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Introduction: Control of zoonosis can benefit from geo-referenced procedures. 
Focusing on brucellosis, here the ability of two methods to distinguish disease 
dissemination patterns and promote cost-effective interventions was compared.

Method: Geographical data on bovine, ovine and human brucellosis reported in 
the country of Georgia between 2014 and 2019 were investigated with (i) the Hot 
Spot (HS) analysis and (ii) a bio-geographical (BG) alternative.

Results: More than one fourth of all sites reported cases affecting two or more 
species. While ruminant cases displayed different patterns over time, most human 
cases described similar geo-temporal features, which were associated with the 
route used by migrant shepherds. Other human cases showed heterogeneous 
patterns. The BG approach identified small areas with a case density twice as high 
as the HS method. The BG method also identified, in 2018, a 2.6–2.99 higher 
case density in zoonotic (human and non-human) sites than in non-zoonotic 
sites (which only reported cases affecting a single species) –a finding that, if 
corroborated, could support cost-effective policy-making.

Discussion: Three dissemination hypotheses were supported by the data: (i) 
human cases induced by sheep-related contacts; (ii) human cases probably 
mediated by contaminated milk or meat; and (iii) cattle and sheep that infected 
one another. This proof-of-concept provided a preliminary validation for a method 
that may support cost-effective interventions oriented to control zoonoses. To 
expand these findings, additional studies on zoonosis-related decision-making 
are recommended.
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1 Introduction

The COVID-19 pandemic brought many lessons and questions. 
One of them refers to whether epidemics should be countered with 
reactive or anticipatory approaches (1). To demonstrate why 
anticipatory approaches are necessary, cost–benefit oriented studies 
are needed.

How, when and where can implemented interventions lead to 
cost–benefit based results? To answer this composite question, the 
type of data analyzed is critical. The analysis of geo-referenced and 
temporal infectious disease-related data may determine whether 
intervening at specific geographical sites induce cost-effective 
policies (2).

Because numerous (if not infinite) geo-temporal patterns may 
be found in disseminating infectious diseases, geo-referenced and 
temporal data may also inform on covariates, such as soil, elevation, 
meteorology, seasonality, and sociology (3). Because they can –
visually– reveal interactions, geo-referenced data can inform more 
than tabular data (4). Because the geographical context surrounding 
diseases may be  unique and it may influence (promoting or 
preventing) their dissemination, geo-temporal analysis of diseases can 
capture relationships that reductionist approaches may omit or not 
anticipate (5, 6).

One specific question that decision-makers need to answer is 
where, exactly, interventions may lead to less costly, earlier and/or 
more beneficial results (7). To develop geo-referenced, decision-
making oriented analyses, inter/transdisciplinary approaches have 
been recommended (8). Such approaches may consider 
bio-geographical and dynamical data that may feed models meant to 
interrupt disease transmission and/or be cost-effective (9).

While policy-making based on geo-referenced data has been 
promoted (10) and several studies have explored brucellosis (11–
13), the overall as well as the specific (construct, internal, external 
and/or statistical) validity of such procedures have not yet been 
emphasized (14, 15). For example, external validity (which refers to 
multiple variables, metrics, locations, populations, and/or 
outcomes) has been reported to be  infrequently evaluated with 
empirical data (16).

Geographically explicit, high-resolution, grid-based maps offer an 
actionable alternative to explore many sources of validity. Such maps 
have been used to investigate (non-infectious) interactions involving 
human and non-human species (17). These maps also circumvent the 
limitations of maps based on aggregate data, which miss local 
interactions among geo-referenced variables (18). In contrast, grid-
based maps can display a high level of granularity (19). Furthermore, 
bio-geographical methods do not assume space homogeneity –an 
assumption associated with classic spatial statistics, which considers 
that neighbors are epidemiologically similar (20, 21).

Brucellosis-related dissemination patterns can be explored in 
Georgia, the country located in the South Caucasus. With 
brucellosis being a substantial endemic problem (22), Georgia has 
a large geo-temporal dataset on cases affecting cattle, sheep, 
and humans.

Such a context is also adequate to explore One Health processes, 
in which the environment interacts with potential hosts and 
non-human and human species may infect one another (23, 24). 
While numerous educational programs now focus on One Health, 

inter−/trans-disciplinary educational gaps have been reported in this 
field (25).

To evaluate cost–benefit oriented approaches, new concepts may 
be investigated. For example, the detection of small geographical sites 
where infections induced by the same bacterium affect two or more 
species may be desirable.

Accordingly, this study pursued two objectives: (i) to 
distinguish geo-temporal patterns of zoonotic disease 
dissemination, and (ii) to identify sites where interventions may 
induce cost-effective results.

2 Materials and methods

2.1 Data

Data on (ruminant) brucellosis were collected by the National 
Food Agency of the Ministry of Environmental Protection and 
Agriculture of Georgia between 2014 and 2019. Human data on 
brucellosis cases reported between 2015 and 2020 were provided by 
the Center for Disease Control and Public Health of Georgia. Because 
the purpose of this study was to generate a preliminary evaluation of 
a geo-referenced tool based on historical data, no inferences are here 
made on laboratory-related issues (such as the bacteriological tests 
used) or epidemiological-related issues (such as estimates of 
disease prevalence).

The data were filtered to extract geographically referenced and 
time-stamped records (records with latitude, longitude, and date) for 
cattle, sheep, and humans. This filtering resulted in the identification 
of 7,643 records for the 2014–2019 period (2,999 cattle and 4,644 
sheep). Nine hundred and ninety-three human records were identified 
between 2015 and 2018. Due to space limitations of Brief Reports, 
human data from 2014 and 2019 are not reported but are available 
upon request.

2.2 Geo-referenced method

These tabular data were brought into a geographic information 
system (ArcGIS Pro 3.1.3, ESRI, Redlands, CA, USA) and a 
geodatabase point feature was generated. Starting with this initial 
point feature information, yearly species-specific point features were 
generated for mapping purposes.

To identify areas of case concentrations, a 5 km-by-5 km, country-
wide grid (7,068 cells) was created, and scripts were developed to 
associate case data with the enclosing grid cell. Such size was selected 
as a compromise between larger areas (more likely to capture more 
cases but less precise in terms of specific case geo-location) and 
smaller areas (more precise in terms of specific case geo-location but 
more likely to exclude nearby cases).

Each yearly species-specific grid cell polygon feature was added to 
an ArcGIS Pro map and summarized by grid cell number. Each 
summarized table was exported to a text file for tabulation and 
analysis. Using the summarized data, a quantile (maximum of three) 
display of the grid cell’s total cases was generated in ArcGIS Pro, and a 
map layout was created.

https://doi.org/10.3389/fvets.2023.1270505
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Rivas et al. 10.3389/fvets.2023.1270505

Frontiers in Veterinary Science 03 frontiersin.org

2.3 Construct, internal, external and 
statistical validity

The degree to which the concept of interest was actually 
investigated by the operation implemented (construct validity) was 
estimated by comparing the bio-geographical (BG) model with an 
alternative –the Getis-Ord Gi* or Hot Spot (HS) analysis, a method 
performed by ArcGIS Pro that assumes neighbors are 
bio-geographically similar. The method that yielded the highest case 
density (cases/square kilometer) was viewed as the most 
cost-effective.

Internal validity (lack of confounding) was assessed by testing 
several variables. Threats to internal validity were ruled out when two 
or more variables yielded similar results.

Statistical analysis was performed using Minitab 22 (Minitab Inc., 
State College, PA, USA). Regression analysis explored relationships 
between the number of cases reported at sites where ruminants, 
humans, or both human and non-human species reported infections. 
By investigating two or more host species over two or more years, the 
external validity of the BG method was also explored.

3 Results

To investigate whether the bio-geographical tool could be used in 
different populations and/or different timeframes, cattle and sheep 
cases were plotted, side by side, annually (Figures  1–3). It was 
observed that cattle cases (Figures 1A, 2A, 3A) matched sheep cases 
(Figures 1B, 2B, 3C). However, time did not appear to be related with 
case location. For instance, earlier cases (Figures 1A,B) did not match 
later cases, even when a short temporal period (a year) was considered 
(Figures 2A,B).

While cattle and sheep cases displayed noticeable geo-referenced 
changes over time, most human cases did not. Over 4 years, most 
human cases were reported in the same area –the eastern region of 
Georgia (Figures 4A–D). Yet, a second pattern associated with human 
cases was also seen, which was heterogeneous and took place in the 
central municipalities of Georgia (Figures 4A–D).

Sites that reported cases affecting two species (cattle and sheep or 
ruminant sites) seemed to differ from the remaining sites. When the 
counts or percentages of cases and sites were considered, ruminant 
sites exhibited twice as many cases as uni-species sites 
(Supplementary Table 1).

Findings supported the differentiation of brucellosis cases into 
three geo-temporal patterns: (i) one only observed in the eastern 
region, which included human cases; (ii) one also affecting humans, 
which took place outside the eastern region; and (iii) non-human 
cases, reported outside the eastern region. Within the last variety, two 
presentations were distinguished: (a) sites where only one ruminant 
species was infected, and (b) sites where both cattle and sheep cases 
were reported (ruminant sites).

Findings also suggested an additional pattern of cattle and sheep 
cases, which was observed in the south-western region of the country, 
in 2015. Upon further investigation, it was found that the geographical 
location did not characterize cattle/sheep farms and/or summer 
pastures but the location of specialized laboratories (located close to 
ports) where animals exported to other countries are tested before 

they are embarked. This unexpected finding illustrates the usefulness 
of geo-referenced data analysis, which may shed light on procedures 
recorded but not always considered in routine epidemiological analyses.

While the historical nature of the data prevented inferences and 
predictions, possible educational applications included data-driven 
hypotheses on peak temporal patterns reaching in 2017 
(Supplementary Figure 1). The number of cases observed in either 
ruminant species predicted the total number of cases found in multi-
species (ruminant) sites (p < 0.01, Supplementary Figure 2). In one 
scenario under study, the bio-geographical procedure captured more 
cases than the HS analysis (583 vs. 521, respectively) in an area 28.4% 
smaller than the area occupied by the HS solution 
(Supplementary Figures 3A,B). Because each unit of area occupied 25 
square kilometers, expressed as case density/square kilometer, the BG 
method captured 0.167 cases/sq km while the HS analysis detected 
0.107 cases/sq km. Consequently, the case density of the BG approach 
was 56.2% higher than that of the HS. This difference in potential 
cost-effectiveness was explained by two factors: (i) the HS missed large 
areas that included numerous cases (Supplementary Figure 3C) and, 
(ii) in particular, the HS analysis did not detect nine mini-areas with 
very high case density (Supplementary Figure 3D). If cost effectiveness 
of interventions was measured as the ratio of benefits over costs (cases 
captured/area unit), then the ratio of the BG method would be 2.18 
(156.2/71.6), i.e., the BG method exhibited a benefit/cost ratio twice 
as large as the one shown by the HS analysis.

To explore possible applications in decision-making, the BG 
method was further investigated according to the (zoonotic vs. 
non-zoonotic) content of the infected sites. Using the data reported in 
2018, the case density of sites reporting zoonotic (human, cattle and/
or sheep) cases was at least 2.6 and up to three times higher than the 
number of sites where only one species was infected 
(Supplementary Figure 4). Accordingly, if a policy meant to be cost-
effective was designed to be applied in this scenario, the first priority 
of interventions would focus on zoonotic sites (locations that reported 
a high case density where humans and non-humans were infected), 
non-zoonotic sites (where only one –human or non-human– species 
was infected) would be the second priority and, as the last priority, 
non-zoonotic sites reporting the lowest case density would 
be intervened.

4 Discussion

4.1 Caveats

Findings are prone to bias due to many factors, which include but 
are not limited to the varying frequency and magnitude of testing 
conducted over time and the threats to validity associated with the 
analysis of historical data (26). Accordingly, this study should not 
be construed to represent the current status of brucellosis-related 
conditions existing in Georgia but, instead, a realistic learning 
scenario that can support research and education in geo-epidemiology.

While zoonotic infections disseminate by only three (direct, 
indirect, or both direct and indirect) types of transmission, the 
expression of such transmissions may vary according to the local 
geography. Consequently, cost-effective interventions may be designed 
and selected according to specific geo-temporal expressions.
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4.2 Geo-geographical patterns of zoonotic 
disease transmission

The hypothesis of direct contacts between non-human infected 
species and susceptible humans was supported by the pattern 
observed in the eastern region of Georgia (27). Disease 
transmission, in this modality, is thought to be  facilitated when 
migrant shepherds move their sheep, twice a year, between the 
southern and the northern borders of the country, along a path 
flanked by mountains –a geographical feature that determines a 
rather constant geographical pattern, detected regardless of time 
(Figures  4A–D). In contrast, other human infections (reported 
outside the eastern region) are possibly facilitated by the 
consumption of contaminated milk and meat (26). The hypothesis 
of cattle-sheep contacts (apparent in several regions of Georgia) is 
facilitated by a common agricultural practice –also observed in 
many countries–, in which cattle and sheep share summer 
pastures (28).

This study emphasized high-resolution, geo-referenced and cost-
effective epidemic control measures. To avoid loss of resolution, this 
study was not centered on municipalities (which differ in area, 

population, connectivity and many other aspects) but on small areas 
of equal size (cells of 25 sq km). Such operation facilitated the 
detection of specific geographical sites where infections affecting two 
or more host species were found. While approaches that aggregate 
data and assume homogeneous data distributions over large spatial 
areas tend to result in large areas to be intervened (e.g., higher costs), 
the geo-biological method identified small areas with high case 
density which, if intervened, are likely to induce more beneficial 
interventions (more cases to be covered) at lower costs (in smaller 
areas to be  intervened), and –due to their smaller areas– such 
interventions may be completed earlier. Furthermore, small areas with 
high case density can be mapped over other layers and, consequently, 
inform on connectivity and many other variables, as described before 
(29, 30).

Such a geographical approach can be  complemented with a 
biological emphasis.

When the data are divided into classes (e.g., zoonotic or human 
and non-human, only ruminants, and only humans), the number of 
cases may be  much higher in zoonotic sites and, consequently, 
interventions that prioritize such sites may be less costly and/or more 
beneficial (Supplementary Figure 4).

FIGURE 1

Brucellosis cases reported in cattle and sheep, in 2014–2015. (A) Cattle cases, 2014. (B) Sheep cases, 2014. (C) Cattle cases, 2015. (D) Sheep cases, 
2015.
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4.3 Validation

Several estimates of construct, internal, external and/or statistical 
validity were facilitated by the method under study. Although the 
historical nature of the data is prone to several threats to validity, the 
fact that three host species were investigated (and tested for several 
years) demonstrates that this tool may possess external validity. 
Because the analysis of five variables yielded similar patterns (and, 
therefore, confounding was ruled out) and revealed statistically 
significant associations, internal and statistical validities were 
supported (Supplementary Figure 1). Because the bio-geographical 
approach captured more cases per sq. km than the alternative method 
–a finding also observed when geographical locations reporting 
infections were classified according to their ability to generate or 
disseminate zoonotic cases–, construct validity was not ruled out 
(Supplementary Figures 3, 4).

However, the previous comparison did not consider all possible 
scenarios (which may include additional bio-geo-temporal variables). 
To better estimate cost-effective interventions, the benefits associated 
with interrupting disease transmission (especially, long-term 
interactions) need to be considered (9).

4.4 Potential applications and future 
studies

These geo-referenced findings facilitated the development of, at 
least, five new studies or projects. One refers to prioritizing 
interventions in locations that report human and non-human cases 
(‘zoonotic disease’ sites).

Because such sites can induce secondary infections along 
ruminant and non-ruminant hosts, they may be prioritized when 
cost–benefit oriented interventions are planned. Support for ranks 
that prioritize where interventions should be  implemented may 
be facilitated by a cost–benefit oriented analysis. For example, when 
there is evidence that zoonotic mini-sites capture more cases than sites 
presenting infections in a single species (as shown in 
Supplementary Table 1; Supplementary Figure 4), zoonotic sites could 
be prioritized, followed by sites that do not show zoonotic cases, and, 
finally, sites that display the lowest case density and are not zoonotic. 
Such priority ranks could later be  modified or expanded when 
additional information becomes available. For example, earlier cases 
could receive the first priority to be intervened when they also display 
the shortest inter-case distance along actual road networks (30).

FIGURE 2

Brucellosis cases reported in cattle and sheep, in 2016–2017. (A) Cattle cases, 2016. (B) Sheep cases, 2016. (C) Cattle cases, 2017. (D) Sheep cases, 
2017.
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The second potential intervention refers to migrant shepherds. 
Because their cases are consistently reported, every year, at the same 
places, it appears that some behaviors are repeated over time, which 
occur at specific places where interventions are likely to be beneficial. 
Because available information suggests there may be  inadequate 
brucellosis-related, educational campaigns in the Tusheti and Kakheti 
regions (22), future investigations may focus on sociological-
educational variables at specific geographical areas, such as 
associations between educational packages received on the role of 
uncooked meat and/or unpasteurized milk consumption and disease 
occurrence (31).

Third, findings may support new studies that seek to identify 
covariates associated with zoonotic sites. To that end, inverse-
problem methods could be considered. Such approaches start with 
a known solution and then attempt to identify the predictors (32). 
Inverse-problem approaches have been proposed for 
epidemiological studies (33). In this case, the precise geo-referenced 
location of ‘zoonotic sites’ (a site that may be associated with a 
rather unique combination of factors) could be the starting point 
for such inquiries.

Furthermore, future studies based on these or similar 
geo-referenced procedures could explore alternative methods that 

may estimate the costs induced by bacterial zoonoses and the potential 
benefits of preventive campaigns. While similar studies have been 
conducted for viral zoonoses (1), no cost–benefit estimates on 
bacterial zoonoses-related decision-making have been emphasized. 
One exception in this area refers to Mongolia, where a 3.2 benefit/cost 
ratio has been reported (34). Future studies on cost effectiveness may 
also consider pastoralist practices (35).

Last, but not least, the development of new educational programs 
is recommended. It is suggested that, to generate and validate new 
tools that integrate three fields (epidemiology, geographical data 
analysis and decision-making), the academic creation of such an 
interdisciplinary field is required.

5 Conclusion

It is suggested that the geo-temporal analysis of brucellosis may 
be instrumental to investigate and teach how zoonoses emerge and 
disseminate. Methods similar to the one reported may be considered 
in the design of geographical site-specific, time-sensitive, cost-
effective interventions.

FIGURE 3

Brucellosis cases reported in cattle and sheep, in 2018–2019. (A) Cattle cases, 2018. (B) Sheep cases, 2018. (C) Cattle cases, 2019. (D) Sheep cases, 
2019.
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