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Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 
Netherlands

When deciding on the voluntary waiting period of an individual cow, it might 
be useful to have insight into the persistency for the remainder of that lactation 
at the moment of the insemination decision, especially for farmers who consider 
persistency in their reproduction management. Currently, breeding values for 
persistency are calculated for dairy cows but, to our knowledge, prediction 
models to accurately predict persistency at different moments of insemination 
are lacking. This study aimed to predict lactation persistency for DIM 305 at 
different insemination moments (DIM 50, 75, 100, and 125). Available cow and 
herd level data from 2005 to 2022 were collected for a total of 20,508 cows from 
85 herds located in the Netherlands and Belgium. Lactation curve characteristics 
were estimated for every daily record using the data up to and including that day. 
Persistency was defined as the number of days it takes for the milk production 
to decrease by half during the declining stage of lactation, and calculated from 
the estimated lactation curve characteristic ‘decay’. Four linear regression models 
for each of the selected insemination moment were built separately to predict 
decay at DIM 305 (decay-305). Independent variables included the lactation 
curve characteristics at the selected insemination moment, daily milk yield, age, 
calving season, parity group and other herd variables. The average decay-305 
of primiparous cows was lower than that of multiparous cows (1.55 *10−3 vs. 
2.41*10−3, equivalent to a persistency of 447 vs. 288  days, respectively). Results 
showed that our models had limitations in accurately predicting persistency, 
although predictions improved slightly at later insemination moments, with R2 
values ranging between 0.27 and 0.41. It can thus be concluded that, based only 
on cow and herd milk production information, accurate prediction of persistency 
for DIM 305 is not feasible.
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Introduction

Traditionally, 12 to 13 months has been considered to be the economically optimal calving 
interval for dairy cows (1, 2). Such a calving interval can maximize milk yield per cow per 
year, making use of peak production at the beginning of every lactation (3, 4). However, 
whether this yearly calving interval is the most optimal choice for every cow is now being 
questioned in the literature. First, cows can suffer from a negative energy balance at early 
lactation, especially high-producing cows (5, 6). Subsequent conception rates might therefore 
be low as cows may not have recovered from the metabolic problems caused by this negative 
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energy balance (7, 8). Second, a yearly calving interval can result in 
cows being dried off with a relatively high milk yield at the end of 
the lactation. This has been described as a risk factor for poor udder 
health in subsequent lactations (9, 10). Third, a yearly calving 
interval might be  an indication for more metabolic disease 
treatments per year (11). More costs (labor, veterinarian and 
insemination) may then be incurred and the cow’s health, welfare 
and lifespan may be impaired (12, 13).

Extending lactation has been proposed as a solution to solve 
the above-mentioned issues. By extending lactation, farmers 
deliberately delay the first insemination moment. Several 
advantages of extended lactation have been identified (14–16). 
Extended lactation could benefit cow health and production 
efficiency due to fewer transition periods in the lifespan of the cow. 
Extending the voluntary waiting period (VWP) for some cows has 
resulted in higher milk yield per day of calving interval (14, 17, 
18). In addition, extending the VWP can lower milk yield during 
the last 6 weeks before dry-off and benefit udder health in the 
following dry period and the next lactation (10, 15, 18). Other 
advantages of extending lactation are that it may reduce 
greenhouse gas emissions per kg of milk produced, increase 
profitability and improve cow welfare (19–21). However, not all 
cows are suitable for extended lactation and the optimal VWP may 
vary per cow. It is therefore important to select the right cow for 
extended lactation (22, 23).

Maintaining milk production in late lactation is a prerequisite 
for extended lactation (15, 24, 25). Persistent cows decrease their 
milk yield at a lower rate after the peak day, resulting in a flatter 
lactation curve than non-persistent cows. Persistency is one of the 
factors that affect body condition scores at the end of the lactation, 
thus avoiding the risk of parturition diseases after the subsequent 
calving (26, 27). From an economic perspective, extending lactation 
of persistent cows could increase the net partial cash flow at herd 
level (4). Extended lactations will be more beneficial, especially in 
herds with more persistent cows (28). Definitions of lactation 
persistency differ between previous studies. Persistency was defined 
as the milk yield difference at selected DIMs or the declining slope 
of milk yield within selected intervals after peak yield (18, 29, 30). 
Persistency can also be determined by using lactation curve models 
which quantify the lactation curve based on all available milk yield 
data (31, 32). One of the lactation curve characteristics that defines 
the curve is the decay, a lactation curve characteristic that can easily 
be transformed into other measures of persistency as the number 
of days it takes to halve milk production in the declining stage of 
lactation (32).

When deciding on the VWP of an individual cow, it is useful to 
be  aware of the persistency for the remainder of that lactation, 
especially for farmers who consider persistency in their reproduction 
management. Predictions of persistency for the current lactation 
could thus provide additional information to optimize the 
VWP. Currently, breeding values for persistency are calculated for 
dairy cows (33–35) but, to our knowledge, prediction models to 
accurately predict persistency at the moment of insemination 
are lacking.

This study aims to determine whether it is possible to predict 
lactation persistency for DIM 305 at different insemination moments 
(DIM 50, 75, 100, and 125) based on available cow and herd data 
(excluding breeding values).

Materials and methods

Available data

Daily milk production and cow data were obtained for the years 
2005–2022 from the MmmooOgle programme (Puurs, Belgium). 
Originally, the dataset included 95,529,301 milking robot visit records 
for 44,540 cows in 91 herds located throughout the Netherlands and 
Belgium. Milking robot visit records refer to detailed records 
generated by automated milking robots during milking of cows. All 
robot visits included general cow information (e.g., birth date, calving 
date, age in days and parity) and milk yield (kg). The number of 
lactating cows per herd varied between 26 (1%) and 394 (99%) per 
year, with a mean of 174 cows.

Preliminary data editing

The data editing diagram is shown in Figure  1. All exact 
calculations are shown in the Github repository mentioned at the 
end of this section. First, the milking robot visit records were 
summarized into 117,420 lactations from 44,540 cows. 
Subsequently, 326 lactations without parity information were 
excluded. Percentiles of age in days were calculated within every 
parity and 2,988 lactations with extreme age in days per parity 
(>99% percentile or < 1% percentiles) were excluded. In addition, 
1,156 lactations with extremely long lactation lengths (>99% 
percentile) were excluded. Applying these lactation level filters 
resulted in 91,295,489 milking robot visit records for 42,990 cows 
in 91 herds. Subsequently, a method (36) from the International 
Committee for Animal Recording (ICAR) was used to calculate a 
24-h milk yield using the 12 previous milkings for every milking 
robot visit record. The 24-h milk yield of the last milking robot visit 
record on a given day was considered as the daily milk yield for that 
specific day. Afterwards, 31,693,777 daily records were summarized 
in 112,949 lactations. Among these, 34,646 lactations were from 
primiparous cows while 78,303 lactations were from 
multiparous cows.

Lactation curve modeling

A lactation curve was fitted for each daily record using the 
MilkBot model (32) through the MilkBot lactation API1. No records 
were dropped during the fitting process. The full MilkBot equation is 
shown as:
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where Y(t) is the estimated milk production when DIM is t, and 
scale a, ramp b, offset c and decay d are the lactation curve 

1 https://api.milkbot.com/
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characteristics (LCC) describing the lactation curve. LCC are 
estimated for every daily record by fitting a lactation curve using 
the data up to and including that day. For example, LCC at DIM 
50 are estimated after a lactation curve was fitted for the daily 
milk records up to and including DIM 50. Based on Bayesian 
statistics, the specific population mean lactation curve 
characteristics were used as prior information, and the priors were 
previously adjusted to the population of Dutch dairy farms (37). 
The prior was used to a greater extent when the fitted lactation 
had fewer daily records.

In the current study, the a (scale) was renamed magnitude of milk 
production (in kg/day) and the b (ramp) was renamed time to peak 
yield (in days). The d (decay) was transformed into a measure of 
persistency (in days) using the equation (32):

 
Persistency

d
=
0 693.

 
(2)

Persistency refers to the number of days it takes for the daily milk 
production to decrease by half during the declining stage of lactation. 
It can be thought of as the “half-life” of milk production. For instance, 
if a cow has a persistency of 300 days and reaches its peak yield of 40 kg 
at DIM 100, it means that this cow will attain a milk yield of 20 kg at 
DIM 400.

The 305-day milk production (M305, in kg) can be estimated 
using the equation:
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Further data editing

After fitting the lactation curve model, 31,693,777 daily records 
with LCC from 42,990 cows in 91 herds remained. Daily records 
with LCC from lactations ending before DIM 305 (n = 8,566,622) 
were excluded because they did not have LCC for DIM 305. Daily 
records with negative decay (n = 2,093,947) and an extremely bad 
fitting (root mean squared error (RMSE) of lactation curve fitting 
>95% percentile, n = 1,051,662) were also excluded, as were extreme 
values for magnitude, time to peak yield and decay (>99% percentile 
or < 1% percentiles, n = 1,177,626). In cases where lactations did not 
have LCC at DIM 305, LCC at DIM 304 was used as a substitute. This 
was determined based on the 90th percentile of the closest day to 
DIM 305. Following this, daily records from lactations without LCC 
at DIM 305 or 304 were excluded (n = 680,185). For every lactation, 
the calculated conception date was calculated by subtracting 
282 days (38, 39) from the subsequent calving date. If no subsequent 
calving date was present, the breeding status was defined as ‘Never’. 

FIGURE 1

Diagram on data editing of the dataset on milk production per visit to an automatic milking system. The numbers in the boxes represent the excluded 
numbers. 1%, the percentile. 2 LCC, lactation curve characteristics (magnitude, time to peak yield, offset and decay). 3 RMSE, root mean squared error of 
the lactation curve fitting.
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The breeding status was defined as ‘Bred’ if the calculated conception 
date was earlier than the date of the daily record; in all other cases 
the breeding status was defined as ‘Open’. Only daily records with an 
‘Open’ breeding status were further included (excluding ‘Bred’ and 
‘Never’ daily records, n = 13,976,100). To account for the herd effect, 
we aggregated herd level lactation curve characteristics (HLCC - 
herd magnitude, herd time to peak yield, herd offset and herd decay) 
and herd average 305-day milk production (HM305) from the 
previous year data, following the method described by Chen et al. 
(37). In short, we aggregated individual lactations to the calendar 
year in which the lactation ended. Since LCC differ between 
primiparous cows and multiparous cows (40–42), we divided herd 
lactations into two parity groups: primiparous cows and multiparous 
cows. HLCC was then calculated as the mean of the LCC per parity 
group per herd for each calendar year, while HM305 was calculated 
as the mean of M305 per herd for each calendar year. Daily records 
from lactations without HLCC and HM305 from the previous year 
were excluded (n = 248,903). In addition, age in months was 
calculated from age in days. The calving season was defined based 
on the calving month (3–5: Spring; 6–8: Summer; 9–11: Autumn; 
12–2: Winter) (43, 44). Two parity groups were defined (primiparous 
cows and multiparous cows). This method resulted in final dataset 
with 3,898,732 daily records from 43,430 lactations, 22,673 cows and 
86 herds.

From the final dataset of daily records with breeding status ‘Open’, 
we constructed four datasets. The dataset for DIM 50 included daily 
records at DIM 50 from cows that was not yet conceived at DIM 50. 
Likewise, datasets were constructed for DIM 75, 100, and 125, which 
were considered as potential insemination moments. For lactations 
where LCC was not available on the exact selected insemination 
moments, we selected the closest day within the 90th percentile of the 
corresponding DIM (48, 74, 98, 122). After this selection, we have 
99,593 daily records from all selected insemination moments from 
37,021 lactations, 20,508 cows and 85 herds.

Model building

The model building for each selected insemination moment was 
carried out separately (Figure  2). In every selected insemination 
moment, cow-parity records were randomly split into two parts; 80% 

for the training set and 20% for the test set (Table 1). The training set 
was used for model training and validation (10-fold cross-validation). 
The test set was used for model evaluation.

Due to the right-skewed distribution of persistency and the 
normal distribution of decay, decay was preferred for statistical 
analysis and converted to persistency afterwards for a more 
straightforward interpretation (42). Decay at DIM 305 (decay-305) 
was therefore defined as the dependent variable. In total, four linear 
regression models for every selected insemination moment were built 
to predict decay-305 (Figure 2). The available details at every selected 
insemination moment were used as independent variables. These 
included the following cow level variables: LCC, daily milk yield (kg), 
age in months, calving season and parity group; and herd level 
variables: HLCC and HM305 from the year preceding the selected 
insemination moments. HLCC and HM305 were expected to explain 
herd variance since we could not add herd as the random effect in 
prediction models. To compare the strength of the effect of each 
independent variable to the dependent variable, we standardized all 
continuous independent variables. Funnel graphs were generated to 
visualize the ranking of the effect size for all continuous independent 
variables. To validate our method, we also used the same set of data 
and independent variables to predict M305 and assess the validity of 
our prediction model approach. The model is shown as:

 

ijkl

ijkl
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i i i j

k l l

y LCC Daily milk yield Age Calving season
Parity group HLCC HM

µ
µ

= + + + +
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 (4)

where y represents the dependent variables (decay-305 or M305), 
μ represents the overall mean, i represents the insemination moments 
(i = DIM 50, 75, 100, or 125), j represents the calving season class 
(j = spring, summer, autumn or winter), k represents the parity group 
class (k = primiparous cows or multiparous cows), l represents the 
previous year, and ijklµ  represents the random residual term from a 
normal distribution.

Model evaluation

Model evaluation was carried out on test data with four metrics 
frequently used in similar research: coefficient of determination (R2), 

FIGURE 2

Diagram illustrating the model building procedure.
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RMSE, the mean absolute error (MAE) and the mean absolute 
percentage error (MAPE) (45–47). R2 indicates the proportion of the 
variance of decay-305 explained by the independent variables. RMSE 
and MAE indicate the differences between predicted and observed 
decay-305, with MAE being less sensitive to extreme values in the 
prediction errors. MAPE measures how much the model’s predictions 
deviate from the corresponding true value on average, ranging 
between 0 and 1. We used these four metrics to evaluate all decay 
prediction models while we only used R2 and MAPE to evaluate all 
M305 prediction models, in order to compare them with the 
decay models.

Data editing and analysis were carried out using the Python API 
for the Spark platform (PySpark). Visualization were conducted using 
GraphPad Prism version 8.0. Code scripts for the data editing steps 
and statistical analyses can be downloaded at https://github.com/Bovi-
analytics/Chen-et-al-2023a.

Results

Over all lactations the average M305 of primiparous cows 
(n = 11,562) varied between 6,253 (5%) and 11,390 (95%), with a mean 
of 8,809 kg. The average M305 of multiparous cows (n = 15,195) varied 
between 7,833 (5%) and 13,786 (95%), with a mean of 10,813 kg. The 
average decay-305 of primiparous cows was lower than that of 
multiparous cows (1.55 *10−3 vs. 2.41*10−3, equivalent to a persistency 
of 447 vs. 288 days, respectively).

Descriptive statistics for the independent variables are only shown 
for DIM 75 (Table  2); the statistics for the other insemination 
moments (DIM 50, 100, and 125) can be found in GitHub.

The model performance indicators of the prediction models for 
decay-305 at all selected insemination moments are summarized in 
Table 3A. Among all models, we found higher R2 and lower RMSE, 
MAE and MAPE at later insemination moments. The R2 of models for 
decay-305 range from 0.266 to 0.407, while RMSE, MAE and MAPE 
were slightly improved along the selected insemination moments.

Standardized coefficients of the model predicting decay-305 at all 
potential insemination moments are shown in Figure 3. Among all 
potential insemination moments, all variables had similar effects on 
the models. The three most influential variables affecting decay-305 
were calving in autumn, daily milk yield and magnitude. However, the 
specific order of these variables varied across different models. Take 
model at DIM 75 for example, cows calving in autumn had on average 
3.24 (SE = 0.14) lower decay (*104) respectively than calving in winter. 
Increasing one unit of daily milk yield (7.90 kg) corresponded to an 
average 2.99 (SE = 0.17) decrease in decay (*104). Increasing one unit 
of magnitude (9.22 kg/day) corresponded to an average 2.62 

(SE = 0.18) increase in decay (*104). Table 3B shows the results of the 
prediction models for M305, which showed much higher R2.

Discussion

This study aimed to predict lactation persistency for DIM 305 at 
insemination moments DIM 50, 75, 100, and 125. Our models have 
low prediction accuracy, although predictions improved at later 
insemination moments.

In our study, we used decay to measure persistency. The R2 of all 
decay models was under 0.407, suggesting the bad predictive power 
of the model with all available information included (49). Using the 
same methodology, we  were able to predict M305 much more 
accurately, thus confirming our prediction methodology to be valid 
for M305. Similar to previous studies (46, 47, 50), M305 was 
predictable at all insemination moments with R2 values ranging 
between 0.79 and 0.92 for the different insemination moments. Other 
methodological approaches were explored to improve the prediction 
performance of the decay-305 models. First, we explored building 
prediction models for two parity groups separately. The results were 
similar (results shown in GitHub). Next to the linear regression, 
we  built models using random forest, lasso regression and ridge 
regression but results were similar (results shown in GitHub). Models 
from lasso regression and ridge regression showed the same results to 
linear regression, indicating that penalization did not improve our 
models. In addition, adding LCC from the previous lactation did not 
improve the models in our study (results shown in GitHub).

In the current study, we only included cow and herd information 
in the prediction models that was available through the MmmooOgle 
herd management software. As persistency is a heritable trait and 
could be a target for selection (33, 51, 52) others have tried adding its 
breeding value to prediction models, though with little success (53). 
It’s worth noting that the heritability of persistency varies, influenced 
by factors like the definition of persistency, the breed, and the parity 
of the cows, with heritability values spanning the range of 0.01–0.33 
(34, 52, 54). Breeding values were not available in our dataset. 
Persistency is furthermore influenced by feed management in herd 
(55, 56). We took into account this herd-level factor by including 
HLCC and HM305 into all of our models, rather than including herd 
as a random effect. This approach allows us to apply our prediction 
model to unknown farms and effectively consider the impact of herd-
level factors on the study outcomes.

There is little existing literature to predict persistency for the 
mid-late lactation based on data from the beginning of lactation 
and herd information. We chose to predict persistency for DIM 
305 because this is a classic time point for measurements like 

TABLE 1 Number of cow-parity records, cows and herds in training and test set for different selected insemination moments used for model training, 
validation and evaluation.

Insemination 
moment (day)

Number of cow-parity records
Number of cows Number of herds

Training set Test set Total

50 17,902 4,521 22,423 14,536 83

75 22,006 5,456 27,462 16,764 84

100 19,159 4,752 23,911 15,544 85

125 14,701 3,693 18,394 13,024 84
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M305. Other studies chose to predict different parameters to help 
make insemination decisions. For example, Kjeldsen et  al. 
predicted energy-corrected milk per day of calving interval at 
DIM 40 for primiparous and multiparous cows separately (53). 
They included the calving interval in the model while the future 
calving interval is actually unknown at the moment of making 
the insemination decision. We assumed that, in their research, 
predicting milk yield per day of calving interval was equivalent 
to predicting the milk yield. Another example, Manca et al. (57) 
used the threshold of daily milk yield at DIM 305 to determine 
whether a cow is persistent, and defining persistent cows as those 
with a daily milk yield at DIM 305 greater than 20 kg. Essentially, 
they used the lactation curve characteristics of the first DIM 90, 
120, and 150 to predict the future daily milk yield at DIM 305. 

The results of Manca et al. (57) correspond with our results on 
predicting M305 as both achieved a high accuracy. It is important 
to note that persistency in our study primarily focuses on the 
slope or rate of decline in milk production over time. 
Consequently, persistency cannot be directly translated into the 
exact amount of milk that drops per day without knowledge of 
the initial peak milk production level. This consideration should 
be kept in mind when interpreting the findings and conclusions 
of this study.

Our prediction models could predict M305 well but could not 
predict persistency for DIM 305 accurately. We hypothesized that 
M305 is highly predictable due to its association with peak yield 
(42, 58). Peak yield estimation was commonly established at our 
insemination moments from DIM 50 onwards (59, 60). In 
contrast, persistency was not highly correlated with information 
in early lactation. Additionally, the low prediction accuracy 
observed in our study may be  attributed to other factors that 
influence persistency between the insemination moments and 
DIM 305. One potential factor that could impact persistency is 
pregnancy. However, we were unable to account for the pregnancy 
effect in our prediction model due to several reasons. Firstly, the 
exact timing of pregnancy is unknown at the time of making 
predictions for open cows. Secondly, the quantification of the 
pregnancy effect on persistency is lacking in previous studies, 
making it difficult to incorporate it into the model. As a result, 
we  were unable to correct for the pregnancy effect in our 
prediction model.

TABLE 2 Descriptive statistics of the dependent and independent variables used in the model predicting decay at DIM 305 (decay-305) at insemination 
moment DIM 75 based on milk production data from 16,764 cows in 84 Dutch and Belgium herds.

Primiparous cows Multiparous cows

Variables Mean SD 5%a 95% Mean SD 5% 95%

Dependent variable

Decay-305 (*103, day−1) 1.6 b 0.7 0.5 2.9 2.5 0.8 1.2 3.9

Independent variables c

Cow level variables

Magnitude (kg) 38.2 6.0 28.2 47.9 51.2 7.5 38.6 63.4

Time to peak yield (day) 28.2 2.4 24.1 31.9 21.0 3.8 13.3 26.4

Offset (day) −0.50 2.5*10−5 −0.50 −0.50 −0.53 0.36 −0.78 0.01

Decay (*103, day−1) 1.4 b 0.9 0.2 3.0 1.9 b 1.0 0.3 3.7

Daily milk yield (kg) 32.4 5.6 23.2 41.4 42.7 6.7 31.3 53.6

Age in months 28.2 2.5 25.2 33.1 56.6 18.0 38.0 91.9

Herd level variables

Herd magnitude (kg) 37.0 3.5 30.9 42.5 49.9 3.8 43.6 56.0

Herd time to peak yield 28.5 1.2 26.7 30.6 21.6 1.3 20.1 23.6

Herd offset (day) −0.50 1.11*10−5 −0.50 −0.50 −0.54 0.09 −0.69 −0.40

Herd decay (*103, day−1) 1.5 b 0.4 0.9 2.1 2.2 b 0.3 1.7 2.7

Herd M305 (kg) 9,888 1,001 8,304 11,397 10,002 937 8,449 11,409

a 5 and 95%: the 5 and 95% percentile.
b Persistency was calculated based on the aforementioned decay using the equation 0.693/decay (32). Persistency was not used in the prediction model because of non-normality; decay was 
used instead. A decay of 1.4, 1.5, 1.6, 1.9, 2.2, and 2.5 *10−3 is equivalent to a persistency of 495, 462, 433, 365, 315, and 277 days, respectively.
c All values for the independent variables represent the value at DIM75. Herd variables were aggregated from the day level data of the previous year following the method described by Chen 
et al. (48).

TABLE 3A Model performance indicators1 of prediction models on test 
set for decay at DIM 305 at different selected insemination moments 
(DIM 50, 75, 100, and 125).

Insemination 
moment (day)

R2 RMSE MAE MAPE

50 0.266 7.73*10−4 6.16*10−4 0.391

75 0.270 7.51*10−4 5.98*10−4 0.400

100 0.325 7.22*10−4 5.72*10−4 0.371

125 0.407 6.60*10−4 5.22*10−4 0.370

1 Model performance indicators: R2, coefficient of determination; RMSE, root mean squared 
error; MAE, mean absolute error; MAPE, mean absolute percentage error.
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There are multiple measures of persistency, and all these measures 
require the transformation from raw milk data (18, 61, 62). Simple 
measures of persistency are typically fixed at two time points in 
lactation (61–63), limiting the ability to observe persistency changes 
throughout the lactation. To overcome this limitation, we employed 
lactation curve modeling using the MilkBot model, which allowed to 
assess persistency at any timepoint within the lactation period. This 
so called continuous measurement provides insights into the changes 
of persistency during lactation.

Our data were obtained from AMS farms and we therefore had 
access to milk production data for each robot visit. Such detailed data 
did not, however, result in high prediction values. The average M305 
of the involved farms was higher than that of average dairy farms in 
the Netherlands and Belgium (64, 65). Higher milk production can 

be  explained by more frequent milking on AMS farms than on 
conventional farms (66, 67). In our study, we  deliberately only 
included cows with an ‘Open’ breeding status at the selected 
insemination moments. ‘Open’ was defined as cows which were not 
pregnant at the insemination moment but which could be pregnant in 
the future. Those open cows were the target object of our study since 
their insemination decisions were yet to be  made. In our study, 
we  only included lactations over 305 days, a period commonly 
accepted by the global standard for livestock data (68).

Conclusion

Our results showed that based only on cow and herd milk 
production information, predicting persistency for DIM 305 at 
different insemination moments (DIM 50, 75, 100, and 125) is 
challenging. The accuracy of the predictions was found to be low in 
our models. In order to target decision-support at the insemination 
moment, other information is needed to improve the accuracy in 
predicting persistency.
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FIGURE 3

Standardized coefficients of the independent variables used to predict decay at DIM 305 at all potential insemination moments [DIM 50 (A), 75 (B), 100 
(C), and 125 (D)]..

TABLE 3B Model performance indicators1 of prediction models on test 
set for M305 at different selected insemination moments (DIM 50, 75, 
100, and 125).

Insemination 
moment (day)

R2 MAPE

50 0.785 0.073

75 0.850 0.061

100 0.889 0.051

125 0.921 0.043

1 Model performance indicators: R2, coefficient of determination; MAPE, mean absolute 
percentage error.
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