.), and gltA, ompA, and ompB (Rickettsia 
spp.). The nested PCR was used in the case of the groEL partial gene. 
Each PCR experiment contained a negative control (PCR water 
instead of the template DNA) and a positive control (the DNA of Rh. 
microplus for ticks, R. massiliae for bacterial species, and Theileria 
annulata for protozoal species). The primers used in the current study 
and their thermocycler conditions are given in Supplementary Table S1.

The PCR products were electrophoresed on 1.5% agarose gel, and 
the amplified samples were visualized under ultraviolet (UV) light using 
a gel documentation system (BioDoc-IT™ Imaging Systems UVP, LLC, 
Upland, United States). The PCR products that showed the expected size 
results were purified using a commercial PCR clean-up kit (Macherey-
Nagel, Duren, Germany) following the manufacturer’s instructions.

DNA sequencing and phylogenetic analysis

PCR products of 16S rDNA and cox1 for ticks, as well as 16S rDNA, 
groEL, dsb, 18S rDNA, gltA, ompA, and ompB for associated tick-borne 
pathogens, were sent for capillary bidirectional sequencing (Macrogen 
Inc., Seoul, South Korea). The obtained sequences were trimmed and 
assembled using SeqMan v. 5 (DNASTAR, Inc., Madison/WI, 

FIGURE 2

Map showing the collection sites of tick samples in the selected districts.
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United States) to remove poor reading sequences. The obtained multiple 
identical sequences for each gene were considered a consensus sequence 
and subjected to the basic local alignment search tool (BLAST) at the 
National Center for Biotechnology Information (NCBI). Sequences 
with maximum identities were downloaded in FASTA format from the 
NCBI. The obtained sequences were aligned with the downloaded 
sequences using ClustalW multiple alignments in BioEdit Sequence 
Alignment Editor v. 7.0.5 (36). The coding nucleotide sequences were 
aligned using MUSCLE (37). Phylogenetic trees were constructed 
individually for each partial sequence of tick and associated tick-borne 
pathogens, by employing the maximum likelihood (ML) method with 
Kimura 2-parameter in Molecular Evolutionary Genetics Analysis 
(MEGA-X), accompanied by a bootstrapping value of 1,000 (38).

Statistical analyzes

Tick data and associated pathogen information from all 14 
districts were subjected to descriptive statistical analysis, and graphs 
were designed in Microsoft Excel v. 2016 (Microsoft Office 365®). The 
minimum infection rate (MIR) was used to estimate the prevalence of 
infected ticks. To accomplish this, the number of PCR product ticks 
was divided by the total number of collected ticks (39).

Results

A survey in the selected districts resulted in an overall collection 
of 575 ticks (392 and 183 from symptomatic and asymptomatic BASDs, 
respectively) from 117 BASDs (63 symptomatic and 54 asymptomatic), 
comprising four hard tick species. Among the identified ticks, Rh. 
sanguineus was the most prevalent tick species (n = 292/575, 50.78%), 
followed by Rh. haemaphysaloides (n = 127/575, 22.08%), Rh. turanicus 
counting (n = 87/575, 15.13%), and Rh. microplus clade C (n = 69/575, 
12.00%). The spatial distribution of the collected ticks revealed that 
Mardan, Lakki Marwat, and Charsadda had the highest tick counts of 
58, 53, and 51 ticks, respectively. The Malakand district (27) had the 
least number of collected ticks among the selected districts.

Of the 575 tick specimens, 271 (47.13%; 193 and 78 from 
symptomatic and asymptomatic BASDs, respectively) were subjected 
to PCR for the molecular screening of various tick-borne pathogens, 
including Ehrlichia, Anaplasma, Rickettsia, Coxiella and Hepatozoon 
species (Supplementary Table S1). According to the PCR-based 
screening and subsequent sequencing of targeted bacterial and 
protozoal agents, Anaplasma spp. were the most prevalent (n = 54/271, 
19.92%), followed by Ehrlichia spp. (n = 40/271, 14.76%), Rickettsia 
spp. (n = 33/271, 12.17%), Coxiella spp. (n = 23/271, 8.49%), and 
Hepatozoon spp. (n = 9/271, 3.32%) in the ticks infesting BASDs 
(Table 1). None of the ticks was found positive for multiple pathogens.

The results of the prevalence of symptomatic and asymptomatic 
BASDs in ticks, as well as the molecular screening of tick-associated 
bacterial and protozoal pathogens, are presented in Table 1.

DNA sequences and phylogeny of ticks

Sequencing by BLAST analysis of the 16S rDNA for Rh. 
sanguineus, Rh. turanicus, Rh. microplus, and Rh. haemaphysaloides 

showed 99.24–100% maximum identities to the corresponding 
species. In the phylogenetic tree, the 16S rDNA sequences of Rh. 
sanguineus, Rh. turanicus, Rhipicephalus microplus (clade C), and 
Rhipicephalus haemaphysaloides were clustered with the corresponding 
species (Figure 3A).

According to the BLAST results, the obtained cox1 sequences of 
Rh. sanguineus, Rh. turanicus, Rh. microplus, and Rh. haemaphysaloides 
shared 99.54–100% maximum identities with the corresponding 
species. In the phylogenetic tree, the cox1 sequences of Rh. sanguineus, 
Rh. turanicus, Rhipicephalus microplus, and Rhipicephalus 
haemephysalides were clustered with the corresponding species 
(Figure 3B). All the obtained 16S rDNA and cox1 sequences of Rh. 
sanguineus, Rh. turanicus, Rh. microplus, and Rh. haemaphysaloides 
were deposited to the GenBank (Supplementary Table S2).

Prevalence of pathogens in ticks

Altogether, 271 out of 575 collected ticks were screened for 
detecting bacterial and protozoal pathogens. Among the four tested 
tick species, Rh. sanguineus was the most infected tick comprising 81 
positive samples with a minimum infection rate of 29.88% 
(n = 81/271), followed by Rh. haemaphysaloides with a minimum 
infection rate of 12.91% (n = 35/271), Rh. turanicus with a minimum 
infection rate of 10.70% (n = 29/271), and Rh. microplus with a 
minimum infection rate of 5.16% (n = 14/271). All these minimum 
infection rates were statistically significant. Sequencing of the 
PCR-based amplified DNA resulted in the detection of eight 
pathogens–E. minasensis, H. canis, C. burnetii, Anaplasma capra, 
A. platys, R. massiliae, “Candidatus Rickettsia shennongii” and 
R. aeschlimannii. Three undetermined species, Ehrlichia sp., Coxiella 
sp., and Anaplasma sp. were also detected. All pathogens and 
undetermined species were detected in the collected four tested tick 
species, except R. aeschlimannii, which was detected only in Rh. 
sanguineus, whereas A. capra, A. platys, and “Ca. R. shennongii” were 
detected in Rh. sanguineus, Rh. haemaphysaloides, and Rh. turanicus 
(Figure 4).

Sequence and phylogenetic analyzes of 
tick-borne pathogens

Ehrlichia spp.
According to the BLAST results, the 16S rDNA sequences of 

Ehrlichia sp. and E. minasensis showed 100% identity with the 
corresponding species. In the phylogenetic tree, the 16S rDNA 
sequences of Ehrlichia sp. and E. minasensis were clustered with the 
corresponding sequences (Figure 5A). In the case of the dsb sequence, 
the BLAST results of the dsb sequence of Ehrlichia sp. showed 100% 
identity with the E. minasensis sequence. In the phylogenetic tree, the 
dsb sequence of E. minasensis was clustered with the same species 
(Figure 5B). The obtained 16S rDNA and dsb sequences of Ehrlichia 
sp. and E. minasensis were deposited to the GenBank 
(Supplementary Table S2).

Hepatozoon canis
The obtained 18S rDNA sequence of Hepatozoon sp. showed 

99–100% identity with the H. canis sequence. In the phylogenetic tree, 
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TABLE 1 Distribution pattern of butcher-associated stray dog ticks and the detection of bacterial and protozoal pathogens in these ticks.

Districts Tick species Number of hosts 
(symptomatic/
asymptomatic)

Ticks 
collected 

(S/A)* Male, 
Female, 
Nymph

Total 
(S/A)*

Subjected to 
PCR (S/A)*

Bacterial species (S/A)* Protozoan 
(S/A)*

Ehrlichia 
spp.

Anaplasma 
spp.

Rickettsia 
spp.

Coxiella 
spp.

Hepatozoon 
spp.

Charsadda Rh. sanguineus 1/2 6/2 M, 7/4F, 2/2 N 15/8 7/3 1/1 2/1 2/0 1/1 1/0

Rh. haemaphysaloides 1/1 3/2 M, 3/3F, 1/1 N 7/6 4/3 1/1 1/1 0 1/0 0

Rh. turanicus 1/1 1/1 M, 2/1F, 2/0 N 5/2 4/1 0 1/0 1/0 0 0

Rh. microplus 1/1 1/0 M, 3/1F, 2/1 N 6/2 2/2 1/0 0 0 0 0

Total 4/5 11/5 M, 15/9F, 

7/4 N

33/18 17/9 3/2 4/2 3/0 2/1 1/0

Mardan Rh. sanguineus 3/1 6/6 M, 10/4F, 2/2 N 18/12 11/4 1/1 4/1 3/1 2/1 1/0

Rh. haemaphysaloides 1/1 3/2 M, 4/3F, 1/1 N 8/6 3/2 0 1/1 1/0 1/1 0

Rh. turanicus 1/1 2/2 M, 1/1F, 2/0 N 5/3 2/1 0 1/0 0 1/0 0

Rh. microplus 1/1 2/1 M, 2/0F, 1/0 N 5/1 4/2 0 1/0 0 1/0 0

Total 6/4 13/11 M, 17/8F, 

6/3 N

36/22 20/9 1/1 7/2 4/1 5/2 1/0

Malakand Rh. sanguineus 1/1 3/2 M, 4/3F, 1/0 N 8/5 7/5 0 3/1 0 1/1 1/0

Rh. haemaphysaloides 1/1 2/0 M, 2/1F, 1/0 N 5/1 5/1 2/0 1/0 1/0 1/0 0

Rh. turanicus 1/1 1/0 M, 1/1F, 0 N 2/1 2/1 0 0 0 0 1/0

Rh. microplus 1/1 1/0 M, 2/1F, 1/0 N 4/1 4/1 0 1/0 1/0 1/0 1/0

Total 4/4 7/2 M, 9/6F, 3/0 N 19/8 18/8 2/0 5/1 2/0 3/1 3/0

Dir Lower Rh. sanguineus 1/1 4/4 M, 4/2F, 1/0 N 9/6 4/2 0 1/0 1/1 1/0 1/0

Rh. haemaphysaloides 2/1 3/1 M, 3/2F, 1/1 N 7/4 4/2 2/0 0 1/0 1/0 0

Rh. turanicus 1/1 1/0 M, 3/3F, 2/0 N 6/3 6/3 1/1 1/0 0 0 0

Rh. microplus 1/1 1/1 M, 2/2F, 2/0 N 5/3 5/3 1/1 0 0 0 0

Total 5/4 9/6 M, 12/9F, 6/1 N 27/16 19/10 4/2 2/0 2/1 2/0 1/0

Buner Rh. sanguineus 2/1 5/2 M, 7/2F, 2/2 N 14/6 3/1 1/0 1/0 1/0 0 0

Rh. haemaphysaloides 1/1 2/1 M, 3/1F, 2/0 N 7/2 3/2 0 0 1/0 0 0

Rh. turanicus 1/0 2/0 M, 3/0F, 0 N 5/0 4/0 0 0 1/0 0 0

Rh. microplus 1/0 1/0 M, 1/0F, 1/0 N 3/0 3/0 0 0 0 0 0

Total 5/2 10/3 M, 14/3F, 

5/2 N

29/8 13/3 1/0 1/0 3/0 0 0

(Continued)
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Districts Tick species Number of hosts 
(symptomatic/
asymptomatic)

Ticks 
collected 

(S/A)* Male, 
Female, 
Nymph

Total 
(S/A)*

Subjected to 
PCR (S/A)*

Bacterial species (S/A)* Protozoan 
(S/A)*

Ehrlichia 
spp.

Anaplasma 
spp.

Rickettsia 
spp.

Coxiella 
spp.

Hepatozoon 
spp.

Swabi Rh. sanguineus 1/2 4/3 M, 3/3F, 3/2 N 10/8 3/1 0 1/1 1/0 0 0

Rh. haemaphysaloides 1/1 2/1 M, 2/1F, 1/0 N 5/2 4/1 1/0 1/0 0 0 0

Rh. turanicus 1/1 2/0 M, 2/1F, 0 N 4/1 2/0 0 1/0 0 0 0

Rh. microplus 1/1 1/0 M, 1/1F, 0 N 2/1 2/1 0 0 0 1/0 0

Total 4/5 9/4 M, 8/6F, 4/2 N 21/12 11/3 1/0 3/1 1/0 1/0 0

Nowshera Rh. sanguineus 1/1 4/4 M, 4/1F, 3/1 N 11/6 5/3 1/0 2/1 1/0 0 1/0

Rh. haemaphysaloides 1/1 2/0 M, 3/3F, 0 N 5/3 4/2 0 1/0 0 0 1/0

Rh. turanicus 1/1 1/0 M, 2/0F, 1/1 N 4/1 4/1 1/0 1/0 1/0 1/0 0

Rh. microplus 1/1 1/0 M, 2/1F, 1/0 N 4/1 4/1 0 0 1/0 0 0

Total 4/4 8/4 M, 11/5F, 5/2 N 24/11 17/7 2/0 4/1 3/0 1/0 2/0

Bajaur Rh. sanguineus 1/2 5/4 M, 6/5F, 3/3 N 14/12 2/1 0 1/1 0 0 1/0

Rh. haemaphysaloides 1/1 2/1 M, 3/2F, 1/0 N 6/3 3/1 1/0 1/0 1/0 0 0

Rh. turanicus 1/1 0 M, 2/1F, 1/0 N 3/1 2/1 2/0 0 0 0 0

Rh. microplus 1/0 3/0 M, 1/0F, 1/0 N 5/0 1/0 0 0 0 0 0

Total 4/4 10/5 M, 12/8F, 

6/3 N

28/16 8/3 3/0 2/1 1/0 0 1/0

Mohmand Rh. sanguineus 2/1 5/4 M, 4/2F, 2/0 N 11/6 6/3 2/1 2/1 1/0 1/0 0

Rh. haemaphysaloides 1/1 2/1 M, 2/0F, 1/1 N 5/2 2/1 0 1/0 1/0 0 0

Rh. turanicus 1/1 2/0 M, 3/1F, 2/0 N 7/1 3/1 0 0 0 0 0

Rh. microplus 1/1 1/0 M, 3/1F, 0 N 4/1 2/0 0 0 0 0 0

Total 5/4 10/5 M, 12/4F, 

5/1 N

27/10 13/5 2/1 3/1 2/0 1/0 0

Mansehra Rh. sanguineus 1/1 8/4 M, 4/2F, 1/1 N 13/7 3/1 1/0 1/1 1/0 0 0

Rh. haemaphysaloides 1/1 1/0 M, 2/2F, 2/0 N 5/2 2/1 0 1/0 1/0 0 0

Rh. turanicus 1/1 2/0 M, 2/1F, 2/0 N 6/1 2/1 1/0 0 1/0 0 0

Rh. microplus 1/1 0 M, 3/2F, 1/0 N 4/2 3/1 0 0 0 0 0

Total 4/4 11/4 M, 11/7F, 

6/1 N

28/12 10/4 2/0 2/1 3/0 0 0

(Continued)

TABLE 1 (Continued)
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Districts Tick species Number of hosts 
(symptomatic/
asymptomatic)

Ticks 
collected 

(S/A)* Male, 
Female, 
Nymph

Total 
(S/A)*

Subjected to 
PCR (S/A)*

Bacterial species (S/A)* Protozoan 
(S/A)*

Ehrlichia 
spp.

Anaplasma 
spp.

Rickettsia 
spp.

Coxiella 
spp.

Hepatozoon 
spp.

Abbottabad Rh. sanguineus 2/1 7/4 M, 4/3F, 4/1 N 15/8 3/1 1/1 2/0 0 0 0

Rh. haemaphysaloides 1/1 3/0 M, 2/2F, 1/0 N 6/2 2/1 1/0 0 0 0 0

Rh. turanicus 1/1 1/0 M, 2/1F, 1/0 N 4/1 4/1 0 1/0 1/0 0 0

Rh. microplus 1/1 1/1 M, 3/1F, 1/0 N 5/2 2/1 0 0 1/0 0 0

Total 5/4 12/5 M, 11/7F, 

7/1 N

30/13 11/4 2/1 3/0 2/0 0 0

Kohat Rh. sanguineus 2/1 6/1 M, 6/2F, 3/0 N 15/3 5/1 0 1/1 1/0 0 0

Rh. haemaphysaloides 1/1 2/0 M, 2/1F, 1/0 N 5/1 2/1 1/0 0 0 0 0

Rh. turanicus 1/1 0 M, 4/1F, 1/0 N 5/1 2/1 2/1 0 0 0 0

Rh. microplus 1/1 0 M, 2/1F, 1/0 N 3/1 3/1 1/0 1/0 0 0 0

Total 5/4 8/1 M, 14/5F, 6/0 N 28/6 12/4 4/1 2/1 1/0 0 0

Lakki Marwat Rh. sanguineus 1/1 6/6 M, 6/5F, 4/2 N 16/13 5/2 1/1 2/0 1/0 1/0 0

Rh. haemaphysaloides 1/1 3/0 M, 5/2F, 2/0 N 10/2 2/1 0 1/0 0 1/0 0

Rh. turanicus 1/1 1/0 M, 4/4F, 2/0 N 7/4 4/3 1/0 0 1/0 1/0 0

Rh. microplus 1/0 0 M, 1/0F, 0 N 1/0 1/0 0 0 0 0 0

Total 4/3 10/6 M, 16/11F, 

8/2 N

34/19 12/6 2/1 3/0 2/0 3/0 0

Tank Rh. sanguineus 1/1 8/4 M, 4/3F, 4/0 N 16/7 4/1 1/0 1/0 1/0 1/0 0

Rh. haemaphysaloides 1/1 2/2 M, 4/2F, 0 N 6/4 2/1 0 0 0 0 0

Rh. turanicus 1/1 1/1 M, 1/0F, 1/0 N 3/1 3/1 1/0 1/0 1/0 0 0

Rh. microplus 1/0 2/0 M, 1/0F, 0 N 3/0 3/0 0 0 0 0 0

Total 4/3 13/7 M, 10/5F, 

5/0 N

28/12 12/3 2/0 2/0 2/0 1/0 0

Grand total 63/54 (117) 141/68 (209) M, 

172/93 (265) F, 

79/22 (101) N

392/183 

(575)

193/78 (271) 31/9 (40) 43/11 (54) 31/2 (33) 19/4 (23) 9/0 (9)

*S, Symptomatic; A, Asymptomatic.

TABLE 1 (Continued)
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the 18S rDNA sequence of H. canis was clustered with the same 
species (Figure 5C). The obtained 18S rDNA sequence of H. canis was 
deposited to the GenBank (Supplementary Table S2).

Coxiella spp.
The present groEL sequence of Coxiella sp. showed 97–98% 

maximum identity with the Coxiella sp. sequence, followed by 
96.55% identity with C. burnetii. Other Coxiella sp. groEL 
sequences showed 100% identity with C. burnetii. In the 
phylogenetic tree, the groEL sequence of Coxiella sp. was clustered 
with the Coxiella sp. endosymbiont sequences, while the sequence 
of C. burnetii was clustered with the corresponding 
species (Figure 6A). The obtained groEL sequences of Coxiella sp. 
and C. burnetii were deposited to the GenBank 
(Supplementary Table S2).

Anaplasma spp.
According to the BLAST results, 16S rDNA Anaplasma spp. 

sequences showed 99.12% maximum identity with A. capra, 100% 
maximum identity with A. platys sequences, and 99.13% maximum 
identity with an undermined Anaplasma sp. In the phylogenetic tree, 
the 16S rDNA sequences of A. capra, A. platys, and undetermined 
Anaplasma sp. were clustered with the corresponding species 
(Figure 6B). The obtained 16S rDNA sequences of A. capra, A. platys, 
and Anaplasma sp. were deposited to the GenBank 
(Supplementary Table S2).

Rickettsia spp.
A rickettsial gltA sequence showed 100% identity with 

R. massiliae, and in the phylogenetic tree, it was clustered with the 
corresponding species (Figure 7A). Another obtained gltA sequence 
showed 100% identity with “Ca. R. shennongii,” and it was 
phylogenetically clustered with the corresponding species 
(Figure 7A). A third rickettsial gltA sequence showed 100% identity 
with R. aeschlimannii, and in the phylogenetic tree, it was clustered 
with the corresponding species (Figure 7A).

The obtained ompA sequence showed 100% identity with 
R. massiliae and was phylogenetically clustered with the same species 
(Figure 7B). Another ompA sequence showed 100% identity with 
“Ca. R. shennongii” and in the phylogenetic tree, it was clustered with 
the same species (Figure 7B). A third ompA fragment showed 99.8–
100% identity with R. aeschlimannii sequences, and in the 
phylogenetic tree, it was clustered with the same species (Figure 7B).

In the case of ompB, the obtained sequences showed 100% identity 
with R. massiliae. In the phylogenetic tree, the obtained R. massiliae 
sequence was clustered with the same species. Another ompB sequence 
showed 100% identity with “Ca. R. shennongii” and in the phylogenetic 
tree, this sequence was clustered with “Ca. R. shennongii” (Figure 7C). 
A third ompB sequence showed 100% identity with R. aeschlimannii, 
and it was phylogenetically clustered with the corresponding species 
(Figure  7C). The obtained gltA, ompA, and ompB sequences of 
R. massiliae, “Ca. R. shennongii” and R. aeschlimannii were deposited 
to the GenBank (Supplementary Table S2).

FIGURE 3

Maximum likelihood phylogenetic trees based on 16S rDNA (A) and cox1 (B) partial sequences of Rhipicephalus spp. The Rhipicephalus glabrosscutatus 
sequence was used as an outgroup. The obtained sequences are shown in bold underline font.
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Discussion

BASDs are commonly exposed to vector-borne pathogens due to 
the lack of adequate protection against ectoparasites in different 

regions. Different bacterial and protozoal infections have been 
reported in ticks infesting dogs, depending on the status of reservoir 
hosts, geographical variations in the exposure to tick vectors, detection 
methods, and the time of testing (2). The epidemiological situations 

FIGURE 5

Maximum likelihood phylogenetic trees based on 16S rDNA (A) and dsb (B) for Ehrlichia spp. and 18S rDNA (C) partial sequences for Hepatozoon canis. 
The Wolbachia pipientis 16S rDNA, Ehrlichia ruminantium dsb, and Hepatozoon catesbianae, Hepatozoon thori, Hepatozoon tenuis, and Hepatozoon 
involucrum 18S rDNA sequences were used as an outgroup. The obtained sequences are shown in bold underline font.

FIGURE 4

Molecular prevalence of detected pathogens in butcher-associated stray dog ticks.
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FIGURE 7

Maximum likelihood phylogenetic trees based on gltA (A), ompA (B), and ompB (C) partial sequences of Rickettsia spp. The Rickettsia canadensis gltA, 
Rickettsia akari and Rickettsia australis ompA, and Rickettsia akari and Rickettsia australis ompB sequences were used as an outgroup. The obtained 
sequences are shown in bold underline font.

FIGURE 6

Maximum likelihood phylogenetic trees based on groEL (A) and 16S rDNA (B) partial sequences of Coxiella spp. and Anaplasma spp., respectively. The 
Legionella jordanis groEL and Ehrlichia canis 16S rDNA sequences were used as an outgroup. The obtained sequences are shown in bold underline font.
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of ticks and tick-borne pathogens associated with BASDs near butcher 
shops have not been previously investigated. A combination of 
morphological and molecular characterization resulted in the 
identification of several tick species infesting BASDs, including Rh. 
sanguineus, Rh. haemaphysaloides, Rh. turanicus, and Rh. microplus. 
The examined ticks were found positive for a variety of pathogenic 
and undetermined microorganisms, including species of the genera 
Ehrlichia, Coxiella, Hepatozoon, Anaplasma, and Rickettsia, which can 
be transmitted and pose health threats to humans, as well as wild and 
domestic animals. The different detected pathogenic and undermined 
species included E. minasensis, Ehrlichia sp., H. canis, Coxiella sp., 
C. burnetii, A. capra, A. platys, Anaplasma sp., R. massiliae, “Ca. 
R. shennongii” and R. aeschlimannii. This is the first investigation of 
Ehrlichia spp., Hepatozoon spp., Coxiella spp., Anaplasma spp., and 
Rickettsia spp. in ticks infesting BASDs. In Pakistan, E. minasensis, 
H. canis, C. burnetii, A. capra, A. platys, “Ca. R. shennongii” and 
R. aeschlimannii were detected for the first time, and they pose 
zoonotic threats to public health.

Abandoned stray dogs are frequently exposed and particularly 
vulnerable to the high risks of tick infestation and dispersal (5). Several 
tick species infest stray dogs in urban and peri-urban regions, and various 
pathogens are transmitted from dogs to other animals and humans (28). 
Surveillance requires a thorough understanding of tick dentification to 
reduce losses associated with tick-borne disease-causing agents (9, 16, 40). 
Morphological identification notwithstanding, the best way to determine 
the taxonomic status of the tick species is through molecular 
characterization utilizing 16S rDNA and cox1 genetic markers (10, 15, 41, 
42). The 16S rDNA and cox1 sequences for Rh. sanguineus, Rh. turanicus, 
Rh. microplus, and Rh. haemaphysaloides in the present study revealed the 
closest identities of these ticks to the corresponding species from the 
Oriental and Palearctic regions.

BASDs freely roam outdoors, which increases their exposure to 
ticks and leads to uncontrolled breeding. They are mostly spotted in 
urban and rural localities. In general, stray dogs tend to carry a 
number of ticks, most commonly the dog tick Rh. sanguineus, which 
is a vector for several pathogens (43). Two Ehrlichia species 
(E. minasensis and Ehrlichia sp.) were detected in ticks in BASDs. In 
previous studies, E. minasensis has been detected in ticks infesting 
different hosts, such as cattle, horses, goats, and dogs (44, 45). For the 
genetic characterization of Ehrlichia spp., the 16S rDNA and dsb 
partial fragments have been identified as accurate genetic markers at 
the species level (46, 47). The 16S rDNA fragments of Ehrlichia spp. 
were closely related to the Ehrlichia sp. and E. minasensis species. In 
the 16S rDNA-based phylogeny, Ehrlichia sp. formed a sister clustered 
with E. ewingii and E. ruminantium, suggesting that this species may 
be of zoonotic concern. In the case of dsb fragments, the present 
E. minasensis sequences were phylogenetically clustered with the same 
species reported from the Palearctic, Neotropical, Australian, and 
Oriental regions. In both phylogenetic trees based on the 16S rDNA 
and dsb, the appearance of E. minasensis as a sister clade to E. canis 
might suggest that both are potentially canine pathogens (45, 47). 
Considering the detection of Ehrlichia spp. in ticks infesting free-
roaming BASDs, further investigations are critical to disclose its 
association between stray dogs (BASDs) and humans.

Hepatozoon canis is a tick-borne apicomplexan parasite infecting 
canids and has long been known to be  transmitted by ingesting 
infected Rh. sanguineus and Rh. turanicus ticks (48). The available 
phylogeny of H. canis is based on the 18S rDNA sequence, which has 
been demonstrated to be useful for inferring phylogenetic analyzes at 

the species level (48). Phylogenetic analysis based on the 18S rDNA 
sequence of this species suggests its close resemblance with the same 
species circulating in the Palearctic and Oriental regions.

More than 40 Ixodid (Rhipicephalus, Dermacentor, Haemaphysalis, 
Amblyomma, and Ixodes) and Argasid (Ornithodoros and Argas) tick 
species are known to harbor bacterial microbes related to C. burnetii 
and other Coxiella-like endosymbionts, which have been commonly 
detected in Rhipicephalus spp., particularly Rh. sanguineus (25, 49). 
Rhipicephalus spp. may play an important role in the transmission of 
C. burnetii among the hosts. Except for C. burnetii, there is no 
evidence that Coxiella spp. cause disease in the host; however, the 
pathogenic roles of these species have remained undetermined (49). 
Q fever is a vector-borne zoonotic disease caused by C. burnetii that 
affects a wide range of hosts globally. Coxiella spp. have been detected 
in Rh. sanguineus (s.l.) based on the groEL sequence (26). Since its 
successful detection in various ticks, the groEL sequences are 
potentially specific for Coxiella-like endosymbionts (18, 25). Likewise, 
the groEL partial sequence of Coxiella sp. and C. burnetii was detected 
in Rhipicephalus ticks of BASDs, which were closely related to the 
corresponding species.

Several tick species have been reported as vectors of Anaplasma, 
particularly in the genus Rhipicephalus (14, 50). Although Anaplasma 
spp. are prevalent in ixodid ticks, relatively limited studies have been 
conducted to investigate its detection, especially in BASD ticks (2). 
Anaplasma spp. were detected in high abundance in BASD ticks, which 
is nearly comparable to prior studies (2). Anaplasma platys and A. capra 
have mostly been considered to be transmitted by the dog tick Rh. 
sanguineus, and dogs have been confirmed as the hosts for A. capra in 
China (27). For the genetic characterization of Anaplasma spp., the 
highly conserved 16S rDNA marker has been historically employed (14, 
27, 50). Likewise, the 16S rDNA fragments of Anaplasma spp., such as 
A. capra and A. platys, and an undermined Anaplasma sp. detected in 
Rhipicephalus spp. align with previous reports (14, 50). The detection of 
Anaplasma spp. in ticks infesting BASDs in Pakistan might suggest its 
geographic expansion, highlighting the need for further comprehensive 
studies on its pathogenicity to screen for the epidemiological and 
evolutionary status, which was previously underestimated due to the 
lack of sufficient data.

In Pakistan, earlier epidemiological investigations on the detection of 
Rickettsia spp. were mostly performed on ticks infesting small and large 
ruminants, equine, and wild hosts (11, 15, 16, 29, 51). Despite this gap, 
we used molecular screening of Rickettsia spp. in ticks infesting BASDs. 
Genetic markers, such as gltA, ompA, and ompB, have been utilized to 
determine a high degree of intraspecific variation and are extensively used 
for reliable characterization at the species level (42). We detected and 
characterized for the first time three rickettsial agents, Rickettsia massiliae, 
“Ca. Rickettsia shennongii” and Rickettsia aeschlimannii in ticks infesting 
BASDs. Rickettsia massiliae and Rickettsia aeschlimannii have been 
detected in ticks of multiple hosts in several districts of Pakistan (19, 52). 
The detection of “Ca. R. shennongii” represents the first record of any host 
or tick in Pakistan. Recently, this species was detected in Rh. 
haemaphysaloides ticks in China as a novel spotted fever group (SFGR) 
(25). The detection of “Ca. R. shennongii” in Rh. sanguineus, Rh. 
haemaphysaloides, and Rh. turanicus suggests its diverse host and 
distribution range and enforces the need to investigate its zoonotic threat 
to other hosts, including humans. These findings might advance our 
knowledge of the diversity of circulating tick-borne pathogens in the 
region, highlighting the need for further comprehensive surveillance 
studies to properly monitor ticks for potential zoonotic threats.
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Conclusion

To effectively manage ticks and tick-borne infections, the 
community must be  educated regarding the associated risks and 
prevention strategies. The current endeavor highlights the risks of 
ticks infesting BASDs to public health. A comprehensive analysis was 
undertaken to determine which bacterial and protozoal pathogens 
might be carried by ticks infesting BASDs that inhabit butcher shops. 
This study will provide fundamental knowledge about the risks 
associated with these free-roaming BASDs, convincing health 
policymakers to ensure the control of any zoonotic consequences 
associated with these ticks infesting dogs near butcher shops. To 
minimize the risks of ticks and tick-borne diseases related to BASDs, 
proper disposal of meat and butcher waste should be adopted, and 
open-street butcher shops should be  properly managed. Further 
surveillance studies are essential to understand the status of ticks and 
tick-borne pathogens in BASDs in different regions.
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