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Heat stress is a threat that can lead to significant financial losses in the production 
of poultry in the world’s tropical and arid regions. The degree of heat stress (mild, 
moderate, severe) experienced by poultry depends mainly on thermal radiation, 
humidity, the animal’s thermoregulatory ability, metabolic rate, age, intensity, 
and duration of the heat stress. Contemporary commercial broiler chickens 
have a rapid metabolism, which makes them produce higher heat and be prone 
to heat stress. The negative effect of heat stress on poultry birds’ physiology, 
health, production, welfare, and behaviors are reviewed in detail in this work. The 
appropriate mitigation strategies for heat stress in poultry are equally explored in 
this review. Interestingly, each of these strategies finds its applicability at different 
stages of a poultry’s lifecycle. For instance, gene mapping prior to breeding 
and genetic selection during breeding are promising tools for developing heat-
resistant breeds. Thermal conditioning during embryonic development or early 
life enhances the ability of birds to tolerate heat during their adult life. Nutritional 
management such as dietary manipulations, nighttime feeding, and wet feeding 
often, applied with timely and effective correction of environmental conditions 
have been proven to ameliorate the effect of heat stress in chicks and adult 
birds. As long as the climatic crises persist, heat stress may continue to require 
considerable attention; thus, it is imperative to explore the current happenings and 
pay attention to the future trajectory of heat stress effects on poultry production.
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Introduction

Every animal production system experiences stress because of the numerous stressors on 
the farms. Stress is a biologically adaptive response to re-establish homeostasis (1). Heat stress 
is a variant of environmental stress caused by an increase in environmental temperature (and 
humidity) beyond the thermotolerance of an animal. Poultry birds possess a narrow range of 
thermoregulatory thresholds and are sensitive to environmental temperatures, which can pose 
as a stressor. Over the years, genetic selection has brought about rapid improvement in poultry 
birds’ growth and muscle development, but not in the physiological enhancement of the 
thermoregulatory system. Heat stress is a threat to the environment that can result in significant 
financial losses in the production of poultry in the world’s tropical and arid regions. High 
environmental temperature, airspeed, radiant heat, and humidity interact to cause heat stress; 
of these, high ambient temperature has a significant impact (2–4). Heat stress is a physiological 
result of the imbalance between heat energy production and heat energy flow from the animal 
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to the environment (5). The degree of heat stress (mild, moderate, 
severe) experienced by the animal depends on a combination of 
different factors but is not limited to the environmental factors 
(humidity, thermal irradiation), individuality (animal’s 
thermoregulatory ability, metabolic rate, age) and characteristics of 
the heat stress (intensity and duration).

The adaptive response of poultry to heat stress conditions is 
intricate and complex (1). When heat stress sets in, poultry birds 
respond physiologically and behaviourally in an attempt to seek 
homeostasis and restore comfort (6). Poultry birds often attempt to 
increase latent heat loss through increased respiratory rate, but these 
mechanisms seem insufficient, and additional intervention is required. 
These significant physiologic, neuroendocrine, and behavioral 
alterations result in elevated mortality, decreased feed intake, 
decreased final body weight, decreased meat and egg quality, and 
elevated feed conversion ratios in poultry. In light of climate change 
and its associated financial losses, thermal stress has thus been of 
utmost concern to poultry producers, and various approaches have 
been used to address this issue (7). Literature has highlighted different 
amelioration and mitigation strategies adopted for poultry production 
and this review seeks to synchronize these findings, examine their 
shortfalls, and make recommendations for improvement.

Impacts of heat stress on poultry 
production

The negative effect of heat stress has been reported on the 
physiology, health, production, welfare and behaviors of poultry birds. 
In heat-stressed chickens, oxidative stress, acid–base imbalance, and 
suppressed immunity are some of the physiological changes 
accompanying heat stress. Oxidative stress is frequently caused by an 
imbalance between the generation of ROS and the efficacy of the 
antioxidant defence system (8). Numerous cell components, including 
lipids, proteins, and DNA, are susceptible to permanent damage from 
the free radical generation that frequently follows oxidative stress.

An animal’s physiological response to stress involves a variety of 
systems such as the neuroendocrine, immune system, circulatory and 
digestive systems. For instance, heat stress can impair the feeding 
process, nutrient absorption and utilization although water intake 
increases rapidly. Richards et al. (9) and Morera et al. (10) highlighted 
the mechanism involved in the diminished voluntary feed intake. The 
authors pointed out that the upregulation of adipokines secretion 
(leptin and adiponectin) and the expression of their receptors can 
negatively regulate feed intake and calorie consumption thus resulting 
in decreased metabolic heat production. This mechanism may result 
in short-term heat balance but eventually affect the functionality of 
the digestive system due to changes in motility and flux patterns, 
secretory activity, content viscosity, and pH (11, 12). The decline in 
trypsin, chymotrypsin and amylase (intestinal secretion) due to 
reduced feed intake often results in impairment of digestive 
functionality, nutrient digestibility, and rapid feed transit (11, 12).

Under heat stress conditions, hypoperfusion and an increase in 
blood flow to the skin surface occur as an adaptive response of the 
circulatory system to stabilize blood pressure and promote heat loss 
(13). Hypoperfusion which can lead to a reduction in oxygen 
availability in organs when combined with intestinal changes often 
results in oxidative stress and inflammation.

Immunosuppressing effect of thermal challenge has been 
documented and this demonstrates that the neuroendocrine system 
plays an important role in the normal physiological functioning and 
homeostasis of birds during thermal challenge. The sympathoadrenal 
medullary axis is activated and controls homeostasis during the early 
phases of thermal challenge. A hormonal increase of catecholamines 
(epinephrine and norepinephrine) and glucocorticoids occurs in the 
adrenal medulla as a result of the impulse transmitted by the 
sympathetic nerves as a result of elevated temperature. Due to this, a 
decrease in muscle and liver glycogen and an increase in respiratory 
rate are experienced (14). The hypothalamic–pituitary–adrenal axis is 
stimulated as the length of the stress period increases. Corticotrophin-
releasing hormone, which is secreted in reaction to stress, causes the 
pituitary to release a hormone called adrenocorticotrophic hormone 
(ACTH). The release and synthesis of corticosteroids by the adrenal 
glands are increased by ACTH (15). The increase in corticosterone is 
often accompanied by an increase in heterophiles often resulting in 
increased heterophile: lymphocyte (16, 17). Reduced number of 
lymphocytes, immunoglobulin, antibody response and macrophages 
phagocytic activities has been highlighted in thermal-stressed poultry 
birds (18, 19).

Blood glucose levels are raised by corticosteroid-stimulated 
gluconeogenesis. Corticosterone concentration changes have an 
impact on body composition, meat quality, and protein and lipid 
metabolism (20). Thyroid hormones (thyroxine and triiodothyronine) 
secreted by the thyroid gland, are essential for regulating metabolic 
rate. Additionally, they are indicators that depict the immune status of 
poultry birds during heat stress. Reduction in antibody level (21), the 
relative weight of lymphoid organs (spleen, thymus, bursa), and the 
liver have been reported in heat-stressed poultry birds compared to 
non-stressed birds (22, 23). High temperatures in tropical countries, 
particularly during the dry season, are linked to the prevalence of 
infectious and contagious poultry diseases like Newcastle disease and 
Gumboroo sickness (24).

Metabolic responses to heat stress in 
poultry

Modern-day commercial broiler chickens have a rapid metabolic 
rate and greater heat production, thus prone to heat stress (25). 
Essentially, chickens’ metabolic processes are altered by high ambient 
temperatures, which also causes them to produce more glucose to 
maintain homeostasis (26). Maeda et al. (27) indicate that organisms 
under heat stress have a higher catabolic activity to produce energy to 
combat heat stress. The energy required for protein synthesis and 
breakdown is high: 4.5–7 mol of ATP are needed for each peptide 
bond created, and 1–2 mol of ATP are needed for each broken peptide 
link (28), suggesting that catabolic processes are the cause of the rise 
or fall in free amino acids that happen due to thermal challenge (29). 
Air sacs are crucial for gaseous exchange at high temperatures because 
they promote surface air circulation. Evaporation, therefore, results in 
heat disposal (30). It is important to note that greater panting results 
in higher blood pH (respiratory alkalosis) and more carbon dioxide 
being exhaled (31).

Poor growth performance in poultry has been ascribed to heat 
stress, which disrupts immune and intestinal functions, causes 
endocrine dysfunction, and increases oxidative stress (6, 32, 33). The 
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hypothalamic axis is stimulated by heat stress due to an increase in 
adiponectin and leptin levels, resulting in a reduction in feed 
consumption (34). Animals under thermal stress can reduce their heat 
generation by minimizing their feed intake. In turn, protein deposition 
is adversely affected during the thermal challenge. Thermal stress 
influences ribosomal gene transcription and synthesis of proteins with 
a resultant lower deposition of protein (35). The findings of Le Bellego 
et al. (36) reveal that a high-protein ration elicited lower deposition of 
fat in animals under stress than in high-energy and fat feed.

Generally, exposing birds to adverse environmental temperatures 
results in a decline in thyroid activity and protein contents while 
increasing protein catabolism, metabolic acidosis and anaerobic 
glycolysis. By disrupting mitochondrial function, heat stress reduces 
aerobic metabolism, reduces aerobic metabolic activity, and increases 
glycolysis, which leads to an increase in muscular fat deposition (37). 
In homoeothermic birds, whose body temperature must be kept high 
and steady, triiodothyronine and thyroxine hormones are considered 
to be  the primary regulators of metabolic heat generation (38). 
Triiodothyronine and thyroxine hormones are involved in 
thermogenesis in poultry species To maintain a normal body 
temperature. The thyroid hormone improves basal metabolism 
through the modification of mitochondrial function and helps skeletal 
muscles adapt to varying environmental conditions (39). Thyroid size 
and functions have been demonstrated to be impaired during thermal 
stress (40). Similar to the findings of Atta (41), a study conducted by 
Tollba and Hassan (42) found that chickens exposed to thermal 
challenge (38°C for 3 h daily from 35 to 40 days of age) exhibited lower 
plasma T3 concentrations. Additionally, the report of Mahmoud et al. 
(43) showed that chickens challenged with heat stress had lower levels 
of T3. Moreover, exposing quails to a high ambient temperature (38°C 
for 24 h) reduced plasma T3 compared to those under a thermo-
neutral zone (44). Existing data indicate that downregulation or 
upregulation responses of chickens subjected to thermal challenge 
may be influenced by age and stress duration/level. For instance, the 
findings of May et al. (45) indicated that chickens exposed to 41°C did 
not influence thyroid hormones (T4 and T3) concentrations. However, 
a 1-h thermal challenge of 50°C in a 5-day-old chick increased 
thyroxine and triiodothyronine concentrations (46). In contrast, 
Tollba and Hassan (42) indicated that 3 h of exposure of chickens to 
38°C reduced the blood T3 and Zaglool et  al. (47) revealed that 
exposing broilers to thermal challenge (36°C) for 6 h daily elicited a 
decline in plasma T3 between weeks 4 and 6. Thermal manipulation 
(2-h exposure of embryos to 39.5°C on days 3, 7 and 13) during 
embryonic development increased the concentrations of thyroid 
hormones in quails (48). Assessing T3 concentrations in heat-stressed 
birds could be utilized as an evaluation tool since they play essential 
roles in raising metabolism by slowing down the rate of the oxidation 
of glucose and enhancing the metabolic heat generated (49).

The decline in the blood thyroid hormone during heat stress 
serves as an adaptive mechanism to reduce maintenance energy 
requirements and metabolic heat production and increase fat 
deposition by disabling lipolysis to escape additional heat load (50). 
The demand for energy increases under heat stress. The findings of 
Bowen and Washburn (46) have revealed that thyroid hormones from 
external sources had a shorter survival time under thermal challenges. 
Impaired metabolic changes could result in poor performance of 
chickens. Chronic and acute thermal challenges could lead to a 
decrease in the birds’ metabolism, resulting in severe complications 

on the performance of broilers, including decreased meat juiciness, 
water holding capacity, muscle pH, color, and muscle pH (40, 51).

The HPA axis is activated by thermal challenge, which also alters 
the neuroendocrine system’s function in poultry. Elevated plasma 
corticosterone levels can also impact cellular transport, proliferation, 
cytokine release, and antibody formation (23). The increase in 
corticosterone levels during stress may be  related to the broilers’ 
impaired intestine absorptive abilities and morphology (52). The 
metabolic and overall immunological response of broilers to thermal 
challenge may be significantly impacted by an increased corticosterone 
concentration (53).

Recently, Yuanyuan et al. (54) indicated that broilers’ ability to 
resist stress and oxidative damage steadily declined as the ambient 
temperature rose, and heat stress was found to have a detrimental 
impact on these traits. The authors identified some metabolites as 
possible biomarkers of heat stress in broilers, including glutaric acid, 
neohesperidin, tartronic acid, tartaric acid and allose. The findings 
demonstrated that as the temperature rose from 20°C to 30°C, the 
concentrations of lactate dehydrogenase, cortisol, adrenocorticotropic 
hormone, and creatine kinase increased in broiler chickens.

Gut health and heat stress

The gastrointestinal tract is a biological environment for the 
breakdown and absorption of nutrients as well as defense against 
diseases and toxins (8). The gut is frequently perturbed by different 
stressors since it is the greatest body surface exposed to the 
environment (55). Chickens’ gut epithelium can be impacted by heat 
stress (56). Stress causes the right junction-regulated paracellular 
barrier to become unstable and raises the permeability of the gut (57). 
The findings of Quinteiro-Filho et al. (58) revealed that birds subjected 
to thermal challenge had mild multifocal enteritis. Additionally, the 
gut microbiota is impacted by a wide range of host- and environment-
related factors (59). In particular, thermal challenge disturbs the gut 
microbiota composition via decreasing the beneficial bacteria but 
increasing the harmful bacteria. Previous studies show that heat stress 
had a significant impact on gut microbial organisms by increasing the 
number of Coliforms spp., Clostridium perfringens, and Escherichia coli 
while decreasing levels of Bifidobacterium and Lactobacillus spp., 
causing dysbiosis (60, 61). A change in the gut microbiota composition 
results in an excess of potentially hazardous bacteria or a decrease in 
helpful bacteria, which can undermine the delicate microbial balance 
in the gut (62), resulting in gut inflammation and poor nutrient 
absorption (62). In contrast, a balanced microbial ecosystem (eubiosis) 
would improve the gut health, nutrient metabolism, growth 
performance, and thermotolerance of birds (63). Thus, there is a need 
for more studies to understand the influence of thermal challenges on 
gut microbiota and intestinal health.

The use of antimicrobials as a prophylactic approach to minimize 
the effect of stress on both gut microbiota and health in poultry is a 
topic of considerable interest and concern in the poultry industry. 
With the ongoing ban on antibiotic growth promoters, several feed 
additives have received growing attention in the poultry industry as 
natural antibiotic alternatives. These include essential oils, organic 
acids, symbiotics, prebiotics, probiotics, enzymes, and phytogenes 
such as oleoresins, botanicals, and herbs (64). Besides their 
effectiveness as growth promoters, prebiotics have also been shown to 
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have a beneficial impact on the gut microbiome and immunological 
condition of birds during heat stress (65). Intensifying the use of 
natural antibiotic alternatives as growth promoters on a large scale 
provides safe and healthy substitutes that possess a wide range of 
beneficial properties such as immune-modulating effects, enhanced 
digestion, improved performance, improved nutrient absorption, 
increased absorbability, improved gut health, lesser risk of antibiotic 
resistance, and safe consumption of poultry products.

Mitigation strategy to reduce heat stress in 
poultry

Environmental strategies
Timely and effective management of environmental conditions 

can reduce the negative effects of heat stress. The housing system is a 
potential stressor in production and housing management is key in 
combating heat stress. Depending on the environment, rearing 
systems and accessories present in poultry housing facilities might 
have a role to play in heat stress management. It has been highlighted 
that failure of the temperature regulation and ventilation controls in 
environmentally controlled housing could result in heat stress (1, 66). 
In open-sided buildings or non-environmentally controlled housing, 
poor stocking density and poor ventilation can compound heat stress 
problems (67–69). Fans, interior fogging, and sprinkler systems have 
all been employed successfully in this type of building (70). In general, 
both environmentally controlled and non-controlled housing can 
reduce heat stress through optimal ventilation and the availability of 
required cooling equipment. Reduced stocking density has also been 
shown to be one of the most efficient ways to manage heat stress. 
Chickens under heat stress spend less time moving around and 
standing still, eat less food and drink more water, stretch their wings, 
pant, and dustbathe (4). Some efficient management techniques 
include reducing the stocking density of birds to improve access to 
feed and water (71), and proper litter management to 
enhance dustbathing.

Thermal conditioning
Thermal conditioning (embryonic and early thermal 

conditioning) is a promising tool in heat stress management and has 
been demonstrated to enhance the ability of birds to tolerate heat 
during their adult life. The application of thermal conditioning within 
the first few days of life is capable of decreasing body temperature at 
an older age (72) by enhancing the development of temperature 
regulatory mechanisms. An important factor to note is that the 
consequential thermotolerance level in adult life is significantly 
dependent on the duration of early thermal conditioning as 
demonstrated by Oke et al. (73). Additionally, the findings of Meteyake 
et al. (74) established a positive and long-lasting effect on the survival 
and performance of chickens in a hot environment.

The mechanism through which early thermal conditioning 
enhances heat tolerance is by inhibiting the production of an 
uncoupled protein and by enhancing HSP70 synthesis (75, 76). 
Embryonic thermal manipulation has been employed as an adaptive 
strategy to ameliorate heat stress and enhance the adaptive capacity of 
birds. Although Al-Zghoul and El-Bahr (77) opined that stabilized 
incubation temperature during embryonic development could 
positively impact post-hatch thermotolerance. Loyau et  al. (78) 

demonstrated manipulating temperature for thermal conditioning of 
broiler birds during embryonic development has an impact on gene 
expression of the pectoralis major muscle. The authors reported a 
more developed specific pathway involving epigenetic processes, anti-
apoptotic, vascularization, stress response, and genes related 
to metabolism.

Genetic strategies
Genetics has a role to play in response to heat challenge (79). 

Genetic selection is a promising tool in developing heat-resistant 
breeds. For instance, the Naked neck gene, which is the sole dominant 
autosomal gene, reduces the number of feathers in the neck region of 
birds, allowing the neck region to disperse heat. In broilers, the naked 
neck gene is linked to an increase in breast muscle and body weight 
(80), lower body temperature (81), and heterophile-to-lymphocyte 
ratio during the hot season (82). Interestingly, Van Goor et al. (83) 
demonstrated that fine-mapping with quantitative trait loci (QTL) can 
enable efficient screening of heat tolerance in birds. These results 
suggest that it is possible to use these genes to develop chickens that 
can withstand thermal challenges. Some of the genetic strategies are 
discussed below:

Marker-assisted selective breeding
Molecular markers have recently been developed to locate 

potential candidate genes connected to heat-tolerant features for 
chicken bird selection to increase resistance to heat stress (84). By 
increasing the capacity of chickens to survive hot environments, such 
genetic potential can aid the poultry industry in improving the general 
performance of poultry (85). In order to create thermotolerant breeds 
using marker-assisted selection, it may be essential to identify and 
include the right biomarkers in breeding programs for thermal stress 
reactions in chickens (86). For example, HSP70 and HSP90 genes are 
known to exert a protective function in the body against the 
detrimental effects of oxidative stress and are utilized as a marker for 
heat stress in poultry (87–89). In both domestic and commercial hens, 
a silent mutation in the HSP70 coding area could serve as a marker for 
heat tolerance (90). According to Mahmoud et al. (91), the amount of 
chicken HSP70 mRNA expression in the heart and liver of young 
White Leghorns was strongly linked with body temperature. Selective 
breeding with such potential candidate genes could improve the 
thermotolerance of birds.

The naked neck gene
In chicken, the naked neck (Na), dwarf (Dw) and frizzle (F) genes 

are considered as candidates for temperature stress tolerance. They 
offer a practical, sustainable, and cost-effective solution to the heat 
stress challenge (92). Utilizing beneficial heat-resistant genes such as 
slow feathering (K), frizzle (F) and naked neck (Na) might increase 
heat tolerance, growth performance, and reproductive qualities in 
chickens (7, 93, 94).

When compared to hens with normal plumage, homozygous 
chickens with the naked neck gene (Na) have roughly 40% less feather 
coverage, and heterozygous siblings have between 20 and 30% less (93, 
94). When exposed to high ambient temperatures, the reduced 
plumage allows them to dissipate heat (95, 96). According to studies, 
birds with Na performed better under heat challenge than normal-
feathered birds. It has been found that this gene can tolerate harsh 
environmental changes, such as high temperatures (97, 98). The report 
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of Lin et al. (7) and Rajkumar et al. (99) revealed that the Na chicken 
line had improved growth and immunity. The absence of feathers on 
the neck increases the area available for heat dissipation and 
discourages heat insulation, which helps birds withstand the 
sweltering heat (39). Galal et al. (100) discovered that in indigenous 
Egyptian breeds raised under heat stress, the gene enhanced 
thermotolerance by raising HSP70 gene expression. During the 
summer, the naked-necked birds’ H/L ratio and total plasma 
cholesterol were much lower than those of usual birds (82). Egg 
weights, quality, and number in laying hens with the naked neck gene 
improved under heat stress (93). The Na gene might be regarded as a 
marker gene since various genotypes can be distinguished by visual 
inspection after hatching based on the appearance of their feathers.

The frizzle gene (F)
Another gene that could be targeted for producing heat-tolerant 

chickens is the frizzle gene. The frizzle gene (F) is a partially dominant 
gene that decreases feather intensity, thereby increasing the excessive 
heat-dissipating ability of birds (94). According to Lin et al. (7) and 
Wasti et al. (33), the frizzle (F) gene causes the shape of the feather to 
curve, which reduces the feather’s weight and boosts heat emission 
from the body. The feathers in adult frizzled birds (FF and Ff) are 
more fragile and curled than in the typical condition (ff). With the 
exception of sexual maturity under heat stress, Sharifi et al. (101) 
found a substantial interaction between the environmental 
temperature and feathering genotype (FF) for all reproductive 
variables, including chick production, hatchability, and egg 
production. The authors indicated that normally feathered hens 
showed a clear decline in all reproductive indices at higher 
temperatures in comparison to frizzle-feathered hens. The findings of 
Haaren-Kiso et al. (102) revealed that frizzle layers outperformed 
normal feathered hens in a climate chamber at high temperatures. 
Commercializing naked-necked and frizzled birds will be beneficial 
to developing nations in tropical climates. Greater heat dissipation and 
low feather intensity are produced by the combination of the Na and 
F genes, especially when the Na gene is homozygous (NaNaF-) and 
the double heterozygous (Na/Na F/f) broiler has an additive impact 
(103, 104).

Dwarf (dw) gene
Approaches that emphasize heat tolerance and investigate the 

potential of indigenous chicken features such as dwarfism (dw), are 
important for thermoregulation (85). Homozygous males and females 
with the dwarf gene have lower body weights of roughly 40 and 30%, 
respectively and it is considered to be thermal-tolerant (7, 39, 70, 105). 
This might result in dwarf commercial broilers having an innate 
resistance to thermal challenge in harsh tropical environments. 
According to Merat (106), birds with the dwarf gene had body weight 
reductions of 33% and feed consumption reductions of 20–25%. In 
comparison to their normal-sized siblings, the dwarf birds showed a 
number of pleiotropic effects and benefits during thermal challenge, 
including higher resistance to disease, reduced feed consumption, 
improved feed efficiency, and better reproductive fitness (85, 94). 
However, other studies indicated no practical values (107, 108).

HSP 70 polymorphism
The HSP70 gene polymorphisms may help poultry produce 

heat-tolerant capacity. In heat-tolerant chickens, polymorphisms 

occur in the coding and regulatory regions of HSP70 (109). HSP70 
expression is highly activated in various tissues under thermal 
challenge in different poultry species such as quails, turkeys, 
chickens, etc. (110–112). The findings of Kennedy et  al. (113) 
established a structural polymorphism in the HSP70 gene, as shown 
by changes in the partial HSP70 gene, among Kenyan 
chicken ecotypes.

Nutritional manipulation for heat stress 
alleviation in poultry

Nutritional manipulation is an acceptable method for the 
amelioration of heat stress effects in poultry and it is often applied 
with other management, environmental and genetic strategies (114). 
It involves dietary manipulations such as elevation of feed density and 
dietary energy, supplementation with feed additives, nutritious 
compounds, phytochemicals, bioactive components, and other 
nutraceuticals which would offer beneficial biological effects to 
alleviate heat stress effects (115, 116). These substances may act as 
anti-stressors, growth modulators, antioxidants, anti-inflammatories, 
immunomodulators, gut modifiers, etc. as shown in Figure 1.

Feeding management

Typically, feed consumption and nutrient intake decrease during 
heat stress in poultry, negatively affecting the performance and 
productivity of birds. Therefore, modifying the nutrient composition 
to improve the feed intake of chickens is an important consideration 
during heat stress. Feeding strategies that would maximize feed intake, 
minimize heat load, and alleviate the negative effects of heat stress in 
poultry are highly desirable for the nutritional management of birds 
under high temperatures (117). Syafwan et  al. (118) reported on 
several feeding strategies that may help reduce heat load in poultry 
such as restricted feeding during the hot periods to minimize heat 
load, choice feeding of protein or energy-rich feed ingredients, 
supplying different particle size feeds or structures that will slow the 
digestion process and feeding wet diets to simultaneously promote 
water intake.

Feed withdrawal, which is usually practiced for 6 to 8 h per day 
during the hottest periods of the day can potentially minimize heat 
increment and the adverse effects of heat stress in poultry. Feed 
withdrawal limits heat load accretion occurring from metabolic heat 
generated during the processes of feed digestion, absorption, 
assimilation, and excretion. Thus, it is important to limit feeding to 
the cool hours of the day or preferably feed during the morning, 
evening, or nighttime to minimize the impacts of heat stress. The heat 
produced from feed consumption is high, such that feeding at 06:00 h 
will cause a peak heat load between 09:00 to 11:00 h. Therefore, 
feeding toward mid-day would accrue negative additive effects since 
the heat generated from feed utilization would coincide with the 
hottest part of the day, especially during the summer period in the 
tropical and subtropical regions (119). With feed withdrawal during 
the day, the temporary feed restriction employed before heat exposure 
enhances thermal resistance, reduces heat production, limits the 
increment of body temperature, and minimizes mortality of heat-
stressed poultry.
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The practice of wet feeding is considerably beneficial compared to 
feeding conventional dry mash/pellet feed since the birds may fail to 
consume sufficient quantities of the dried feed under heat-stress 
conditions. During the summer season, laying hens given wet feed had 
higher yolk index, shell weight, yolk percentage, moisture percentage, 
and feed conversion efficiency (120, 121), thus improving the laying 
performance and productivity of hens. The practice of supplementing 
1 part water to 1 part feed (50: 50) with drinking water was 
recommended for finishing broilers raised in the tropics, since wetting 
the feed provides an additional advantage of supplying both feed and 
water to heat-stressed birds, in turn improving the feed intake, dry 
matter intake, weight gain, carcass yield, feed conversion ratio, and 
growth potential of birds (122).

Water management

Under high temperatures, evaporation serves as a medium for 
heat loss in poultry. This mainly occurs during panting activity which 
helps dissipate internal heat through water evaporation from the moist 
lining of the respiratory tract during the breathing process (56). 
Chickens also lose heat from the comb, wattles, and skin of birds 
through vasodilation since the blood vessels become wider allowing 
for increased blood circulation to the skin surface, thus helping the 
animal lose heat to its environment (123). A practical nutritional 
technique to minimize heat production, promote heat loss and 
enhance tolerance under high temperatures is to provide water, either 
for drinking or mixed with the diet for consumption. The provision of 
wet feed and cold water is important in supporting the metabolism, 
homeostasis, and physiological responses of birds. It will also 
minimize water excretion in fecal droppings, consequently increasing 
the water available for evaporation during panting (119).

The supply of cold water as against tap water influenced various 
physiological variables since it decreased the tonic immobility, body 
temperature, and blood levels of cholesterol, AST, and ALT, whereas, 

it increased the globulin, glucose, and total antioxidant capacity of 
the birds (124). Importantly, the provision of wet feed and cold water 
during high summer temperatures improved the body weight and 
body weight gain of ducks (124). Supplying cold water with 
afternoon feed withdrawal was found to decrease body temperature 
and tonic immobility, whereas, it improved the production 
performance, blood composition, and the total antioxidant capacity 
of Muscovy ducklings during summer heat (125). Thus, 
simultaneously using feeding systems such as feed withdrawal or wet 
feeding and cold water supply is recommended to alleviate heat 
stress in poultry. Additionally, the oral provision of some nutrient 
supplements is efficacious in promoting rehydration and alleviating 
heat stress in poultry. This would enhance water utilization and 
increase its retention rate, thus helping birds cope with heat 
stress (126).

Increasing the energy content of the 
diet

Supplementing with fats and oil to increase the energy content of 
feeds is another method for the nutritional manipulation of heat-
stressed poultry. Fats and oils have high energy value, lower heat 
increment, and are crucial to the absorption of fat-soluble vitamins, 
nutrient digestibility, and utilization. In heat-stressed animals, the 
dietary inclusion of fats and oils promotes feed intake, enhances 
productivity, and minimizes heat load (127). The improvement in 
growth performance occurs due to higher energy/fat intake since fats 
and oil enhance feed palatability and allow for reduced heat increment 
relative to protein and carbohydrates rich diets (128). Increasing the 
dietary metabolizable energy up to 3,300 kcal/kg and adding fat up to 
5% dietary fat improved the performance, nutrient digestibility, and 
carcass traits of heat-stressed broiler chickens (129). In another study, 
broiler chickens supplemented with up to 8% dietary vegetable oils 
showed improved production performance, meat quality traits, blood 

FIGURE 1

Nutritional manipulation strategies and their associated benefits for heat stress alleviation in poultry.
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hematological and biochemical indices, antioxidant properties, and 
immune responses, thus exhibiting heat stress tolerance (130).

Ultimately, increasing the fat content of the diet contributes to 
minimizing heat production since fat metabolism requires greater 
efficiency and produces lesser heat increment compared to protein or 
carbohydrate metabolism (116). Compared to only increasing the 
protein concentration, an increase in protein levels (from 19 to 22%) 
with increasing energy concentration (from 13.18 to 13.81 MJ/kg) 
using oil supplementation improved the body weight gain protein 
intake and European performance index in heat-stressed broilers 
(128). Hence, since heat stress decreases feed consumption, nutrient 
intake, and metabolizable energy, it is recommended that the dietary 
inclusion of fats and oils would help increase the metabolizable energy 
intake and reduce heat increment in poultry (128).

Supplementation with amino acids

Exposure to heat stress negatively affects the availability, transport, 
intestinal uptake, absorption, and utilization of amino acids (116, 131). 
Thus, the utilization of feed-grade amino acids to supplement poultry 
diets has significantly increased in recent times. The provision of amino 
acids to meet the nutritional needs of poultry supports the productivity, 
intestinal health, immune response, behavior, and welfare of birds 
(132). Alongside this, the maintenance of amino acid balance and the 
supply of adequate amounts of amino acids, especially for limiting 
amino acids such as arginine and lysine is highly beneficial to 
minimizing heat stress effects (69). Sulfur-containing amino acids such 
as methionine and cysteine are important in poultry nutrition. 
Methionine supplementation decreased muscle oxidation and 
improved the tissue antioxidant status in heat-stressed broilers (133). 
In another study, supplementation with sulfur amino acids alleviated 
chronic heat stress via increasing antioxidant production and protecting 
the intestinal permeability of broiler chickens (134, 135). Glycine, a 
conditionally indispensable amino acid in poultry is also essential in 
enhancing production performance, and alleviating oxidative stress and 
intestinal dysfunction in heat-stressed birds (131, 136).

Additionally, some non-essential amino acids and derivatives 
including taurine, L-theanine, betaine, and L-citrulline have emerged as 
functional nutraceuticals for heat stress alleviation in poultry. These 
bioactive compounds possess potent biological properties that enable 
them to function as anti-stressors, antioxidants, anti-inflammatories, 
immunomodulators, and gut stimulants when supplied to heat-stress 
poultry (131). Importantly, the supplementation of low–crude protein 
diets with limiting amino acids has become a useful nutritional strategy 
to address the negative impacts of heat stress and minimize the 
environmental impact of poultry production (137). The use of reduced 
crude protein diets is a useful nutritional technique for feeding heat-
stressed birds since it minimizes the use of high-protein feed ingredients, 
lowers nitrogen excretion, changes manure composition, reduces 
gaseous emissions, and consequently, decreases the carbon footprint, and 
consequently lower environmental impact from feed production (138).

Supplementation with vitamins

Vitamins supplementation is a nutritional approach that is highly 
useful during heat stress in poultry. Importantly, most of these 

vitamins play crucial roles as anti-stressors, antioxidants, 
immunomodulators, anti-inflammatories, gut protectants, and growth 
promoters. It is known that chickens do not undergo significant 
endogenous synthesis of vitamins to meet nutritional needs, especially 
under heat stress conditions, since high ambient temperature may 
decrease their biosynthesis and retention, and alter metabolic 
functions (139). As such, the exogenous provision of one or a 
combination of vitamins would prove useful against the adverse effects 
of heat stress in poultry. Commonly, Vitamins A, B, D, E, and C are 
utilized to promote immunocompetence and antioxidant response 
during heat stress in poultry (140, 141). For instance, Vitamin A 
supplementation promoted the feed intake, laying rate, and egg weight 
of laying hens and further increased the proportion of peripheral T 
lymphocytes, thus improving both the laying performance and 
immune function of heat-stressed hens (142). Vitamin C is an 
important metabolite that acts as a reducing agent and an electron 
donor, thus serving as a potent natural antioxidant. Vitamin C 
supplementation in feed or water is well known to alleviate the adverse 
effects of heat stress in poultry. Vitamin C supplementation at 
~250 mg/kg feed has been optimized to improve the production 
performance, nutrient digestibility, immune responses, and 
antioxidant capacity in heat-stressed poultry (139). Vitamin E is 
another important antioxidant that is present in the body’s system. It 
elicits protective effects during heat stress and alleviates the negative 
impacts on growth performance, productivity, nutrient digestibility, 
immunity, and antioxidant profile in poultry birds (143, 144). 
Supplemental doses from 200 to 500 mg/kg body weight have been 
found efficacious in mitigating heat stress effects in poultry.

The combination of vitamins is considered more efficient than the 
use of an individual vitamin in alleviating heat stress in poultry. It has 
been demonstrated that supplementing the combination of vitamins 
C and E would prove more beneficial than their sole supply due to 
their synergism and antioxidant properties in combating heat stress 
(128). Vitamins C and E combination improved the egg quality traits 
of heat-stressed hens (145), as well as the feed efficiency, growth 
performance, and immune responses in heat-stressed chickens (146). 
Alongside this, vitamins have often been supplied in combination with 
minerals or other substances to elicit synergistic effects. Dietary 
inclusion with a multi-complex of vitamin E, vitamin C, and Selenium 
did not cause any negative effects on the carcass traits, oxidative 
capacity, and meat quality of heat-stressed birds (147). Similarly, 
dietary incorporation of vitamin E and organic selenium reduced 
mortality and improved the growth performance and carcass 
characteristics of heat-stressed broilers (148). In a follow-up study, 
vitamin E and selenium were found to exert beneficial synergistic 
effects that ameliorated heat stress effects via improving the 
antioxidant capacity, modifying the ileal microbiota, and regulating 
the mRNA expression of several cytokines (149).

Supplementation with minerals

Decreased feed intake results in an unmet fulfillment of the 
mineral requirements of heat-stress birds. Minerals support various 
cellular and biological functions, sustain growth and productivity, 
improve nutrient utilization, boost immunity, and attenuate oxidative 
stress in heat-stressed poultry (150). Exposure to heat stress causes 
respiratory alkalosis which creates a negative mineral balance and 
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increase losses in sodium and potassium ions during excretion in 
chickens. Increased mineral excretion is a negative consequence of 
heat stress in poultry that leads to acid–base imbalance, which can 
be  alleviated by supplementing appropriate mineral elements at 
different stages of production (145). For instance, the addition of 
potassium chloride to the drinking water of heat-stressed chickens 
significantly improved the body weight gain, decreased body 
temperature, and reduced the blood pH of heat-stressed chickens, thus 
improving the physiological adaptation of birds to the stressor (151).

Zinc is a trace element that serves as a cofactor for several enzymes 
and its supplementation is essential since it cannot be stored within 
the body (152). Zinc elicits protective effects during heat stress since 
it can eliminate reactive oxygen species, enhance antioxidant ability, 
and attenuate heat shock response. Zinc supplementation to turkey 
breeders during the hot summer period increased egg laying and the 
occurrence of behavioral activities such as dustbathing and feather 
cleaning (153). In another study, zinc addition decreased the plasma 
corticosterone levels as a biomarker of stress induction, and it 
increased the egg production and body weight of turkey breeders 
during summer heat (154). Another element, selenium is highly 
beneficial during heat stress due to its potent antioxidant and 
immuno-enhancing properties. Dietary supplementation with 
selenium improves the production performance, egg production, egg 
quality, immune system, and antioxidant status of heat-stressed 
poultry (155). Manganese is also demonstrated to protect against heat 
stress by promoting antioxidants expression and attenuating heat 
shock responses (156). Chromium is another essential trace element 
that is increasingly mobilized from body tissues and excreted during 
heat stress, thus increasing its nutritional requirement (157). 
Chromium supplementation is beneficial for heat stress alleviation by 
increasing the production performance, carcass traits, nutrient 
digestibility, immune response, and oxidative stability of poultry 
(158). Dietary chromium supplementation improved the feed intake, 
hemoglobin, packed cell volume, and blood biochemical indices of 
Japanese quail under heat stress (159). Thus, along with the above-
mentioned minerals, several trace elements including calcium, 
phosphorus, copper, iron, sodium, potassium, magnesium, and iodine 
have been studied and found beneficial in mitigating heat stress in 
poultry (150).

Use of phytochemicals and herbal 
additives

The use of plant extracts has gained precedence as a nutritional 
strategy to ameliorate thermal stress in poultry owing to their ease of 
availability, potency, and numerous biological effects (160–168). In 
recent times, several plant-based and alternative substances with 
bioactive properties have been utilized as feed additives and 
nutritional modifiers for heat stress mitigation in poultry. A recent 
bibliometric study unveiled that several substances including 
flavonoids, probiotic mix, curcumin, resveratrol, essential oils and 
various plant extracts have emerged as beneficial dietary supplements 
to alleviate the detrimental effects of heat stress in poultry (169). 
Bioactive agents including resveratrol, curcumin, and quercetin were 
reported to activate vitagenes and effectively regulate the antioxidant 
defense system, especially the nuclear factor-erythroid 2-related factor 
2 (nrf2) signaling pathway to attenuate heat stress-induced oxidative 
stress in poultry (170). In line with this, dietary resveratrol 

supplementation was found to improve growth performance, 
alleviated liver injury, and enhanced antioxidant capacity by increasing 
the activities of SOD, GPX, and the Nrf2-Keap1 signaling pathway in 
broiler chickens (171).

The thermoregulatory potentials of some herbs and plant products 
including ginger, turmeric, sweet wormwood, hot red pepper, thyme, 
rosemary, moringa, licorice, cinnamon, ginkgo, and resveratrol have 
been extensively reviewed in poultry. Dietary supplementation of these 
herbs is efficacious in ameliorating the negative effects of heat stress in 
poultry via enhancing the production performance, scavenging free 
radicals, promoting the antioxidant defense system, stimulating the 
immune system, regulating heat shock response, exerting antimicrobial 
effects, decreasing corticosterone release, improvements in nutrient 
digestibility, protecting intestinal health, regulating blood biochemical 
properties, influencing behavioral patterns and significantly reducing 
mortality of birds (115). In addition, polyphenols, often derivable from 
plants, can scavenge free radicals, decrease lipid peroxidation, 
modulate antioxidant enzyme activities, and attenuate oxidative stress 
thus providing a sustainable nutritional strategy for heat stress 
mitigation in poultry (168, 172, 173).

Conclusion and future perspectives

A multifaceted strategy for managing heat stress should be adopted 
in the poultry industry. Future trends in the poultry farming industry 
should be poised to change how heat stress is handled in chickens. 
Precision climate control, utilizing cutting-edge sensors and automated 
systems to dynamically adjust temperature, humidity, and ventilation 
within poultry houses, is needed to take center stage with the growing 
environmental temperatures. Targeted breeding techniques are needed 
to generate heat-resistant poultry breeds as a result of genetic 
developments, and specialized diets and nutritional supplements rich 
in nutrients that regulate body temperature are crucial instruments for 
boosting birds’ resistance to heat stress. Innovative cooling techniques 
like evaporative cooling and radiant surfaces should also be explored. 
Furthermore, attention should focus on behavioral monitoring using 
AI-powered sensors to detect heat stress and the use of prediction 
algorithms to foresee heat stress and enable prompt responses. The 
genetic selection of heat-tolerant poultry breeds, precise climate 
control systems, creative cooling methods, and specialized nutritional 
interventions should also be fine-tuned to mitigate the influence of 
thermal challenges on poultry production.
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