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Rift Valley fever phlebovirus (RVFV) is a zoonotic mosquito-transmitted arbovirus, 
presenting a serious threat to humans and animals. Susceptible hosts are of great 
significance for the prevention of RVFV. Appropriate animal models are helpful to 
better understand the onset and development of diseases, as well as the control 
measures and vaccine research. This review focuses on the role of animal hosts 
in the maintenance of the virus, and summarizes the host range of RVFV. We list 
some common animal models in the process of RVFV research, which would 
provide some important insights into the prevention and treatment of RVFV, as 
well as the study of Rift Valley fever (RVF) pathogenesis and vaccines.
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1. Introduction

Rift Valley fever phlebovirus (RVFV) was initially isolated from ruminants in the Rift Valley 
region of Kenya in 1930 (1), and since then, it has been known to cause periodic outbreaks in 
Africa. In September 2000, RVF spread to Saudi Arabia and Yemen through the trade of RVFV-
infected animals. Subsequently, from 2007 to 2022, RVF outbreaks were reported in over 20 
countries, including Tanzania, Kenya, South Africa, Madagascar, and Mauritania, spanning a 
period of 15 years.1

RVFV belongs to the Phlebovirus genus in the Phenuiviridae family of Bunyavirales. It is an 
enveloped virus with a spherical shape (2). Similar to other bunyaviruses, RVFV possesses a 
single-stranded RNA genome that consists of three segments: large (L), medium (M), and small 
(S). The L segment encodes RNA-dependent RNA polymerase, the M segment encodes 
structural glycoproteins Gn and Gc, and the S segment encodes nucleoprotein (N) and a 
non-structural protein called NSs (2). NSs is considered the main virulence factor, and its 
deletion results in decreased infectivity of RVFV (3). The interaction between NSs and the host 
general transcription factor IIH (TFIIH, a multiprotein complex involved in both eukaryotic 
transcription and DNA repair) plays a crucial role in RVFV virulence. TFIIH is composed of 10 
subunits, which can be divided into two functional complexes: the core complex (XPB, XPD, 
p62, p52, p44, p34, and p8/TTD-A) and the CDK-activated kinase (CAK) complex (CDK 7, 
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cyclin H, and MAT 1) (4). When TFIIH associates with the ΩXaV 
motif in NSs, p62 is degraded, leading to the inhibition of the 
interferon (IFN) response and enhancing RVFV virulence (5). The 
mechanism by which RVFV infection inhibits host RNA synthesis and 
evades viral immune responses involves the competitive binding 
between NSs and p44. This competition prevents the interaction of 
XPD (the natural partner of p44  in TFIIH) with p44, and NSs 
sequesters certain TFIIH subunits within nuclear filamentous 
structures, leading to the segregation of the XPB/p44 complex and 
inhibiting the assembly of TFIIH subunits (6). Additionally, RVFV-
encoded NSs proteins impact cellular fluidity, cell shape, and cell–cell 
adhesion by targeting the expression of Abl2 and the host actin 
cytoskeleton, thereby contributing to RVFV pathogenesis (7).

RVFV is primarily transmitted among animals through mosquito 
bites. However, for humans, RVFV infection can occur through 
contact with the blood of infected animals, inhalation or exposure to 
viral particles, and consumption of raw meat from sick animals (8, 9). 
This virus causes significant damage to ruminant livestock, resulting 
in high mortality rates among young newborn animals, widespread 
abortion in pregnant animals, and severe liver damage, posing a 
significant threat to animal health (8, 10, 11). Throughout history, 
RVFV has inflicted substantial harm on animal husbandry. In humans, 
the initial symptoms of RVFV infection include fever, headache, 
muscle and joint pain, and in some cases, nausea and vomiting. 
Conjunctivitis and photophobia may also occur. Severe cases can lead 
to bleeding, encephalitis, hepatitis, permanent blindness, or even 
death (12). Although there have been no reported cases of human-to-
human transmission of RVFV, it is still considered a highly dangerous 
zoonotic pathogen. Aedes and Culex mosquitoes are the primary 
vectors responsible for the transmission of this disease between 
animals, as documented in the literature (13).

Given the broad host range of RVFV and the diversity of infected 
cells, host proteins play a crucial role in RVFV infection across 
different cell types and species. Identifying the function of these host 
factors is essential for the development of effective antiviral 
therapeutics. A genome-wide CRISPR/Cas9 screen revealed that 
low-density lipoprotein receptor-associated protein 1 (LRP1) is a 
critical host factor for RVFV infection. Heat shock protein (Grp94) 
and receptor-associated protein (RAP) were also found to influence 
RVFV entry by regulating the expression and function of LRP1 (14). 
The biological significance of LRP1 in RVFV infection was further 
demonstrated by inhibiting its interaction, which prevented RVFV 
from entering target cells across various host species. Studies have 
shown significant homology between the LRP1 protein in certain 
livestock species, such as cattle, and humans (15), suggesting that 
LRP1 is highly conserved among different species and may have a 
consistent function. This could potentially explain why humans are 
susceptible to RVFV after coming into contact with infected animals. 
Furthermore, LRP1 is widely expressed, with higher levels observed 
in the liver, placenta, and brain, which correspond to major sites of 
disease manifestation during RVFV infection. This highlights the 
potential of LRP1 as a target for antiviral therapeutics. Interestingly, 
LRP1 also plays a significant role in Oropouche orthobunyavirus 
infection (16), suggesting its potential involvement in the host 
infection process of Bunyaviruses. Further research is needed to 
explore the precise mechanisms underlying this relationship.

The RVF epidemic has had a significant impact on animal 
husbandry in areas where the disease is endemic. Therefore, 

understanding the host range of RVFV is crucial for preventing RVF 
outbreaks. Additionally, there is an urgent need for the research and 
development of effective vaccines and therapeutic drugs. However, the 
occurrence and progression of RVFV-induced diseases in humans are 
complex. It is impractical to deeply explore the pathogenesis and 
efficacy of these diseases in patients, thus biomedical research often 
relies on animal models as an experimental basis for testing 
hypotheses. Currently, laboratory infection models are established 
through virus inoculation, inhalation, or aerosol infection (Table 1). 
Some experiments use footpad infections to simulate the transmission 
mode of mosquito bites under realistic conditions. Different studies 
employ varying infection methods based on their specific research 
objectives. Furthermore, the choice of animal models depends on the 
specific research purposes. This review provides a summary of the 
geographical distribution of natural hosts for RVFV and the 
application and pathological responses of different animal models. 
These models are suitable for studying various pathological 
consequences associated with RVFV infection.

2. Natural hosts

As a zoonotic disease transmitted by animals, extensive research 
has been conducted on the natural hosts of RVFV. Due to common 
host factors, viruses have the ability to cross species barriers. The 
variation in organ damage severity may be attributed to the differential 
distribution of host factors in different organs. This allows RVFV to 
exhibit a broad host range and distinct manifestations of the disease. 
In this review, we have categorized them into rodents, ruminants, 
non-human primates, and other animals. To provide a visual 
representation, we have created a map showing the global distribution 
of RVFV animal hosts (Figure 1). The broad host range of RVFV, 
coupled with its mosquito-borne transmission characteristics, allows 
for viral mutation and sustained transmission over extended periods. 
Although the incidence of RVFV infection varies among different 
animal species, the detection rate of RVFV and the occurrence of 
viremia emphasize the crucial role of natural hosts in the prevalence 
and outbreak of RVFV.

2.1. Rodents

While some studies suggest that wild rodents are not hosts for 
RVFV (41) most research findings indicate that wild rodents, being 
natural hosts, play a crucial role in the maintenance and transmission 
of RVFV. For instance, an ELISA test conducted in Egypt revealed a 
high RVFV positivity rate of 36.36% in rodents (42). Similarly, 
Senegal’s VNT test identified positive results in 4 out of the 14 rodent 
species examined, with the highest positivity rate observed in rodents 
from the low valley region of Senegal (43). It can be inferred that the 
variance in positivity rates is associated with the humidity levels in 
the respective regions where these species are found. This correlation 
is also evident from an ELISA survey conducted in South Africa, 
which showed an increased rate of rodent infection following heavy 
rainfall (44). In addition to the wide variety of rodents susceptible to 
RVFV, their early sexual maturity, rapid reproduction due to large 
litter sizes, and their ability to inhabit areas where humans or 
livestock reside make them potential risk factors for the further 
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spread of RVFV transmission. HI testing conducted in the Sinai 
Peninsula has demonstrated RVFV infection among both rodents 
and local soldiers (45). As human populations expand, areas with 
lower living standards may struggle to maintain adequate health 
conditions, leading to increased contact between humans, livestock, 
and rodents, thereby facilitating virus transmission. A PCR test 
conducted in Egypt revealed significantly higher RVFV-positive rates 
among rats in rural areas compared to urban areas (46), indicating an 
extremely high risk of infection among local rural residents. 
Therefore, in RVFV-endemic regions, in addition to mosquito control 
and treatment of sick animals, controlling rodents is also crucial. 
Recent experimental infections have shown that black rats, despite 
not exhibiting any pathological manifestations following 
subcutaneous infection, develop antibodies and experience long-
term viremia (47). Another investigation indicated that a higher 
concentration of the virus in the blood facilitates its spread (48), 
suggesting that this commonly found rodent species also poses a risk 
as a host for RVFV. The extensive infection of rodents and their 
associated pathological reactions have paved the way for rodents to 

be used as animal models in the development of RVFV vaccines and 
the exploration of pathogenesis (Figure 2).

2.2. Ruminants

Ruminants serve as the primary reservoir of RVFV and have a 
significant impact on economic development following RVFV 
infection. During the RVFV epidemic in Kenya, ruminants had much 
higher positivity rates in both antibody tests conducted compared to 
other wild animals (49, 50). The virus was first isolated from an 
infected flock of sheep during the 1930 RVF outbreak in East Africa 
(1). Various factors such as species differentiation, age of infection, 
and climatic conditions can affect the manifestation of the disease in 
ruminants. Pregnant female ruminants are particularly prone to 
having a “miscarriage storm” after being infected with RVFV. This 
suggests that the virus can cross the placenta and cause an increase in 
inflammatory chemokines and interferon response, leading 
to miscarriage.

TABLE 1 Animal models of RVFV and their pathological manifestations.

Order Genus or Species Disease features Route of exposure References

Rodent Mouse Hepatitis FP (17)

Hepatitis/cerebritis IP/SC/Aerosol (18)

Hepatitis/cerebritis IP/SC (19)

Cerebritis FP (20)

Cerebritis Aerosol (21)

Rat Hepatitis IP/SC/Aerosol (22)

Hepatitis IP/SC/Aerosol (23)

Hepatitis/cerebritis/eye lesions Aerosol (24)

Hepatitis IP (25)

Eye lesions SC/Aerosol (26)

Gerbil Cerebritis SC (27)

Hamster Hepatitis Aerosol (28)

Hepatitis SC (29)

Non-human 

primates

Rhesus monkey Hepatitis/cerebritis/hemorrhage/fever IV/IM (30)

Hepatitis/fever Aerosol/IV (31)

Marmoset Hepatitis/haemorrhag/cerebritis/fever IV/SC/IN (32)

Cerebritis/hemorrhage/fever Aerosol (33)

African green monkeys (AGM) Cerebritis/hemorrhage/fever Aerosol (33)

Cerebritis/hepatitis/hemorrhage/fever Aerosol (34)

Ruminantia Sheep Hepatitis/abortion SC (35)

Fever/abortion Inoculated (36)

Goats Fever/hepatitis SC (37)

Viremia IN/SC (38)

Calves Cerebritis/hepatitis SC (10)

Lambs Fever/hepatitis Aerosol (28)

Hepatitis Inoculated (36)

Cattle Hepatitis/fever IN/ID/IN+ID+SC (39)

Other mammalia Ferret Fever/cerebritis ID/IN (40)

SC, subcutaneous; IP, intraperitoneal; FP, footpad; ID, intradermal; IN, intranasal.
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Female ruminants were found to be  more susceptible 
than males during RVFV outbreaks, as shown by antibody 
testing of rural buffalo in South  Africa and PCR testing 
of cattle in Rwanda (51, 52). However, the exact cause of this 

gender discrepancy is uncertain. RVFV epidemics typically 
occur in autumn and winter, especially following heavy 
rains and floods, which create humid conditions that promote 
mosquito breeding.

FIGURE 1

Worldwide distribution of RVFV hosts. Countries and areas at risk of RVFV transmission are based on reported cases of infected animals or 
corresponding research data that have demonstrated the risk of infection and their distribution. Please note that the absence of certain areas in the 
marking indicates that no study results were retrieved, and it does not necessarily imply the absence of the host in those areas.

FIGURE 2

Transmission of RVFV between hosts. RVFV is transmitted to humans through mosquito bites, as mosquitoes become infected with the virus. 
Additionally, human exposure to infected animal blood or other bodily fluids can also contribute to the spread of RVFV.
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Ruminant reproduction plays a significant role in determining the 
likelihood of a large-scale outbreak following infection, which in turn 
increases the risk of human infections. A Tanzanian study found that 
animal infection rates were closely related to human infection rates 
during epidemics, possibly due to increased local cattle slaughter, 
which is proportional to the human population (53). RVFV induces 
different pathologies in ruminants of different species, with cattle 
having a higher IgG positivity rate than sheep and goats in Cameroon. 
This may be  due to feeding methods as nomadic cattle-raising 
methods increase the risk of cattle exposure to the virus.

IgM-positive samples and samples with successful RVFV RNA 
detected by PCR were only found in sheep and cattle, suggesting that 
goats may have lower susceptibility to the virus (54). A Tunisian 
survey showed higher antibody positivity rates in cattle and sheep 
than goats, providing further evidence for this speculation (55). In 
order to improve the specificity and sensitivity of detection, Gn-based 
ELISA methods are being increasingly applied to investigations (56). 
However, studies have shown that viremia peaks 3–4 days after 
infection in goats to activate innate immunity, and later produces 
neutralizing antibodies for long-term protection. This indicates that 
goats also play a role in RVFV maintenance (37).

Animal vaccination programmes are already in place in some 
areas, and surveys in Egypt have shown lower virus prevalence rates 
on vaccinated farms (57). However, a sample survey conducted in 
Rwanda following the implementation of the vaccine programme 
showed that no animals had been vaccinated, indicating the need for 
increased vaccine coverage (51). Authorities also need to pay attention 
to the risk of re-infection by other viruses to avoid adding to the 
burdens of infected animals (51).

Since researchers re-isolated the virus from camels in 1979, 
serological studies have shown that camels are susceptible hosts of 
RVFV (58). Additionally, serological studies of wild ruminants such 
as giraffes, antelopes, and buffalo have shown their overall 
susceptibility to RVFV, even though reported symptoms of the virus 
pandemic in wild ruminants are rare. It is likely that RVFV causes 
mild subclinical diseases in wild ruminants and maintains long-term 
low viremia, allowing the virus to continue to spread (50). Three 
separate ELISA surveys have revealed that the prevalence range of 
RVFV has expanded to the Middle East through ruminants (Table 2) 
(60–62). The high positive rate of RVFV detection in ruminants, as 
indicated by the EFSA Panel on Animal Health and Welfare (AHAW) 
PCR assay in 2020 on Mayot Island, further demonstrates the 
effectiveness and severity of RVFV infection in this group of animals. 
The region is under the jurisdiction of France and has closer trade ties 
with Europe, which has prompted European countries to be vigilant 
about the risks associated with the movement of goods (71). Although 
the RVFV gene is highly conserved, studies have identified some 
mutated strains in ruminants (72), indicating that ruminants also play 
a role in the evolution of the virus. This poses challenges in controlling 
its spread. Therefore, it is crucial for all countries to strengthen animal 
quarantine efforts at ports in order to effectively prevent the substantial 
losses that can be caused by the introduction of RVFV.

2.3. Non-human primates

Due to limitations in field investigations, studies on primates have 
primarily been conducted in laboratory settings. It was only in 1954 that 

the presence of RVFV positivity in macaques was discovered during 
field investigations (70). Laboratory studies have focused on the 
manifestations of RVFV infection in red monkeys, long-tailed monkeys, 
white-eyebrowed monkeys, and rhesus monkeys. It was found that 
rhesus monkeys could develop viremia for up to 12 days after RVFV 
infection. Baboons infected with RVFV developed fever and viremia for 
several days (73). Intravenous inoculation of RVFV typically leads to 
benign viral infections in most rhesus monkeys. However, approximately 
20% of cases still develop a hemorrhagic fever syndrome, characterized 
by extensive hepatic necrosis, disseminated intravascular coagulation, 
and hemolytic anemia (30). Another experimental infection of rhesus 
monkeys demonstrated that although all monkeys exhibited high levels 
of viral infection, the disease manifestations varied. A small proportion 
of monkeys infected with RVFV showed signs of hemorrhagic fever and 
eventually died. The remaining animals survived RVFV infection, but 
some displayed clinical symptoms such as loss of appetite and skin 
petechiae, while others showed no signs of clinical disease. In deceased 
macaques, abnormal liver function and coagulation markers were 
observed early in the infection, while monkeys without clinical 
manifestations exhibited high levels of IFN, suggesting that early 
morbidity events are critical factors for survival (74). The genes of 
non-human primates and humans exhibit a high degree of homology 
and similarity in terms of morphology and function. As hosts of RVFV, 
non-human primates serve as an alert for potential infections in 
humans. Therefore, during virus epidemics, the possibility of human 
infection should be taken into consideration.

2.4. Other animals

The mammalian host range of RVFV extends beyond ruminants and 
rodents. Serological tests have shown positive results for pigs and 
warthogs (66). RVFV has also been isolated from horses (58). In 1987, the 
virus was isolated from bats in Guinea (67), and in 2021, RVFV infection 
in bats was identified through PCR testing in Egypt (68). RVFV has been 
detected in rhinoceros (69), and serological investigations and PCR 
detection have revealed the infection of zebra, elephants, and rhinos with 
RVFV (50). A special investigation in 1996 focused on the RVFV 
positivity rate in carnivorous mammals such as jackals, wild dogs, 
cheetahs, and lions, and it was found that these animals could serve as 
natural hosts of RVFV (75). There have been no reported cases of RVFV 
infections in domestic pets, such as cats and dogs. However, given that 
many mammals are susceptible to RVFV, it remains uncertain whether 
domestic pets may play a role in the spread of the virus. Therefore, it is still 
important to monitor the infection status of pets. A laboratory study 
conducted in 2018 on North American white-tailed deer found that 
RVFV infection in these deer was associated with fever, hemorrhagic 
hepatic necrosis, and moderate to severe hemorrhagic lymphadenopathy, 
similar to the situation observed in ruminants. However, further attention 
and study are needed to understand the specific lesions, particularly 
moderate to severe diffuse hemorrhagic enteritis (76).

In addition to the natural hosts mentioned earlier, there have been 
studies exploring potential candidates as hosts for RVFV. Some vector 
mosquitoes of RVFV have been found to feed on amphibian blood 
(77), and in vitro studies have demonstrated the sensitivity of Xenopus 
cells and certain reptile cells to RVFV (78, 79). This suggests that 
amphibians or reptiles may potentially serve as natural hosts for 
RVFV. However, it is important to note that although RVFV infection 
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in amphibians and reptiles has not been observed in their natural 
state, these animals are still at risk of RVFV infection, highlighting the 
broad host range of the virus.

3. Animal models

Considering the wide range of hosts for RVFV and the potential 
risk of transmission, further studies are necessary. However, it is 
important to note that different animal models and inoculation routes 
are suitable for studying diverse pathological processes related to 
RVFV. Each animal model possesses its own unique characteristics 
and advantages. Additionally, changes in hemogram parameters in 
each animal model are also worth considering (Table  1). As a 
reference, a summary of animal models for RVFV is provided 
(Table 1), which investigators can use to identify and select appropriate 
models based on their experimental requirements.

3.1. Rodents

Rodents are commonly used as animal models to study 
RVFV. Among rodents, rats, mice, and gerbils are the three main 

categories of animal models used. Gerbils, in particular, have been 
valuable in the study of neurological pathogenesis and can serve as 
effective animal models (27). However, it is important to note that the 
diversity of pathological changes observed in rodents following RVFV 
infection suggests that relying solely on a single rodent species for 
research may not be sufficient to ensure the reliability of experimental 
results or meet all experimental requirements.

Rodents are primarily infected with RVFV through direct 
intranasal injection or aerosol infection (18, 19, 21, 25, 28) (Table 1), 
as they are intranasally susceptible to the virus. Intraperitoneal 
injection can also lead to successful infection, but this method 
differs from the natural transmission route, which involves 
mosquito bites or contact with contaminated tissues. To simulate 
the natural infection process and study the status of human 
infection under more realistic conditions, recent experiments have 
utilized footpad infection in rodents (17). Different strains of 
animals exhibit varying pathological changes following RVFV 
infection, with most rats and mice being suitable for studying liver-
related injuries. However, the most severe reactions observed in 
humans after RVFV infection involve central nervous system (CNS) 
lesions and permanent blindness caused by ocular lesions. 
Consequently, efforts have been made to develop rat and mouse 
models that can be used to study these specific aspects. For instance, 

TABLE 2 Summary of animal hosts for RVFV.

Order Family Detection method Location References

Rodent Muridae HI Zimbabwe, Egypt, Egypt (41, 45, 48)

VNT Senegal (43)

ELISA Egypt, South Africa (42, 44)

PCR Egypt (46)

Sciuridae VNT Senegal (43)

Ruminantia Bovidae HI South Africa (52)

VNT Kenya (50)

ELISA Tanzania, Cameroon, Tunisia, Cameroon (54, 55, 59)

PCR Egypt, Rwanda, Cameroon (51, 54, 57)

Caprinae Virus Isolation East Africa (1)

ELISA Tunisia, Tanzania, Cameroon, Iran, Iraqi, Saudi Arabia (53–55, 60–62)

VNT Mozambique, Senegal, Uganda, Yemen (56)

PCR Zambia, Uganda, Cameroon, The Democratic Republic of the Congo (54, 63–65)

Camelidae ELISA Kenya (49)

Virus Isolation Egypt (58)

Mammalia Suidae VNT South Africa (66)

Elephantidae VNT Kenya (50)

Vespertilionidae Virus isolation Guinea (67)

PCR Egypt (68)

Equidae VNT Kenya (50)

Virus isolation Egypt (58)

Rhinoceros HI Zimbabwe (69)

VNT Kenya (50)

Non-human 

primates

Cercopithecidae / Ghana to Angola (70)

Chimpanzee / Disjunct distribution in western and central Africa (70)

HI, hemagglutination inhibition; VNT, virus neutralization test; ELISA, enzyme-linked immunosorbent assay; PCR, polymerase chain reaction.
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Haley Cartwright et al. found that CC057 strain mice infected via 
footpad can be used to study encephalitis (20). Madeline M. Schwarz 
et al. demonstrated the tropism of RVFV for Lrp1 in the posterior 
eye of Sprague Dawley rats, making them suitable for studying uvea, 
retina, and optic nerve damage (26). Additionally, pregnant rats 
have been found to be  more susceptible to RVFV infection 
compared to non-pregnant rats. RVFV infection in pregnant rats 
can lead to intrauterine fetal death and severe congenital 
abnormalities. During the second trimester, RVFV can directly 
infect placental chorionic villi in human placental tissue. Pregnant 
rats can transmit RVFV directly and vertically through the placenta, 
making them suitable models for studying RVFV-induced abortion, 
which closely mimics the situation in pregnant humans (80). 
During the development of animal models, researchers discovered 
that hamsters can be utilized as an animal model for studying liver 
lesions caused by RVFV infection (29). This finding further expands 
the host range of RVFV in rodents. The use of hamsters as an animal 
model for RVFV research dates back to as early as 1962. 
Subcutaneous infection in hamsters leads to noticeable clinical 
symptoms, indicating that hamsters can be effectively employed in 
the study of RVFV, similar to other rodent models.

3.2. Ruminants

Due to the significant role of ruminants in the maintenance of 
RVFV, these animals serve as ideal animal models in vaccine studies. 
Ruminants, such as sheep, goats, and cattle, are commonly used in 
the development of animal vaccines against RVFV. Given the effects 
of RVFV on pregnant ruminants, such as liver necrosis and abortion 
(8), pregnant ewes or cows are often included as separate populations 
to assess the application range and effects of vaccines during the 
research and development process. Furthermore, the efficacy of 
RVFV infection differs among animals of different ages. Newborn 
sheep or calves are more susceptible to RVFV, emphasizing the need 
to consider the efficacy and safety of vaccines for both the young 
animals and their parents, who may be  infected with 
RVFV. Researchers have investigated the efficacy and safety of the 
four-segmented RVFV (RVFV-4s) vaccine in young sheep, goats, 
and cattle (11). Additionally, the efficacy of the nonspreading RVFV 
(NSR) vaccine has been studied specifically in lambs (81). With the 
vRVFV-4s vaccine, transmission of the virus is not observed in 
vaccinated animals or in the environment, and the virus does not 
regain virulence upon animal passage. This vaccine has proven 
effective in protecting various ruminant species from their 
corresponding RVFV strains (11). It provides some relief from liver 
damage in infected pregnant animals and reduces the risk of 
miscarriage caused by viral infection (36). However, there are 
notable variations among different species, and the immune 
response in young sheep and cattle is not entirely satisfactory. 
Similar to vRVFV-4s, MP-12 does not exhibit viral shedding or 
transmission (82). However, its use during early pregnancy may lead 
to partial abortion (83). NSR can reduce viremia in lambs to a level 
undetectable by viral isolation, thereby protecting them from clinical 
symptoms, although this effect is not long-lasting. High-precision 
detection has shown that RVFV can also be  transmitted from 
pregnant ewes to their fetuses, indicating that the vaccine’s 
immunization efficacy has not met expectations. Different 

inoculation methods in ruminants result in varying clinical 
manifestations. In calves, natural RVFV infection primarily leads to 
liver lesions, while subcutaneous infection tests have revealed 
encephalomyelitis, lymphatic necrosis, and adrenal gland damage 
(10). Studies on different routes of infection in cattle and goats have 
indicated that intranasal infection is more likely to cause 
neurological damage (38, 39). Neuronal infection in goats has been 
observed as early as 1 day after infection (38). Although short-term 
infection is unlikely to be  attributed to high levels of viremia 
breaking through the blood–brain barrier, it is plausible that 
intranasal infection directly affects neurons. This finding offers a 
viable direction for future research on neurological lesions caused 
by RVFV. Furthermore, the immune status of animals after virus 
infection, including changes in interferon levels, pro-inflammatory 
factors, antibodies, etc., also influences clinical symptoms and 
should be given due attention (37). Table 1 provides an overview of 
the main clinical manifestations and experimental infection routes 
observed in these ruminant animal models. This information can 
serve as a valuable reference for future development of 
animal vaccines.

3.3. Non-human primates

Non-human primates are used as animal models to study the 
harm of RVFV to the human body due to their high similarity to 
humans in terms of pathogenesis and clinical manifestations. These 
animal models serve as valuable tools in the development of vaccines 
for human use. Despite being expensive and challenging to obtain 
approval for their use, non-human primates are still essential in 
studying RVFV-induced neurological diseases. This is because stable 
encephalitis models are not commonly observed in rodents such as 
rats, mice, and gerbils, primarily due to age limitations. Rhesus 
monkeys, as long-term non-human primate models widely used in 
various viral studies, exhibit phenotypic similarities to humans after 
RVFV infection. However, due to the low incidence of neurological 
diseases in rhesus monkeys, they may not be the most suitable models 
for RVFV studies (30, 31). Studies have shown that African green 
monkeys and marmosets demonstrate more significant clinical 
manifestations, including neurological symptoms, when establishing 
RVFV infection models (32–34). In non-human primates, the 
varying disease manifestations observed after infection may 
be attributed to differences in host defense status and the distribution 
of host factors. This finding holds significant implications for humans 
as well. Therefore, these non-human primate species are considered 
more suitable for relevant RVFV studies as animal models (Table 1).

3.4. Other animals

Recently, ferrets have emerged as a potential animal model for 
studying RVFV. When inoculated intranasally with RVFV, ferrets have 
shown a high likelihood of developing central nervous system (CNS) 
diseases, characterized by symptoms such as seizures and ataxia (40). 
This model is particularly valuable because the RVFV-induced CNS 
diseases observed in ferrets occur following exposure, thereby 
mimicking the natural exposure pathway seen in humans. 
Consequently, the RVFV ferret model can be utilized to investigate 
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how the virus enters the CNS. In addition, ferrets can also serve as 
animal models for studying mild self-limited febrile illness caused by 
RVFV. Although this may not be the most severe symptom, it is still 
important to consider, as it represents a significant manifestation of 
human RVFV infection and warrants attention. Therefore, ferrets 
provide a valuable tool for studying both the CNS effects and mild 
febrile illness associated with RVFV.

4. Conclusion and prospect

The host range of RVFV infection is determined by host receptors 
and entry factors. It has been discovered that human LRP1 serves as a 
receptor for RVFV. However, the conservation of LRP1 protein 
sequence is relatively low in humans and some RVFV-sensitive 
animals, suggesting the existence of other receptors in these animals. 
In mice, sheep, and Aedes aegypti, homologs of C-type lectin receptors 
(CLRs) have been proposed as potential attachment factors or entry 
receptors in various species (84).

The heterogeneity among hosts in RVFV infection can 
be attributed to factors such as the efficiency of viral replication in the 
host and the survival time of infectious viral particles. Studies on host 
resistance to RVFV have revealed that the viral glycoprotein Gn plays 
a significant role in triggering immune responses on the surface of 
the RVFV viral envelope. Gn-specific antibodies are a major 
component of the RVFV neutralizing antibody response, indicating 
that the entry of RVFV into the host depends on Gn (85). Therefore, 
these two critical molecules, Gn and LRP1, can be potential targets 
for future vaccines and drug development. In addition to inhibiting 
viral entry, translational arrest and autophagy are also considered 
integral components of host defense against RVFV (86, 87). 
Cholesterol can be incorporated into RVFV particles and enhance 
RVFV infectivity in a polyamine-dependent manner (88). Studies 
have found that a high-cholesterol diet can lead to liver cholesterol 
accumulation, and it mainly affects cerebral vessels among the 
vascular effects, with up-regulation of LDLr and LRP1 detected in 
cerebral vessels (89). This finding aligns with the liver and brain 
lesions caused by RVFV infection, but the specific relationship still 
requires further exploration.

Furthermore, local ecological factors, such as the relative 
abundance and feeding preferences of vector hosts, can influence the 
transmission of RVFV among hosts. The prevalence of RVFV is 
closely linked to ecological and climatic conditions (90). Mosquito 
species in North America and European Aedes mosquitoes have been 
found to be capable of infecting and transmitting RVFV (91–95). 
With the impacts of climate change and global trade, these 
mosquitoes have the potential to spread the virus to Europe and the 
Americas, posing a significant risk to animal husbandry. Therefore, 
it is crucial to address and mitigate this risk to prevent irreversible 
damage. The variation in pathological responses to RVFV infection 
among different host species is an important consideration in 
selecting animal models for research. The US Food and Drug 
Administration recommends testing potential vaccines and 
treatments in at least two well-established animal models (96). 
Multiple animal models have been utilized to confirm the efficacy 
and safety of the RVFV-4s and MP-12 vaccines.

In conclusion, this review highlights the risk of RVFV 
transmission by providing an overview of its host range. Although an 

inactivated vaccine has been developed, it has not yet been licensed 
for commercial use. Currently, the vaccine is only administered to 
protect veterinarians and laboratory personnel who may be at high 
risk of exposure to RVFV. However, the infectivity of RVFV to 
humans and its potential to cause severe illness or even death cannot 
be  ignored. Therefore, there is still much research needed in the 
prevention and treatment of RVFV. To provide a reference for future 
research, this review summarizes the commonly used animal models 
in RVFV studies and emphasizes the pathological findings associated 
with RVFV infection in different host models. Presently, the available 
animal models for studying visual impairment and nervous system 
damage caused by RVFV are insufficient to meet the demands of 
scientific research. This poses challenges for the prevention and 
treatment of these two symptoms. Future model development should 
focus on these symptoms, adjust research directions, and address the 
gaps in understanding the immunopathology of such symptoms. 
Furthermore, it is worth noting that different hosts exhibit variations 
in their response to RVFV infection. For instance, some animals may 
develop ocular lesions while others can escape death resulting from 
liver damage but still experience severe encephalitis. The underlying 
reasons for these differences, including the distribution of RVFV host 
factors in various host animals or the existence of alternative antiviral 
pathways, require further investigation and exploration. Additionally, 
attention should be given to the similarities between RVFV and other 
hemorrhagic fever viruses. This includes examining whether there is 
cross-reactivity between factors involved in mediating the infection 
of each virus. Such investigations can shed light on the feasibility of 
combined prevention and treatment strategies.
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