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Introduction: The relationship between epilepsy and cognitive dysfunction has 
been investigated in canines, and memory impairment was prevalent in dogs 
with epilepsy. Additionally, canines with epilepsy have greater amyloid-β (Aβ) 
accumulation and neuronal degeneration than healthy controls. The present 
study investigated plasma Aβ42 levels and performed proteomic profiling in dogs 
with refractory epilepsy and healthy dogs.

Methods: In total, eight dogs, including four healthy dogs and four dogs with 
epilepsy, were included in the study. Blood samples were collected to analyze 
Aβ42 levels and perform proteomic profiling. Changes in the plasma proteomic 
profiles of dogs were determined by nano liquid chromatography tandem mass 
spectrometry.

Results and discussion: The plasma Aβ42 level was significantly higher in dogs 
with epilepsy (99  pg/mL) than in healthy dogs (5.9  pg/mL). In total, 155 proteins 
were identified, and of these, the expression of 40 proteins was altered in 
epilepsy. Among these proteins, which are linked to neurodegenerative diseases, 
10 (25%) were downregulated in dogs with epilepsy, whereas 12 (30%) were 
upregulated. The expression of the acute phase proteins haptoglobin and α2-
macroglobulin significantly differed between the groups. Complement factor 
H and ceruloplasmin were only detected in epilepsy dogs, suggesting that 
neuroinflammation plays a role in epileptic seizures. Gelsolin, which is involved 
in cellular processes and cytoskeletal organization, was only detected in 
healthy dogs. Gene Ontology annotation revealed that epilepsy can potentially 
interfere with biological processes, including cellular processes, localization, and 
responses to stimuli. Seizures compromised key molecular functions, including 
catalytic activity, molecular function regulation, and binding. Defense/immunity 
proteins were most significantly modified during the development of epilepsy. 
In Kyoto Encyclopedia of Genes and Genomes pathway analysis, complement 
and coagulation cascades were the most relevant signaling pathways affected 
by seizures. The findings suggested that haptoglobin, ceruloplasmin, α2-
macroglobulin, complement factor H, and gelsolin play roles in canine epilepsy 
and Aβ levels based on proteomic profiling. These proteins could represent 
diagnostic biomarkers that, after clinical validation, could be used in veterinary 
practice as well as proteins relevant to disease response pathways. To determine 
the precise mechanisms underlying these relationships and their implications in 
canine epilepsy, additional research is required.
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1 Introduction

Epileptic seizures are described by the International Veterinary 
Epilepsy Task Force (IVETF) as “a transient occurrence of signs due 
to abnormal excessive or synchronous neuronal activity in the brain” 
(1). The prevalence of canine epilepsy has been estimated to 
be  0.6–0.75% in the general dog population (2). Canine seizures 
significantly affect the health and well-being of dogs as well as their 
owners. Repeated or prolonged seizures can cause damage to the brain 
and nervous system, which can lead to cognitive and behavioral 
problems, as well as increased seizure frequency and severity (3, 4). 
Dogs that experience seizures can injury themselves or others during 
an episode because of the loss of consciousness, loss of motor control, 
or other factors (3, 4). Seizures can be emotionally stressful for both 
dogs and their owners, and they can lead to anxiety, depression, and 
decreased quality of life (5).

The pathophysiology of canine seizures is complex and 
incompletely understood. However, it is believed to involve a 
disruption in the balance of excitatory and inhibitory 
neurotransmitters in the brain, leading to hyperexcitability and 
synchronized firing of neurons. Genetic mutations, brain injury, or 
other factors affect ion channels and neurotransmitter receptors in the 
brain. These changes can increase the excitability of neurons and make 
them more likely to fire abnormally (4, 6). Inflammatory changes in 
the brain, such as the activation of microglia and the release of 
cytokines, can contribute to seizure development and propagation 
(7–9). Additionally, reactive oxygen species and other oxidizing agents 
can damage neurons and increase their excitability, potentially leading 
to seizures (10, 11).

The potential relationship between canine seizures and cognitive 
dysfunction syndrome (CDS), a condition characterized by cognitive 
decline similar to Alzheimer’s disease (AD) in humans, has received 
extensive focus. Dogs with CDS are more likely to experience 
seizures than healthy dogs. A dog experiencing a seizure exhibited 
typical symptoms commonly linked with canine dementia. 
Additionally, dogs with epilepsy displayed a higher prevalence of 
canine dementia symptoms compared with the control group (12, 
13). Seizures and cognitive impairment are interconnected, and they 
can interact in a vicious cycle. Specifically, seizures can cause damage 
to the nervous system, including cell death and alterations in 
neurotransmitters, thereby affecting cognitive function. In addition, 
CDS and dementia can increase the incidence of seizures by 
changing the structure and function of the brain (14–18). Previous 
research revealed that dogs that experienced seizures had a higher 
risk of developing cognitive impairment than their counterparts. 
Furthermore, dogs with cognitive dysfunction were more prone to 
seizures than dogs without cognitive dysfunction (15). Similarly, 
people with epilepsy have a higher risk of developing dementia than 
their counterparts, and the risk of dementia increases with the 
duration of epilepsy (14, 16, 19). There is a complex relationship 
among seizures, AD, and amyloid-β (Aβ) (20–22). Recent studies 
suggested that seizures can contribute to the formation of Aβ plaques 
in the brain and increase Aβ levels in cerebrospinal fluid (CSF), both 
of which are hallmarks of AD (21, 23, 24). Prior studies illustrated 
that Aβ can enhance neuronal excitability and contribute to seizures 
through a variety of mechanisms, including synaptic dysfunction 
and neuroinflammation (17, 18). In addition, recent studies 
identified a potential link between Aβ and epilepsy-associated 

comorbidities, such as cognitive impairment and depression (18, 
25). These studies suggested a bidirectional relationship between 
seizures and Aβ accumulation in the brain. Specifically, seizures can 
contribute to the formation of Aβ plaques, and Aβ accumulation can 
increase the risk of seizures.

Currently, the diagnosis of epilepsy is based on clinical signs, 
history, and the elimination of other potential causes of seizures (1, 3). 
Advanced imaging techniques, such as MRI and CT, can provide 
valuable information about the underlying causes of seizures. 
Proteomic analysis is a powerful tool that can be used in the diagnosis 
and therapeutic monitoring of canine epilepsy. In particular, 
proteomic analysis can be used to identify potential biomarkers of 
epilepsy in dogs. By comparing the protein profiles of dogs with and 
without epilepsy, researchers can identify proteins that are 
differentially expressed in dogs with epilepsy. These proteins can then 
be validated as potential biomarkers for use in diagnosis and treatment 
response assessment and as targets for new drugs (26, 27).

The objectives of this investigation were to determine plasma Aβ 
levels and identify proteins potentially involved in the pathogenesis of 
refractory canine epilepsy using proteomic analysis. We demonstrated 
for the first time that increased plasma Aβ42 levels were accompanied 
by alterations in plasma protein expression in dogs with refractory 
epilepsy. These findings could provide additional insights into the 
mechanisms underlying epilepsy. In addition, potential plasma 
biomarkers obtained via proteomic analysis may be  utilized for 
treatment management.

2 Materials and methods

2.1 Study population

Eight plasma samples were collected from dogs at the Small 
Animal Teaching Hospital, Faculty of Veterinary Medicine, Mahidol 
University (Nakhon Pathom, Thailand). The sample size of four 
animals in each group was determined using the EpiTools 
epidemiological calculator,1 with a significance level of 5% and a 
confidence level of 95%. The cohort included four dogs diagnosed 
with refractory idiopathic epilepsy and four healthy dogs. Idiopathic 
epilepsy was described as a condition in which dogs aged 6 months 
to 6 years old experienced their first seizure without any other 
underlying cause for the seizures without significant abnormalities 
on minimum data base blood tests (according to the IVETF 
diagnostic Tier I) (28). All idiopathic epilepsy dogs received 
appropriate dose of phenobarbital and potassium bromide but 
become refractory to all medication (29). The population 
characteristics of dogs in this study have been included in the 
Supplementary material. The sample collection protocol was 
approved by the Mahidol University Animal Care and Use Committee 
(AICUC: MUVS-2020-08-37). Blood samples were collected and 
centrifuged at 3000 rpm for 10 min. The first portion of the plasma 
sample was stored at −80°C for proteomic analysis, whereas the 
second portion was stored at −80°C to assess Aβ42 levels using 
enzyme-linked immunosorbent assay (ELISA).

1 http://epitools.ausvet.com.au/content.php?page=home
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2.2 Sodium dodecyl sulfate–
polyacrylamide gel electrophoresis 
(SDS-PAGE)

The concentrations of plasma proteins were measured using 
Bradford’s assay. Protein samples from each group were pooled. For 
protein identification using nano liquid chromatography tandem mass 
spectrometry (nano-LC–MS/MS), 30 μg of pooled protein were 
loaded onto a 12% polyacrylamide gel. The protein bands on the gel 
were stained using Coomassie Brilliant Blue R-250 (Bio-Rad, Hercules, 
CA, USA) and then de-stained using a solution of 30% ethanol in 10% 
acetic acid. The gel was scanned using a GS-710 scanner (Bio-Rad, 
Hercules, CA, USA). For further analysis, the protein bands were 
divided into 11 segments per lane based and cut into pieces. The gel 
band excision technique was based on the ability to separate different 
protein sizes physically on the gel and did not cut in the middle of the 
protein bands. Each individual piece was then subjected to 
tryptic digestion.

2.3 In-gel digestion

Gel pieces were equilibrated using absolute acetonitrile and 
50 mM NH4HCO3. Disulfide bonds were reduced using 4 mM 
dithiothreitol in 50 mM NH4HCO3 for 10 min at 60°C and alkylated 
in 250 mM iodoacetamide in 50 mM NH4HCO3 for 30 min at room 
temperature in the dark. The gel pieces were dehydrated twice in 
absolute acetonitrile for 15 min each and allowed to air-dry. Next, the 
gel pieces were subjected to trypsin digestion in 50 mM NH4HCO3 
overnight at 37°C. The resulting tryptic peptides were extracted from 
the gel using absolute acetonitrile. Finally, the peptide mixtures were 
dried using a speed vacuum and stored at −80°C until analysis by 
nano-LC–MS/MS.

2.4 Analysis of peptide patterns by nano 
LS-MS/MS

Extracted peptides were dissolved in 0.1% formic acid in LC/
MS-grade water. Each sample was injected into the UltiMate 3,000 
RSLCnano System (Thermo Fisher Scientific, Waltham, MA, USA). 
Peptide separation was performed using a C18 column at a flow rate 
of 300 nL/min. Mobile phase A consisted of 0.1% formic acid in water, 
whereas mobile phase B consisted of 80% acetonitrile in 0.1% formic 
acid. The eluent was then infused into a microTOF-Q mass 
spectrometer (Bruker Daltonics, Billerica, MA, USA). The mass 
spectra from the mass spectrometry (MS) and tandem MS covered the 
mass ranges of m/z 400–2000 and m/z 50–1,500, respectively.

2.5 Bioinformatics analysis

A mascot generic file (.mgf) was generated using DataAnalysis 3.4 
version software. Mascot Daemon version 2.3.2 (Matrix Science, 
London, UK) was used to identify the proteins. Identification and 
quantification of the proteins were performed against an NCBInr 
database (March 02, 2023) specific for dogs. Protein abundance was 
determined by peptide count analysis using the exponentially 

modified protein abundance index (emPAI) value (30). The emPAI is 
a label-free approach for protein quantification. It provides a 
relationship of direct proportionality between the numbers of 
observed and expected peptides (30). This technique could inform the 
relative quantification of each protein in the protein mixture which is 
more informative than crude protein concentration assay. Three 
biological replications were performed. Proteins with significantly 
different expression in the two groups were used to perform clustering 
analysis. A Venn diagram was used to illustrate differences in protein 
expression between the groups.

2.5.1 Gene ontology (GO) annotation
Proteins were classified by GO annotation based on three 

categories: biological processes, cellular components, and molecular 
function. This analysis helps to understand the biological functions 
and processes associated with the differentially expressed proteins.

2.5.2 Enrichment of pathway analysis
The protein–protein interactions between differentially expressed 

proteins in a protein map were assessed using the Search Tool for the 
Retrieval of Interacting Genes (STRING) database.2 This database 
provides information about known and predicted interactions 
between proteins, thereby assisting in the exploration of protein 
networks and potential functional relationships. Next, the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database3 was used to 
classify differentially expressed proteins into hierarchical categories. 
Pathways with false discovery rates smaller than 0.05 were considered 
statistically significant. Protein function was identified using the 
UniProt database.4

2.6 Determination of Aβ42 levels by ELISA

To quantify Aβ42 levels in plasma, specific sandwich ELISA kits 
designed for human Aβ42 (Elabscience®, Wuhan, China) were used 
following the manufacturer’s instructions. Several evidences in canine 
studies have utilized human Aβ42 ELISA kit across species (31, 32) due 
to the identical amino acid sequence of Aβ42 between humans and 
dogs (33). Briefly, ELISA plates were coated with 100 μL of each 
plasma sample. Then, biotinylated antibody was added to the plates, 
followed by incubation for 1 h. After several wash steps, HRP 
conjugate working solution was added to each well. The wash step was 
repeated, and substrate solution was added to each well. The reaction 
was stopped by the addition of stop solution. The absorbance of the 
samples was measured at a wavelength of 450 nm.

2.7 Statistical analysis

The statistical significance of differences between the groups was 
determined using a paired non-parametric Student’s t-test. Statistical 
calculations were performed using GraphPad Prism version 5.0 and 
significance was indicated by p < 0.05.

2 https://string-db.org

3 https://www.genome.jp

4 www.uniprot.org
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3 Results

3.1 Plasma levels of Aβ42 in dogs with 
epilepsy and healthy dogs

The mean plasma Aβ42 level with refractory idiopathic epilepsy 
was significantly greater levels when compared to normal dogs (99 pg/
mL vs. 5.9 pg/mL, p < 0.05, Figure 1). Similarly, it was observed that 
dogs with cognitive impairment exhibited increased levels of plasma 
Aβ42 (31, 32, 34).

3.2 Plasma proteomics

Plasma from dogs in the healthy control and epilepsy groups were 
pooled and prepared to measure differential protein expression using 
a proteomic approach. The protein bands in one-dimensional gel 
electrophoresis of both groups were separated into 11 pieces prior to 
in-gel trypsin digestion (Figure  2). Of the 155 canine proteins 
examined, 53 (34.19%) were commonly expressed in dogs in both 
groups (Figure 3).

3.3 Identification of differentially expressed 
proteins in plasma

The downregulated and upregulated proteins in dogs with epilepsy 
compared to those in healthy dogs were specifically involved in several 
biological processes. Differential protein expression was demonstrated 
via semi-quantification by selecting the altered proteins with at least 
two replicates (35, 36). Of the 155 examined proteins, 40 displayed at 
least 1.5-fold differences in expression between the healthy control 
and epilepsy groups according to the emPAI values.

3.4 GO and pathway enrichment analyses 
of proteins

Pathway enrichment analysis was performed to map the proteins 
onto GO databases via PANTHER using three primary categories: 
biological process, protein class, and molecular function. In the GO 
molecular function category, the differentially expressed proteins 
between the healthy control and epilepsy groups were divided into 
four groups: biological process, molecular function regulator, protein 
class, and cellular component (Figure 4). Among the differentially 
expressed proteins in the epilepsy group, six, six, and five were mapped 
within cellular processes, response to stimuli, and biological 
regulation, respectively, in the biological process category (Figure 4A). 
Five proteins were clustered within catalytic activity and five proteins 
were involved in binding, molecular function regulation, and 
molecular transducer activity in the molecular function category 
(Figure 4B). Eleven proteins participated in defense/immunity protein 
in the protein class category (Figure  4C), and eight proteins 
participated in cellular anatomical entity in the cellular component 
category (Figure 4D).

These results illustrated compared to the findings in healthy dogs, 
biological processes such as cellular activities, localization, response 
to stimuli, and critical molecular activities such as catalytic activity, 
molecular function regulation, and binding were disrupted in dogs 
with epilepsy. Defense/immunity proteins were the most dramatically 
altered proteins throughout the development of epilepsy.

3.5 Proteins of interest and subcellular 
distribution of differentially expressed 
proteins

Twelve proteins were upregulated in the epilepsy group, whereas 
10 proteins were downregulated (Table  1). To predict the cellular 

FIGURE 1

Plasma Aβ42 levels in the healthy control and epilepsy groups. *P < 0.05.

FIGURE 2

Protein separation one-dimensional gel electrophoresis.
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functions of differentially expressed proteins, their localization was 
analyzed in this study. Using subcellular location analysis with data 
from the UniProt annotation database, the distribution of the proteins 
was as follows: secreted, 14 (63.64); endoplasmic reticulum, 1 (4.55%); 
cell membrane, 3 (13.64%); cytoplasm, 4 (18.18%); mitochondria, 1 
(4.55%); cytoskeleton, 2 (9.09%); and extracellular space, 1 (4.55%, 
Table 1). The proteins of interest in dogs, identified from the MS/MS 
data reported here, exhibited a confidence level above 95%, as 
determined by the false discovery rate.

3.6 KEGG function analysis of differentially 
expressed proteins

To explore the potential proteins involved in the pathogenesis of 
canine epilepsy and Aβ42 metabolism, we performed pathway analysis 
using STRING version 11.0. Total protein changes in the epilepsy 
group in comparison with the healthy control group were expanded 
to illustrate evidence of interactions, resulted in the identification of 
17 proteins. We compared this protein set to those in the GO and 

FIGURE 3

Venn diagram of detected proteins in the healthy control and epilepsy groups (Canis spp.).

FIGURE 4

GO annotation of; (A) biological process, (B) molecular function, (C) protein class, and (D) cellular component, for differentially expressed proteins 
between the healthy control and epilepsy groups.
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TABLE 1 Differentially expression proteins in dogs with epilepsy and healthy controls.

Upregulated proteins in the epilepsy group

Protein accession 
number

Protein name Subcellular 
distribution

Protein function Fold change p

A0A8C0L8V9 Haptoglobin Extracellular space, secreted Antioxidant, acute phase response 6.94 0.257

A0A8C0KKB1 α-1-antitrypsin-like Endoplasmic reticulum Irreversibly inhibits trypsin, 

chymotrypsin and plasminogen 

activator

2.22 0.005

A0A8C0QTZ3 Fibrinogen gamma chain Secreted Functions in hemostasis 2.19 0.071

A0A8C0QD48 Immunoglobulin heavy 

constant mu

Cell membrane, secreted Primary defense mechanisms 2.00 0.381

A0A8C0N3V5 Gelsolin Cytoplasm, cytoskeleton, 

secreted

Calcium-regulated, actin-modulating 

protein

Only expressed in the 

epilepsy group

0.096

A0A8C0KQR0 Pentatricopeptide repeat 

domain 3

Mitochondria Mitochondrial RNA-binding protein 

that has a role in mitochondrial 

translation

Only expressed in the 

epilepsy group

0.092

A0A1K0GGH0 Globin A2 N/A Involved in oxygen transport Only expressed in the 

epilepsy group

0.095

A0A8C0RS56 Complement factor B Secreted Alternate pathway of the complement 

system

Only expressed in the 

epilepsy group

0.116

A0A8C0M9Q8 Ig α-1 chain C region Secreted, cell membrane Defends against infection and prevents 

the access of foreign antigens

Only expressed in the 

epilepsy group

0.019

Q7M321 Plasmin (fragment) Secreted Dissolves the fibrin of blood clots and 

acts as a proteolytic factor

Only expressed in the 

epilepsy group

0.147

A0A8C0JUJ8 Complement factor H Secreted Complement activation modulator, 

soluble inhibitor of complement

Only expressed in the 

epilepsy group

0.344

A0A8C0L3D1 Ceruloplasmin Secreted Ferroxidase activity oxidizing Fe2+ to 

Fe3+

Only expressed in the 

epilepsy group

0.102

Downregulated proteins in the epilepsy group

A0A8C0K0Q8 α2-macroglobulin Secreted Inhibits all four classes of proteinases 9.50 0.134

A0A8C0NNW8 GLOBIN domain-

containing protein

N/A Involved in oxygen transport 1.98 0.018

A0A8C0JZK1 Pregnancy zone protein-

like

Secreted Inhibits all four classes of proteinases 1.88 0.128

A0A8C0NL73 Hemoglobin subunit 

beta

Secreted Involved in oxygen transport Only expressed in the 

healthy control group

0.188

A0A8C0LTI4 Vitamin D binding 

protein

Secreted Involved in vitamin D transport and 

storage, scavenging of extracellular 

G-actin

Only expressed in the 

healthy control group

0.355

A0A8I3PH35 GLOBIN domain-

containing protein

N/A Involved in oxygen transport Only expressed in the 

healthy control group

0.002

A0A8P0NMZ6 Keratin, type II 

cytoskeletal 1

Cell membrane, cytoplasm Regulate the activity of kinases Only expressed in the 

healthy control group

0.259

A0A8C0L7B0 GCN1 activator of 

EIF2AK4

Cytoplasm Acts as a positive activator of the 

GCN2 protein kinase activity

Only expressed in the 

healthy control group

0.259

A0A8C0M1F4 α-1-B glycoprotein N/A Related to inflammation, including 

binding of pathogens and modulating 

white blood cells activity

Only expressed in the 

healthy control group

0.092

A0A8C0K5X2 Gelsolin Cytoplasm, cytoskeleton, 

secreted

Calcium-regulated, actin-modulating 

protein

Only expressed in the 

healthy control group

0.113
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KEGG databases. The proteins related with Aβ were haptoglobin 
(HP), α2-macroglobulin, ceruloplasmin, complement factor H (CFH), 
and gelsolin. The proteins potentially associated with the pathogenesis 
of epilepsy are involved in complement and coagulation cascades 
(Figure 5).

4 Discussion

A growing body of research has suggested an association between 
AD and epilepsy (18). Canine refractory epilepsy have a higher risk of 
developing CDS at a younger age than normal dogs (12). Multiple 
studies in animals and humans have revealed an association between 
Aβ and epilepsy (37–39). In our study, we  first demonstrated 
significantly higher plasma Aβ levels in dogs with refractory epilepsy. 
Plasma Aβ42 levels in healthy dogs in this study were comparable to 
those recorded in a previous study (10.99 ± 5.45 pg/mL) (31), and 
plasma Aβ42 levels were elevated in age-matched dogs with epilepsy. 
The plasma proteomic pattern was assessed, and five major proteins 
potentially involved in the pathogenesis of epilepsy and elevated Aβ 
levels were identified: haptoglobin (HP), α2-macroglobulin, 
ceruloplasmin, complement factor H (CFH), and gelsolin.

The interplay between epilepsy and cognitive dysfunction has been 
studied in dogs. However, the evidence demonstrating that Aβ levels 
are higher in dogs with than in healthy controls is limited. A previous 
study found that dogs with severe early-onset epilepsy had higher Aβ 
accumulation and greater neuronal degeneration in the brain than 

healthy controls (40). Additionally, substantial evidence has revealed 
an association between Aβ and epilepsy in animals and humans. For 
example, the presence of Aβ plaques was associated with an increased 
frequency and duration of epileptic spiking in APP/PS1 mice (37). Aβ 
protein levels and their relationship with cognitive function have been 
investigated in patients with refractory epilepsy by analyzing cortical 
biopsies from the temporal lobes. The results revealed a strong 
compelling of Aβ deposits in the biopsied tissues, supporting the 
existence of Aβ deposits in patients with refractory epilepsy (39). In 
patients with refractory seizures, increased Aβ precursor protein was 
detected in temporal lobe or hippocampal sections (41). A study on 
rats illustrated that epilepsy can lead to increased Aβ expression (42, 
43). Seizures contribute to neurodegenerative processes by triggering 
electrical currents and promoting the production and release of Aβ (37, 
44). The presence of Aβ42 leads to an increase in neuronal excitability 
in AD, which subsequently initiates the development of progressive 
epilepsy (17). Our findings demonstrate that increased levels of Aβ42 in 
dogs with treatment-resistant seizures may be attributed to prolonged 
epileptiform discharges in the brain, leading to the development of 
cognitive impairment. Further research is needed to fully understand 
the mechanisms underlying this relationship and to identify potential 
therapeutic targets.

Plasma HP, which is primarily produced by hepatocytes in the 
liver, is a particularly important hemoglobin-binding protein that 
removes hemoglobin from the circulation (45). Various additional 
functions of HP have been discovered, including serving as an acute 
phase 2-acid response glycoprotein, an antioxidant of apolipoprotein 

FIGURE 5

Protein differences between the healthy control and epilepsy group by STRING. Red  =  complement and coagulation cascades (KEGG pathway). 
Proteins in green circles are proteins of interest related to Aβ42 (APP, amyloid beta A4 protein; A2M, α2-macroglobulin; CP, ceruloplasmin; GSN, 
gelsolin; GC, vitamin D binding protein; LOC479668, haptoglobin).
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E (APOE), an anti-inflammatory protein, and an Aβ clearance 
facilitator (46, 47). In the current study, HP was significantly 
upregulated in the epilepsy group compared to that in the healthy 
control group. A potential association of HP with neurological 
disorders was discovered. Significant upregulation of HP, interferon 
gamma, and interleukin-1β was associated with refractory epilepsy, as 
determined by proteomic analysis of plasma isolated from children 
with refractory epilepsy (48). Serum HP levels were significantly higher 
in patients with idiopathic seizures than in healthy controls (49). 
Similarly, proteomic analysis of CSF from dogs with recurrent epileptic 
seizures revealed a significant increase in HP levels, suggesting that HP 
participates in disruption of the blood–brain barrier, which is 
potentially linked to the inflammatory response triggered by seizures 
within the brain (26). Patients with AD have significantly higher serum 
HP levels than healthy controls. Additionally, a significant positive 
correlation between the serum HP level and the severity of cognitive 
impairment was observed in patients with AD (47, 50). This association 
is believed to occur through the modification of the effects of APOE, 
another genetic factor implicated in AD progression (46). Although 
research on the relationship among HP, epilepsy, and Aβ is currently 
limited, the present findings suggest possible links among these factors.

In the present study, ceruloplasmin was only detected in dogs with 
epilepsy. Ceruloplasmin is a circulating copper-binding protein that 
participates in copper homeostasis, oxidative stress, and 
neuroinflammation, and its expression is increased during the acute 
phase response (51, 52). Evidence suggests that plasma ceruloplasmin 
levels reflect its levels in the brain (53). There is some evidence that 
ceruloplasmin is involved in seizure activity, although the exact 
relationship is not fully understood (28, 54, 55). Plasma ceruloplasmin 
concentrations and oxidase activity were substantially higher in adults 
with epilepsy than in age- and gender-matched controls (28). 
Ceruloplasmin mRNA expression in the peripheral blood was 
significantly higher in patients with refractory epilepsy than in drug-
responsive patients and healthy controls. The researchers additionally 
found a link between increased ceruloplasmin expression and different 
treatment strategies, potentially revealing a resistance mechanism for 
combination medications used to treat refractory epilepsy (28). The 
relationship between epilepsy and partial duplication of the 
ceruloplasmin gene in mice in epilepsy, which is coinherited with 
seizures, was studied, and duplication of the gene was associated with 
increased ceruloplasmin mRNA expression and ceruloplasmin oxidase 
activity (55). In addition, the role of ceruloplasmin in Aβ metabolism 
has been studies. There is evidence that High CSF ceruloplasmin levels 
in patients with AD and underlying Aβ pathogenesis was related to 
faster cognitive deterioration (51). These studies suggest the 
involvement of ceruloplasmin in seizure activity and Aβ metabolism 
through its roles in oxidative stress and copper homeostasis.

In the present study, CFH was only detected in the plasma of dogs 
with epilepsy. The protein regulates complement system activity and 
modulates inflammation in the brain and periphery. Despite being 
mainly synthesized and secreted by the liver, CFH has been found in 
different tissues, including the brain (56). Recent studies have suggested 
a possible link between mutations or dysregulation of CFH and epilepsy. 
Ten complement analytes were measured in patients with focal or 
generalized epilepsy, and plasma CFH levels were significantly higher 
in such patients than in controls (56). Although the exact mechanisms 
underlying the relationship between CFH and seizures are not fully 
understood, it is believed that dysregulation of the complement system 

contributes to neuroinflammation and neuronal damage, leading to an 
increased risk of seizures. In addition, recent studies have attempted to 
demonstrate the possible relationship between CFH and Aβ in AD (57, 
58). Plasma CFH levels were reduced in patients with late-onset AD, 
and this reduction was associated with serum C-reactive protein levels. 
Unfortunately, it was recently suggested that plasma CFH is not an 
appropriate biomarker for AD (57).

α2-Macroglobulin is a broad-spectrum proteinase inhibitor and 
an acute phase protein of the innate immune system that is extensively 
found in the plasma of animals and distributed in various body fluids, 
including CSF (59–61). The plasma levels of α2-macroglobulin and 
cytokines are elevated in patients with neurodegenerative diseases 
including AD and Parkinson’s disease (61). It has been proposed that 
increased activity of α2-macroglobulin has a role in AD pathogenesis 
involving Aβ plaque accumulation (62). Plasma α2-Macroglobulin 
functions as a carrier protein and specifically binds to soluble Aβ and 
facilitates its degradation (63–65). This process may help in the 
clearance of Aβ from tissues, including the brain. The current study 
showed a reduced expression of α2-macroglobulin in seizure group, 
which may result in a diminished clearance of Aβ. This can explain for 
why elevated plasma levels of Aβ were identified in the seizure group.

In the present study, plasma gelsolin was only detected in healthy 
dogs. Gelsolin is a calcium and phosphatidylinositol 4,5-bisphosphate–
regulated protein with actin-binding properties that is involved in 
various cellular processes, including cell signaling, inflammation, and 
cytoskeletal organization (66). There is evidence of the potential of 
gelsolin as a biomarker for epilepsy, with people with epilepsy having 
considerably lower CSF levels of gelsolin than healthy controls. 
Gelsolin protein levels were similarly reduced in the temporal lobe in 
patients with epilepsy (67). Seizure-induced damage to hippocampal 
pyramidal neurons was exacerbated in gelsolin-deficient adult mice, 
suggesting that gelsolin activates N-methyl-D-aspartate receptors and 
voltage-dependent calcium channels, leading to pathophysiological 
events (68). In addition, gelsolin m expression was lower in the 
hippocampus of mice with epilepsy and seizures than in mice without 
seizures (69). Gelsolin is also considered to be involved in AD and the 
regulation of Aβ levels according to the finding that diverse gelsolin 
alterations are connected with the progression of AD (70, 71). Gelsolin 
administration or overexpression induced a considerable reduction in 
the amyloid burden and Aβ level in AD transgenic mice (70, 72). 
Greater plasma and CSF gelsolin concentrations were detected in 
patients with AD than in controls, and a positive association was 
found between gelsolin and Aβ42 levels in CSF. The increase in plasma 
gelsolin levels is most likely a compensatory reaction in AD (71).

In conclusion, we first demonstrated that plasma Aβ42 levels were 
significantly higher in dogs with refractory epilepsy than in healthy 
dogs. The plasma proteomic pattern was identified, and five major 
proteins potentially involved in the pathogenesis of epilepsy and 
control of Aβ levels, including HP, α2-macroglobulin, ceruloplasmin, 
CFH, and gelsolin, were identified. HP and α2-macroglobulin are 
proteins involved in acute phase, immunological, and inflammatory 
responses. HP expression was substantially elevated in the epilepsy 
group, indicating relationships with early neuronal injury and 
enhanced Aβ clearance. Conversely, α2-macroglobulin was 
significantly upregulated in the healthy control group, and the role of 
α2-macroglobulin in seizure etiology remains unknown. CFH and 
ceruloplasmin were only detected in the plasma of dogs with epilepsy, 
suggesting potential roles in neuroinflammation and seizures. 
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Contrarily, gelsolin, which is involved in cellular processes and 
cytoskeletal organization, was only found in the plasma of healthy 
dogs. However, the exact mechanisms underlying these relationships 
and their implications in canine epilepsy require further research 
(Figure  6). Although the sample size of animals in the study is 
sufficient to examine the difference in plasma levels of β-amyloid42 
between healthy dogs and those with refractory epilepsy, the 
proteomics analysis is limited by the small number of dogs. The 
present study demonstrated that proteomic analysis has the potential 
to identify novel biomarkers, mechanisms, and therapeutic targets for 
seizure disorders. However, further research is needed to validate 
these biomarkers and overcome the challenges associated with 
proteomic analysis in neurological disorders.
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The molecules associated with Aβ production in dogs with epilepsy.
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