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Public health is a major concern for several developing countries due to infectious
agents transmitted by hematophagous arthropods such as ticks. Health risks
due to infectious agents transmitted by ticks infesting butcher-associated stray
dogs (BASDs) in urban and peri-urban regions have been neglected in several
developing countries. To the best of the authors’ knowledge, this is the first study
assessing public health risks due to ticks infesting BASDs in Pakistan’s urban
and peri-urban areas. A total of 575 ticks (390 from symptomatic and 183 from
asymptomatic BASDs) were collected from 117 BASDs (63 symptomatic and 54
asymptomatic); the ticks belonged to 4 hard tick species. A subset of each tick
species’ extracted DNA was subjected to polymerase chain reaction (PCR) to
amplify the 16S rDNA and cox1 sequences of the reported tick species, as well as
bacterial and protozoal agents. The ticks 16S rDNA and cox! sequences showed
99-100% identities, and they were clustered with the sequence of corresponding
species from Pakistan and other countries in phylogenetic trees. Among the
screened 271 ticks' DNA samples, Anaplasma spp. was detected in 54/271
(19.92%) samples, followed by Ehrlichia spp. (n=40/271, 14.76%), Rickettsia spp.
(n=33/271, 12.17%), Coxiella spp. (n=23/271, 448%), and Hepatozoon canis
(n=9/271, 3.32%). The obtained sequences and phylogenetic analyzes revealed
that the pathogens detected in ticks were Ehrlichia minasensis, Ehrlichia sp.,
Hepatozoon canis, Coxiella burnetii, Coxiella sp., Anaplasma capra, Anaplasma
platys, Anaplasma sp., Rickettsia massiliae, “Candidatus Rickettsia shennongii” and
Rickettsia aeschlimannii. Tick-borne pathogens such as E. minasensis, H. canis,
A. capra, A. platys, and R. aeschlimannii, were detected based on the DNA for
the first time in Pakistan. This is the first report on public health risks due to ticks
infesting BASDs. These results not only provided insights into the occurrence of
novel tick-borne pathogens in the region but also revealed initial evidence of
zoonotic threats to both public health and domestic life.
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Introduction

The availability of survival resources (i.e., shelter, food, and water)
affects the dog population in a region and directly correlates with the
human population (1). Stray dogs are highly vulnerable to vector-borne
diseases (VBDs) of zoonotic concern and, consequently, pose threats to
human and animal health (2). Although the exact number globally is
unknown, 75% out of 700 million dogs are considered stray dogs (3).
They are the first farmed animals and are closely associated with humans
on cultural, social, and economic levels (4). Pakistan is a developing
country, and contemporary social issues have imposed an epidemic of
stray dogs that may affect both the welfare of the animals and the public’s
health, especially in urban and peri-urban areas (5). The exact number
of these free-roaming stray dogs in the country is unknown, and the
estimated stray dog population may have reached up to 3 million (6).

Tick species infesting stray dogs in the urban and peri-urban areas
include Rhipicephalus sanguineus senso lato (s.l.), Haemaphysalis
elliptica, Rhipicephalus microplus, Haemaphysalis erinacei, and
Haemaphysalis parva (7, 8). Knowledge of tick identification is vital
for surveillance to minimize the zoonotic consequences associated
with tick-borne pathogens (9). Despite the morphological
identification, genetic characterization using various genetic markers
such as 16S rDNA and cox! is a suitable approach to determine the
taxonomic status of a tick species (10-16).

Stray dogs being important reservoirs for tick-borne zoonotic
agents may pose a threat to public health by causing anaplasmosis,
rickettsiosis, babesiosis, query fever (Q fever), and ehrlichiosis (17-19).
The genus Ehrlichia has seven determined species: Ehrlichia canis,
Ehrlichia chaffeensis, Ehrlichia ruminantium, Ehrlichia muris, Ehrlichia
ewingii, Ehrlichia ovina, and Ehrlichia minasensis (20, 21). Ticks
responsible for the transmission of Ehrlichia spp. include species of the
genera Rhipicephalus, Hyalomma, Dermacentor, Amblyomma, and
Ixodes (20, 22). Canine monocytic ehrlichiosis (CME) is the most
common tick-borne zoonotic disease that affects dogs globally (23).
The brown dog tick, Rh. sanguineus, primarily vectors the etiological
agent of CME (23). Hepatozoon canis causes canine hepatozoonosis,
which is widely distributed in South America, Africa, Asia, and South
Europe (24). Q fever is a tick-borne infection caused by Coxiella
burnetii (25). Tick species of the genera Rhipicephalus, Hyalomma,
Amblyomma, Dermacentor, and Ixodes transmit this pathogen (26).
Anaplasmataceae, consisting of different genera, such as Anaplasma,
Ehrlichia, Neorickettsia, and Wolbachia, contains vector-borne bacteria
that are mainly transmitted by ticks (27). Tick species belonging to the
genera Amblyomma, Dermacentor, Haemaphysalis, Ixodes, and
Rhipicephalus transmit Anaplasma spp. to various hosts, including dogs
(8, 28). Anaplasma platys and Anaplasma phagocytophilum are the most
commonly detected species in dogs responsible for zoonotic diseases
(2). Dogs are reservoir hosts for various spotted fever group agents
(SEG) transmitted by Rh. sanguineus ticks (20). Rickettsial infections
transmitted by Rh. sanguineus include the spotted fever group

Abbreviations: BASDs, Butcher-associated stray dogs; BLAST, Basic local alignment
search too; gltA, Citrate synthase; SFGR, Spotted fever group Rickettsia; VBDs,
Vector-borne diseases; KP, Khyber Pakhtunkhwa; MEGA, Molecular evolutionary
genetics analysis; NCBI, National Center for Biotechnology Information; CME,
Canine monocytic ehrlichiosis; Q fever, Query fever; ompA, Outer membrane

protein; PCR, Polymerase chain reaction; rDNA, Ribosomal DNA.
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rickettsiosis caused by R. massiliae (20, 29), Mediterranean spotted
fever (MSF) caused by Rickettsia conorii (30), and Rocky Mountain
spotted fever (RMSF) caused by Rickettsia rickettsii (23). Dogs and their
associated ticks play a major role in the ecology and epidemiology of
several Rickettsia species, including Rickettsia aeschlimannii (23, 30).

The percentage of stray or semi-domesticated dogs is inversely
correlated with the gross domestic product (GDP) per capita.
Additionally, the burden of canine zoonotic parasites has been
correlated with poverty, but in some cases, accurate and updated
estimates regarding this data are lacking (31). Raising community
knowledge, raising awareness of unhealthy practices, and ensuring
preventive measures against disease-causing agents are crucial for
effectively controlling ticks and tick-borne pathogens (32). Stray dogs
survive through edible wastes from humans, especially from butchered
surroundings in urban and peri-urban areas, mostly in developing
countries. An overabundance of butcher trash appears to result from
the lack of proper waste management and disposal, mostly in
low-income countries (33). The abundance of discarded meat trash
that is readily available for feed mostly results in the presence of large
numbers of butcher-associated stray dogs (BASDs) close to butcher
shops. Pakistan is a low and middle-income country (LMIC) that is
heavily populated and socioeconomically underdeveloped (6, 11, 29).
Due to the lack of veterinary supervision and management of butcher
waste, it attracts hungry stray dogs who feed upon it. In Pakistan,
butcher shops on road and street sides are major reasons for the
spread of ticks that infest BASDs. No previous study has assessed
public health risks and the epidemiological status of ticks and tick-
borne pathogens on BASDs. This study aimed to identify the ticks
infesting BASDs and to molecularly detect associated tick-borne
pathogens that pose public health threats in urban and peri-
urban areas.

Materials and methods
Study model

This study was designed to detect infectious agents harbored by
ticks infesting BASDs. Stray dogs were observed in or near butcher
shops. To test the hypothesis that meat buyers in the study area might
be at risk due to tick-borne pathogens, ticks were observed on BASDs
mostly in or near butcher shops. Ticks were collected from these
BASD:s and subjected to molecular detection for various bacterial and
protozoal pathogens (Figure 1).

Study area

This study was conducted in 14 districts: Charsadda (34°09'46.2"N,
71°45’08.2"E), Mardan (34°11'41.8”N, 72°03’03.3”E), Malakand
(34°33'31.4°N, 71°56’50.1”E), Lower Dir (34°53'20.1”N, 71°53’15.2"E),
Buner (34°2848.9”N, 72°31'13.5"E), Swabi (34°07'44.0”N,
72°27'23.9"E), Nowshera (34°00°12.4°N, 71°59’42.1"E), Bajaur
(34°45'55.6”N, 71°30°54.0"E), Mohmand (34°29'05.3”N, 71°21'41.3"E),
Mansehra (34°1944.4”N, 73°12’15.3”E), Abbottabad (34°10'39.4”N,
73°14'09.4"E), Kohat (33°33’46.2”N, 71°28'20.4"E), Lakki Marwat
(32°36'12.4”N, 70°54'22.1"E), and Tank (32°12'52.5”N, 70°23’09.8"E)
in KP, Pakistan. The Global Positioning System (GPS) was used for the

frontiersin.org


https://doi.org/10.3389/fvets.2023.1246871
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org

Aliet al.

10.3389/fvets.2023.1246871

meat buyer

Sequencing

1 : = ] = =i
- pETCE

Molecular screening stray dog
infested ticks

Domestic, wild
hosts and
human

FIGURE 1

starving stray dog

Detected tick-borne pathogens

/ N\

/ Rickettsia ™\
{ \ Bacterial pathogens
[ Anp. {asma detected in stray dog
\ Ehrlichia / ticks
\ Coxiella /
\\\» ,/,/
Piroplasam species
Hepato?oon detected in stray dog
canis ticks

Study model describing the possible risks related to butcher-associated stray dogs. Parts of the figures were drawn by using pictures from Servier
Medical Art (http://smart.servier.com/), licensed under a Creative Commons Attribution 3.0 Unported License (accessed 02 May 2023).

geographical coordinates of the collection sites, and the study map was
designed using ArcGIS v. 10.3.1 (ESRI, Redlands, CA, United States;
Figure 2).

Tick collection and preservation

Ticks were collected from BASDs in or near butcher shops
from June 2021 to May 2022 in 14 selected districts. They were

Frontiers in Veterinary Science

carefully isolated from the host body using tweezers to avoid
external damage to the specimens. The specimens were rinsed in
distilled water, followed by 70% ethanol, and preserved in 100%
ethanol.

The examined BASDs consisted of both symptomatic and
asymptomatic dogs. Symptomatic dogs were characterized by
accompanying symptoms such as diarrhea, vomiting, limb
swelling, rashes, itching, seizures, fatigue, scabs or skin lesions, and
hair loss.
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Map showing the collection sites of tick samples in the selected districts.
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Morphology of ticks

The collected tick specimens were identified morphologically at
the species level under a stereomicroscope (SZ61, Olympus
Corporation, Tokyo, Japan)
identification keys (29, 34).

using standard morphological

DNA extraction and PCR

A total of 271 ticks (193 and 78 from symptomatic and
asymptomatic BASDs, respectively) were randomly selected for
molecular analyzes. Before DNA extraction, the specimens were
washed in distilled water, followed by absolute ethanol. Then, they
were kept in an incubator (30-45min) until dry (20-30min). Tick
specimens were cut with sterile scissors and homogenized in
phosphate-buffered saline using a micro pestle, and DNA was
extracted by employing the phenol-chloroform method (35). A
NanoDrop (Nano-Q, Optizen, Daejeon, South Korea) was used to
quantify the DNA, and the DNA samples were stored at —20°C for
further examination.

The extracted DNA was subjected to a polymerase chain reaction
(PCR; GE-96G, BIOER, Hangzhou, China) to amplify mitochondrial
16S ribosomal DNA (16S rDNA) and cytochrome C oxidase 1 (coxI)
fragments for tick identification. Each PCR reaction mixture
contained 25 pL volume, comprising 1 pL each primer (forward and
reverse; 10 uM), 8.5 pL PCR water “nuclease-free,” 12.5pL DreamTaq
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green MasterMix (2X; Thermo Scientific, Waltham, MA,
United States), and 2 pL of template DNA (100 ng/pl).

The extracted DNA was utilized for screening various tick-borne
pathogens based on different partial genes, such as 16S rDNA
(Anaplasma/Ehrlichia spp.), groEL (Coxiella spp.), dsb (Ehrlichia spp.),
18S rDNA (Hepatozoon spp.), and gltA, ompA, and ompB (Rickettsia
spp.). The nested PCR was used in the case of the groEL partial gene.
Each PCR experiment contained a negative control (PCR water
instead of the template DNA) and a positive control (the DNA of Rh.
microplus for ticks, R. massiliae for bacterial species, and Theileria
annulata for protozoal species). The primers used in the current study
and their thermocycler conditions are given in Supplementary Table S1.

The PCR products were electrophoresed on 1.5% agarose gel, and
the amplified samples were visualized under ultraviolet (UV) light using
a gel documentation system (BioDoc-IT™ Imaging Systems UVP, LLC,
Upland, United States). The PCR products that showed the expected size
results were purified using a commercial PCR clean-up kit (Macherey-
Nagel, Duren, Germany) following the manufacturer’s instructions.

DNA sequencing and phylogenetic analysis

PCR products of 16S rDNA and cox1 for ticks, as well as 16S rDNA,
groEL, dsb, 18S tDNA, gltA, ompA, and ompB for associated tick-borne
pathogens, were sent for capillary bidirectional sequencing (Macrogen
Inc., Seoul, South Korea). The obtained sequences were trimmed and
assembled using SeqMan v. 5 (DNASTAR, Inc., Madison/WI,
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United States) to remove poor reading sequences. The obtained multiple
identical sequences for each gene were considered a consensus sequence
and subjected to the basic local alignment search tool (BLAST) at the
National Center for Biotechnology Information (NCBI). Sequences
with maximum identities were downloaded in FASTA format from the
NCBI. The obtained sequences were aligned with the downloaded
sequences using ClustalW multiple alignments in BioEdit Sequence
Alignment Editor v. 7.0.5 (36). The coding nucleotide sequences were
aligned using MUSCLE (37). Phylogenetic trees were constructed
individually for each partial sequence of tick and associated tick-borne
pathogens, by employing the maximum likelihood (ML) method with
Kimura 2-parameter in Molecular Evolutionary Genetics Analysis
(MEGA-X), accompanied by a bootstrapping value of 1,000 (38).

Statistical analyzes

Tick data and associated pathogen information from all 14
districts were subjected to descriptive statistical analysis, and graphs
were designed in Microsoft Excel v. 2016 (Microsoft Office 365®). The
minimum infection rate (MIR) was used to estimate the prevalence of
infected ticks. To accomplish this, the number of PCR product ticks
was divided by the total number of collected ticks (39).

Results

A survey in the selected districts resulted in an overall collection
of 575 ticks (392 and 183 from symptomatic and asymptomatic BASDs,
respectively) from 117 BASDs (63 symptomatic and 54 asymptomatic),
comprising four hard tick species. Among the identified ticks, Rh.
sanguineus was the most prevalent tick species (1=292/575, 50.78%),
followed by Rh. haemaphysaloides (n=127/575, 22.08%), Rh. turanicus
counting (n=_87/575, 15.13%), and Rh. microplus clade C (n=69/575,
12.00%). The spatial distribution of the collected ticks revealed that
Mardan, Lakki Marwat, and Charsadda had the highest tick counts of
58, 53, and 51 ticks, respectively. The Malakand district (27) had the
least number of collected ticks among the selected districts.

Of the 575 tick specimens, 271 (47.13%; 193 and 78 from
symptomatic and asymptomatic BASDs, respectively) were subjected
to PCR for the molecular screening of various tick-borne pathogens,
including Ehrlichia, Anaplasma, Rickettsia, Coxiella and Hepatozoon
species (Supplementary Table S1). According to the PCR-based
screening and subsequent sequencing of targeted bacterial and
protozoal agents, Anaplasma spp. were the most prevalent (n=>54/271,
19.92%), followed by Ehrlichia spp. (n=40/271, 14.76%), Rickettsia
spp. (n=33/271, 12.17%), Coxiella spp. (n=23/271, 8.49%), and
Hepatozoon spp. (n=9/271, 3.32%) in the ticks infesting BASDs
(Table 1). None of the ticks was found positive for multiple pathogens.

The results of the prevalence of symptomatic and asymptomatic
BASD:s in ticks, as well as the molecular screening of tick-associated
bacterial and protozoal pathogens, are presented in Table 1.

DNA sequences and phylogeny of ticks

Sequencing by BLAST analysis of the 16S rDNA for Rh.
sanguineus, Rh. turanicus, Rh. microplus, and Rh. haemaphysaloides
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showed 99.24-100% maximum identities to the corresponding
species. In the phylogenetic tree, the 16S rDNA sequences of Rh.
sanguineus, Rh. turanicus, Rhipicephalus microplus (clade C), and
Rhipicephalus haemaphysaloides were clustered with the corresponding
species (Figure 3A).

According to the BLAST results, the obtained cox!I sequences of
Rh. sanguineus, Rh. turanicus, Rh. microplus, and Rh. haemaphysaloides
shared 99.54-100% maximum identities with the corresponding
species. In the phylogenetic tree, the coxI sequences of Rh. sanguineus,
Rhipicephalus and  Rhipicephalus
haemephysalides were clustered with the corresponding species
(Figure 3B). All the obtained 16S rDNA and coxI sequences of Rh.
sanguineus, Rh. turanicus, Rh. microplus, and Rh. haemaphysaloides

Rh. turanicus, microplus,

were deposited to the GenBank (Supplementary Table S2).

Prevalence of pathogens in ticks

Altogether, 271 out of 575 collected ticks were screened for
detecting bacterial and protozoal pathogens. Among the four tested
tick species, Rh. sanguineus was the most infected tick comprising 81
positive samples with a minimum infection rate of 29.88%
(n=81/271), followed by Rh. haemaphysaloides with a minimum
infection rate of 12.91% (n=35/271), Rh. turanicus with a minimum
infection rate of 10.70% (n=29/271), and Rh. microplus with a
minimum infection rate of 5.16% (n=14/271). All these minimum
infection rates were statistically significant. Sequencing of the
PCR-based amplified DNA resulted in the detection of eight
pathogens-E. minasensis, H. canis, C. burnetii, Anaplasma capra,
A. platys, R. massiliae, “Candidatus Rickettsia shennongii” and
R. aeschlimannii. Three undetermined species, Ehrlichia sp., Coxiella
sp., and Anaplasma sp. were also detected. All pathogens and
undetermined species were detected in the collected four tested tick
species, except R. aeschlimannii, which was detected only in Rh.
sanguineus, whereas A. capra, A. platys, and “Ca. R. shennongii” were
detected in Rh. sanguineus, Rh. haemaphysaloides, and Rh. turanicus
(Figure 4).

Sequence and phylogenetic analyzes of
tick-borne pathogens

Ehrlichia spp.

According to the BLAST results, the 16S rDNA sequences of
Ehrlichia sp. and E. minasensis showed 100% identity with the
corresponding species. In the phylogenetic tree, the 16S rDNA
sequences of Ehrlichia sp. and E. minasensis were clustered with the
corresponding sequences (Figure 5A). In the case of the dsb sequence,
the BLAST results of the dsb sequence of Ehrlichia sp. showed 100%
identity with the E. minasensis sequence. In the phylogenetic tree, the
dsb sequence of E. minasensis was clustered with the same species
(Figure 5B). The obtained 16S rDNA and dsb sequences of Ehrlichia
sp. and E. minasensis were deposited to the GenBank
(Supplementary Table S2).

Hepatozoon canis

The obtained 18S rDNA sequence of Hepatozoon sp. showed
99-100% identity with the H. canis sequence. In the phylogenetic tree,
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TABLE 1 Distribution pattern of butcher-associated stray dog ticks and the detection of bacterial and protozoal pathogens in these ticks.
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Districts Tick species Number of hosts Ticks Total Subjected to Bacterial species (S/A)* Protozoan
(symptomatic/ collected (S/A)* PCR (S/A)* (S/A)*
asymptomatic) (s{:Ae)r; glllglle, Ehrlichia Anaplasma Rickettsia Coxiella Hepatozoon

Nymph Spp. Spp. Spp. Spp. Spp.

Charsadda Rh. sanguineus 172 6/2M, 7/4F, 2/2N 15/8 713 171 2/1 2/0 1/1 1/0

Rh. haemaphysaloides 1/1 3/2M, 3/3E 1/1N 716 4/3 1/1 1/1 0 1/0 0
Rh. turanicus 1/1 1/1M, 2/1E 2/0N 5/2 4/1 0 1/0 1/0 0 0
Rh. microplus 11 1/0M, 3/1F, 2/1N 6/2 2/2 1/0 0 0 0 0

Total 4/5 11/5M, 15/9E, 33/18 17/9 3/2 4/2 3/0 2/1 1/0

7/4N

Mardan Rh. sanguineus 3/1 6/6 M, 10/4F, 2/2N 18/12 11/4 171 4/1 3/1 2/1 1/0

Rh. haemaphysaloides 171 3/2M, 4/3F 1/1N 8/6 32 0 1/1 1/0 1/1 0
Rh. turanicus 1/1 2/2M, 1/1F, 2/0N 5/3 2/1 0 1/0 0 1/0 0
Rh. microplus 11 2/1M, 2/0F 1/0N 5/1 4/2 0 1/0 0 1/0 0

Total 6/4 13/11M, 17/8F, 36/22 20/9 11 712 4/1 5/2 1/0

6/3N

Malakand Rh. sanguineus 1/1 3/2M, 4/3E 1/0N 8/5 715 0 3/1 0 1/1 1/0

Rh. haemaphysaloides 171 2/0M, 2/1E 1/0N 5/1 5/1 2/0 1/0 1/0 1/0 0
Rh. turanicus 1/1 1/0M, 1/1EF, ON 2/1 2/1 0 0 0 0 1/0
Rh. microplus 11 1/0M, 2/1E, 1/0N 4/1 4/1 0 1/0 1/0 1/0 1/0
Total 4/4 712M, 9/6F, 3/0N 19/8 18/8 2/0 5/1 2/0 3/1 3/0
Dir Lower Rh. sanguineus 1/1 4/4M, 4/2F, 1/0N 9/6 4/2 0 1/0 11 1/0 1/0
Rh. haemaphysaloides 2/1 3/1M, 3/2F, 1/1N 714 4/2 2/0 0 1/0 1/0 0
Rh. turanicus 11 1/0M, 3/3F, 2/0N 6/3 6/3 11 1/0 0 0 0
Rh. microplus 1/1 1/1M, 2/2E 2/0N 5/3 5/3 1/1 0 0 0 0
Total 5/4 9/6 M, 12/9F, 6/1N 27/16 19/10 4/2 2/0 2/1 2/0 1/0
Buner Rh. sanguineus 2/1 5/2M, 7/2F, 2/2N 14/6 3/1 1/0 1/0 1/0 0 0
Rh. haemaphysaloides 1/1 2/1M, 3/1F, 2/0N 712 3/2 0 0 1/0 0 0
Rh. turanicus 1/0 2/0M, 3/0E ON 5/0 4/0 0 0 1/0 0 0
Rh. microplus 1/0 1/0M, 1/0F, 1/0N 3/0 3/0 0 0 0 0 0
Total 5/2 10/3 M, 14/3F, 29/8 13/3 1/0 1/0 3/0 0 0
5/2N
(Continued)
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TABLE 1 (Continued)

Districts Tick species Number of hosts Ticks Total Subjected to Bacterial species (S/A)* Protozoan
(symptomatic/ collected (S/A)* PCR (S/A)* (S/A)*
asymptomatic) (S{:/Z)r'; Z\:}e, Ehrlichia Anaplasma Rickettsia Coxiella Hepatozoon

Nymph SpPp. SpPp. Spp-
Swabi Rh. sanguineus 12 4/3M, 3/3F, 3/2N 10/8 3/1 0 1/1 1/0 0 0
Rh. haemaphysaloides 171 2/1M, 2/1E 1/0N 5/2 4/1 1/0 1/0 0 0 0
Rh. turanicus 1/1 2/0M, 2/1E, ON 4/1 2/0 0 1/0 0 0 0
Rh. microplus 11 1/0M, 1/1F, ON 2/1 2/1 0 0 0 1/0 0
Total 4/5 9/4M, 8/6F, 4/2N 21/12 11/3 1/0 3/1 1/0 1/0 0
Nowshera Rh. sanguineus 1/1 4/4M, 4/1F, 3/1N 11/6 5/3 1/0 2/1 1/0 0 1/0
Rh. haemaphysaloides 1/1 2/0M, 3/3F, ON 5/3 4/2 0 1/0 0 0 1/0
Rh. turanicus 11 1/0M, 2/0F, 1/1N 4/1 4/1 1/0 1/0 1/0 1/0 0
Rh. microplus 11 1/0M, 2/1E, 1/0N 4/1 4/1 0 0 1/0 0 0
Total 4/4 8/4M, 11/5F, 5/2N 24/11 1717 2/0 4/1 3/0 1/0 2/0
Bajaur Rh. sanguineus 1/2 5/4M, 6/5F, 3/3N 14/12 2/1 0 1/1 0 0 1/0
Rh. haemaphysaloides 1/1 2/1M, 3/2F, 1/0N 6/3 31 1/0 1/0 1/0 0 0
Rh. turanicus 11 0M, 2/1F 1/0N 3/1 2/1 2/0 0 0 0 0
Rh. microplus 1/0 3/0M, 1/0F, 1/0N 5/0 1/0 0 0 0 0 0

Total 4/4 10/5M, 12/8F, 28/16 8/3 3/0 2/1 1/0 0 1/0

6/3N

Mohmand Rh. sanguineus 2/1 5/4M, 4/2F, 2/0N 11/6 6/3 2/1 2/1 1/0 1/0 0

Rh. haemaphysaloides 1/1 2/1M, 2/0F, 1/1N 5/2 2/1 0 1/0 1/0 0 0
Rh. turanicus 11 2/0M, 3/1E 2/0N 7/1 3/1 0 0 0 0 0
Rh. microplus 11 1/0M, 3/1F, ON 4/1 2/0 0 0 0 0 0

Total 5/4 10/5M, 12/4F, 27/10 13/5 2/1 3/1 2/0 1/0 0

5/1IN

Mansehra Rh. sanguineus 171 8/4M, 4/2F 1/1N 13/7 3/1 1/0 1/1 1/0 0 0

Rh. haemaphysaloides 1/1 1/0M, 2/2F 2/0N 5/2 2/1 0 1/0 1/0 0 0
Rh. turanicus 11 2/0M, 2/1E 2/0N 6/1 2/1 1/0 0 1/0 0 0
Rh. microplus 11 0M, 3/2F 1/0N 4/2 3/1 0 0 0 0 0
Total 4/4 11/4M, 11/7E, 28/12 10/4 2/0 2/1 3/0 0 0
6/1N
(Continued)
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TABLE 1 (Continued)

Districts Tick species Number of hosts Ticks Total Subjected to Bacterial species (S/A)* Protozoan
(symptomatic/ collected (S/A)* PCR (S/A)* (S/A)*
asymptomatic) (S{:/Z)r; glllglle, Ehrlichia Anaplasma Rickettsia Coxiella Hepatozoon

Nymph spp. spp.
Abbottabad Rh. sanguineus 2/1 714 M, 4/3F, 4/1N 15/8 3/1 171 2/0 0 0 0
Rh. haemaphysaloides 1/1 3/0M, 2/2F 1/0N 6/2 2/1 1/0 0 0 0 0
Rh. turanicus 171 1/0M, 2/1E 1/0N 4/1 4/1 0 1/0 1/0 0 0
Rh. microplus 171 1/1M, 3/1F, 1/0N 5/2 2/1 0 0 1/0 0 0

Total 5/4 12/5M, 11/7E, 30/13 11/4 2/1 3/0 2/0 0 0

7/1N

Kohat Rh. sanguineus 2/1 6/1M, 6/2F, 3/0N 15/3 5/1 0 1/1 1/0 0 0

Rh. haemaphysaloides 171 2/0M, 2/1E 1/0N 5/1 2/1 1/0 0 0 0 0
Rh. turanicus 1/1 0M, 4/1F, 1/0N 5/1 2/1 2/1 0 0 0 0
Rh. microplus 11 0M, 2/1F 1/0N 3/1 3/1 1/0 1/0 0 0 0
Total 5/4 8/1M, 14/5F, 6/0N 28/6 12/4 4/1 2/1 1/0 0 0
Lakki Marwat Rh. sanguineus 1/1 6/6M, 6/5F, 4/2N 16/13 5/2 1/1 2/0 1/0 1/0 0
Rh. haemaphysaloides 171 3/0M, 5/2F, 2/0N 10/2 2/1 0 1/0 0 1/0 0
Rh. turanicus 11 1/0M, 4/4F, 2/0N 7/4 4/3 1/0 0 1/0 1/0 0
Rh. microplus 1/0 0M, 1/0E ON 1/0 1/0 0 0 0 0 0

Total 4/3 10/6 M, 16/11F, 34/19 12/6 2/1 3/0 2/0 3/0 0

8/2N

Tank Rh. sanguineus 1/1 8/4M, 4/3F, 4/0N 16/7 4/1 1/0 1/0 1/0 1/0 0

Rh. haemaphysaloides 1/1 2/2M, 4/2F, ON 6/4 2/1 0 0 0 0 0
Rh. turanicus 11 1/1M, 1/0F, 1/0N 3/1 3/1 1/0 1/0 1/0 0 0
Rh. microplus 1/0 2/0M, 1/0E, ON 3/0 3/0 0 0 0 0 0

Total 4/3 13/7 M, 10/5F, 28/12 12/3 2/0 2/0 2/0 1/0 0

5/0N

Grand total 63/54 (117) 141/68 (209) M, 392/183 193/78 (271) 31/9 (40) 43/11 (54) 31/2 (33) 19/4 (23) 9/0 (9)

172/93 (265) F, (575)
79/22 (101) N

*S, Symptomatic; A, Asymptomatic.

e ny

TL89¥2T'$202'S1PN/685S°0T


https://doi.org/10.3389/fvets.2023.1246871
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org

Aliet al.

the 18S rDNA sequence of H. canis was clustered with the same
species (Figure 5C). The obtained 18S rDNA sequence of H. canis was
deposited to the GenBank (Supplementary Table 52).

Coxiella spp.

The present groEL sequence of Coxiella sp. showed 97-98%
maximum identity with the Coxiella sp. sequence, followed by
96.55% identity with C. burnetii. Other Coxiella sp. groEL
sequences showed 100% identity with C. burnetii. In the
phylogenetic tree, the groEL sequence of Coxiella sp. was clustered
with the Coxiella sp. endosymbiont sequences, while the sequence
of C. burnetii the
species (Figure 6A). The obtained groEL sequences of Coxiella sp.
and C. the GenBank
(Supplementary Table S2).

was clustered with corresponding

burnetii  were deposited to

Anaplasma spp.

According to the BLAST results, 16S rDNA Anaplasma spp.
sequences showed 99.12% maximum identity with A. capra, 100%
maximum identity with A. platys sequences, and 99.13% maximum
identity with an undermined Anaplasma sp. In the phylogenetic tree,
the 16S rDNA sequences of A. capra, A. platys, and undetermined
Anaplasma sp. were clustered with the corresponding species
(Figure 6B). The obtained 16S rDNA sequences of A. capra, A. platys,
and Anaplasma to the GenBank

sp. were deposited

(Supplementary Table S2).

10.3389/fvets.2023.1246871

Rickettsia spp.

A rickettsial gltA sequence showed 100% identity with
R. massiliae, and in the phylogenetic tree, it was clustered with the
corresponding species (Figure 7A). Another obtained gltA sequence
showed 100% identity with “Ca. R. shennongii, and it was
phylogenetically clustered with the corresponding species
(Figure 7A). A third rickettsial gltA sequence showed 100% identity
with R. aeschlimannii, and in the phylogenetic tree, it was clustered
with the corresponding species (Figure 7A).

The obtained ompA sequence showed 100% identity with
R. massiliae and was phylogenetically clustered with the same species
(Figure 7B). Another ompA sequence showed 100% identity with
“Ca. R. shennongii” and in the phylogenetic tree, it was clustered with
the same species (Figure 7B). A third ompA fragment showed 99.8-
100% identity with R. aeschlimannii sequences, and in the
phylogenetic tree, it was clustered with the same species (Figure 7B).

In the case of ompB, the obtained sequences showed 100% identity
with R. massiliae. In the phylogenetic tree, the obtained R. massiliae
sequence was clustered with the same species. Another ompB sequence
showed 100% identity with “Ca. R. shennongii” and in the phylogenetic
tree, this sequence was clustered with “Ca. R. shennongii” (Figure 7C).
A third ompB sequence showed 100% identity with R. aeschlimannii,
and it was phylogenetically clustered with the corresponding species
(Figure 7C). The obtained gltA, ompA, and ompB sequences of
R. massiliae, “Ca. R. shennongii” and R. aeschlimannii were deposited
to the GenBank (Supplementary Table 52).
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FIGURE 3

Maximum likelihood phylogenetic trees based on 16S rDNA (A) and cox1 (B) partial sequences of Rhipicephalus spp. The Rhipicephalus glabrosscutatus
sequence was used as an outgroup. The obtained sequences are shown in bold underline font.
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Discussion

BASDs are commonly exposed to vector-borne pathogens due to
the lack of adequate protection against ectoparasites in different

10.3389/fvets.2023.1246871

regions. Different bacterial and protozoal infections have been
reported in ticks infesting dogs, depending on the status of reservoir
hosts, geographical variations in the exposure to tick vectors, detection
methods, and the time of testing (2). The epidemiological situations
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Molecular prevalence of detected pathogens in butcher-associated stray dog ticks.
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Maximum likelihood phylogenetic trees based on 16S rDNA (A) and dsb (B) for Ehrlichia spp. and 18S rDNA (C) partial sequences for Hepatozoon canis.
The Wolbachia pipientis 16S rDNA, Ehrlichia ruminantium dsb, and Hepatozoon catesbianae, Hepatozoon thori, Hepatozoon tenuis, and Hepatozoon
involucrum 18S rDNA sequences were used as an outgroup. The obtained sequences are shown in bold underline font.
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Legionella jordanis groEL and Ehrlichia canis 16S rDNA sequences were used as an outgroup. The obtained sequences are shown in bold underline font.
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FIGURE 7

Maximum likelihood phylogenetic trees based on gltA (A), ompA (B), and ompB (C) partial sequences of Rickettsia spp. The Rickettsia canadensis gltA,
Rickettsia akari and Rickettsia australis ompA, and Rickettsia akari and Rickettsia australis ompB sequences were used as an outgroup. The obtained

sequences are shown in bold underline font.
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of ticks and tick-borne pathogens associated with BASDs near butcher
shops have not been previously investigated. A combination of
morphological and molecular characterization resulted in the
identification of several tick species infesting BASDs, including Rh.
sanguineus, Rh. haemaphysaloides, Rh. turanicus, and Rh. microplus.
The examined ticks were found positive for a variety of pathogenic
and undetermined microorganisms, including species of the genera
Ehrlichia, Coxiella, Hepatozoon, Anaplasma, and Rickettsia, which can
be transmitted and pose health threats to humans, as well as wild and
domestic animals. The different detected pathogenic and undermined
species included E. minasensis, Ehrlichia sp., H. canis, Coxiella sp.,
C. burnetii, A. capra, A. platys, Anaplasma sp., R. massiliae, “Ca.
R. shennongii” and R. aeschlimannii. This is the first investigation of
Ehrlichia spp., Hepatozoon spp., Coxiella spp., Anaplasma spp., and
Rickettsia spp. in ticks infesting BASDs. In Pakistan, E. minasensis,
H. canis, C. burnetii, A. capra, A. platys, “Ca. R. shennongii” and
R. aeschlimannii were detected for the first time, and they pose
zoonotic threats to public health.

Abandoned stray dogs are frequently exposed and particularly
vulnerable to the high risks of tick infestation and dispersal (5). Several
tick species infest stray dogs in urban and peri-urban regions, and various
pathogens are transmitted from dogs to other animals and humans (28).
Surveillance requires a thorough understanding of tick dentification to
reduce losses associated with tick-borne disease-causing agents (9, 16, 40).
Morphological identification notwithstanding, the best way to determine
the taxonomic status of the tick species is through molecular
characterization utilizing 16S rDNA and coxI genetic markers (10, 15,41,
42). The 16S rDNA and coxI sequences for Rh. sanguineus, Rh. turanicus,
Rh. microplus, and Rh. haemaphysaloides in the present study revealed the
closest identities of these ticks to the corresponding species from the
Oriental and Palearctic regions.

BASDs freely roam outdoors, which increases their exposure to
ticks and leads to uncontrolled breeding. They are mostly spotted in
urban and rural localities. In general, stray dogs tend to carry a
number of ticks, most commonly the dog tick Rh. sanguineus, which
is a vector for several pathogens (43). Two Ehrlichia species
(E. minasensis and Ehrlichia sp.) were detected in ticks in BASDs. In
previous studies, E. minasensis has been detected in ticks infesting
different hosts, such as cattle, horses, goats, and dogs (44, 45). For the
genetic characterization of Ehrlichia spp., the 16S rDNA and dsb
partial fragments have been identified as accurate genetic markers at
the species level (46, 47). The 16S rDNA fragments of Ehrlichia spp.
were closely related to the Ehrlichia sp. and E. minasensis species. In
the 16S rDNA-based phylogeny, Ehrlichia sp. formed a sister clustered
with E. ewingii and E. ruminantium, suggesting that this species may
be of zoonotic concern. In the case of dsb fragments, the present
E. minasensis sequences were phylogenetically clustered with the same
species reported from the Palearctic, Neotropical, Australian, and
Oriental regions. In both phylogenetic trees based on the 16S rDNA
and dsb, the appearance of E. minasensis as a sister clade to E. canis
might suggest that both are potentially canine pathogens (45, 47).
Considering the detection of Ehrlichia spp. in ticks infesting free-
roaming BASDs, further investigations are critical to disclose its
association between stray dogs (BASDs) and humans.

Hepatozoon canis is a tick-borne apicomplexan parasite infecting
canids and has long been known to be transmitted by ingesting
infected Rh. sanguineus and Rh. turanicus ticks (48). The available
phylogeny of H. canis is based on the 18S rDNA sequence, which has
been demonstrated to be useful for inferring phylogenetic analyzes at
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the species level (48). Phylogenetic analysis based on the 185 rDNA
sequence of this species suggests its close resemblance with the same
species circulating in the Palearctic and Oriental regions.

More than 40 Ixodid (Rhipicephalus, Dermacentor, Haemaphysalis,
Amblyomma, and Ixodes) and Argasid (Ornithodoros and Argas) tick
species are known to harbor bacterial microbes related to C. burnetii
and other Coxiella-like endosymbionts, which have been commonly
detected in Rhipicephalus spp., particularly Rh. sanguineus (25, 49).
Rhipicephalus spp. may play an important role in the transmission of
C. burnetii among the hosts. Except for C. burnetii, there is no
evidence that Coxiella spp. cause disease in the host; however, the
pathogenic roles of these species have remained undetermined (49).
Q fever is a vector-borne zoonotic disease caused by C. burnetii that
affects a wide range of hosts globally. Coxiella spp. have been detected
in Rh. sanguineus (s.1.) based on the groEL sequence (26). Since its
successful detection in various ticks, the groEL sequences are
potentially specific for Coxiella-like endosymbionts (18, 25). Likewise,
the groEL partial sequence of Coxiella sp. and C. burnetii was detected
in Rhipicephalus ticks of BASDs, which were closely related to the
corresponding species.

Several tick species have been reported as vectors of Anaplasma,
particularly in the genus Rhipicephalus (14, 50). Although Anaplasma
spp. are prevalent in ixodid ticks, relatively limited studies have been
conducted to investigate its detection, especially in BASD ticks (2).
Anaplasma spp. were detected in high abundance in BASD ticks, which
is nearly comparable to prior studies (2). Anaplasma platys and A. capra
have mostly been considered to be transmitted by the dog tick Rh.
sanguineus, and dogs have been confirmed as the hosts for A. capra in
China (27). For the genetic characterization of Anaplasma spp., the
highly conserved 16S rDNA marker has been historically employed (14,
27, 50). Likewise, the 16S rDNA fragments of Anaplasma spp., such as
A. capra and A. platys, and an undermined Anaplasma sp. detected in
Rhipicephalus spp. align with previous reports (14, 50). The detection of
Anaplasma spp. in ticks infesting BASDs in Pakistan might suggest its
geographic expansion, highlighting the need for further comprehensive
studies on its pathogenicity to screen for the epidemiological and
evolutionary status, which was previously underestimated due to the
lack of sufficient data.

In Pakistan, earlier epidemiological investigations on the detection of
Rickettsia spp. were mostly performed on ticks infesting small and large
ruminants, equine, and wild hosts (11, 15, 16, 29, 51). Despite this gap,
we used molecular screening of Rickettsia spp. in ticks infesting BASDs.
Genetic markers, such as gltA, ompA, and ompB, have been utilized to
determine a high degree of intraspecific variation and are extensively used
for reliable characterization at the species level (42). We detected and
characterized for the first time three rickettsial agents, Rickettsia massiliae,
“Ca. Rickettsia shennongii” and Rickettsia aeschlimannii in ticks infesting
BASD:s. Rickettsia massiliae and Rickettsia aeschlimannii have been
detected in ticks of multiple hosts in several districts of Pakistan (19, 52).
The detection of “Ca. R. shennongii” represents the first record of any host
or tick in Pakistan. Recently, this species was detected in Rh.
haemaphysaloides ticks in China as a novel spotted fever group (SFGR)
(25). The detection of “Ca. R. shennongii’ in Rh. sanguineus, Rh.
haemaphysaloides, and Rh. turanicus suggests its diverse host and
distribution range and enforces the need to investigate its zoonotic threat
to other hosts, including humans. These findings might advance our
knowledge of the diversity of circulating tick-borne pathogens in the
region, highlighting the need for further comprehensive surveillance
studies to properly monitor ticks for potential zoonotic threats.
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Conclusion

To effectively manage ticks and tick-borne infections, the
community must be educated regarding the associated risks and
prevention strategies. The current endeavor highlights the risks of
ticks infesting BASDs to public health. A comprehensive analysis was
undertaken to determine which bacterial and protozoal pathogens
might be carried by ticks infesting BASDs that inhabit butcher shops.
This study will provide fundamental knowledge about the risks
associated with these free-roaming BASDs, convincing health
policymakers to ensure the control of any zoonotic consequences
associated with these ticks infesting dogs near butcher shops. To
minimize the risks of ticks and tick-borne diseases related to BASDs,
proper disposal of meat and butcher waste should be adopted, and
open-street butcher shops should be properly managed. Further
surveillance studies are essential to understand the status of ticks and
tick-borne pathogens in BASDs in different regions.
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