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Paulownia tomentosa flower polysaccharide (PTFP) from dried cultured P. 
tomentosa flowers, is widely known for its immunomodulatory activities. Here, 
PTFP was extracted from Paulownia tomentosa flower using hot water extraction, 
followed by ethanol precipitation methods. Structural characterization of PTFP 
was revealed by scanning electron microscope, high-performance anion-
exchange chromatography, gel chromatography, ultraviolet and infrared spectral. 
Meanwhile, adjuvant action of PTFT on the immune responses to classical swine 
fever vaccine in mice was evaluated to further proclaim the immune regulatory 
effect of PTFP. The results showed that PTFP was a type of heteropolysaccharide 
with a dense, rough surface and high molecular weight (667.02  kDa), mainly 
composed of glucose (30.93%), rhamnose (29.99%), galactose (15.66%), arabinose 
(6.95%), mannose (5.52%), and xylose (4.80%). The results of gel chromatography 
suggested that the molecular configuration of PTFP may be a spherical structure. 
The infrared spectrum results confirmed that the functional groups and chemical 
bond of PTFP contained -OH, O-H, C-H, C=O, C-O, etc. Moreover, PTFP 
exhibited obvious immune enhancement effect by improving concanavalin A 
(ConA), lipopolysaccharide (LPS), and CSFV E2-stimulated splenocyte growth and 
natural killer cell activity in CSFV-immunized mice. Similarly, the titers of CSFV 
E2-specific IgG, IgG1, IgG2a, and IgG2b antibodies and IFN-γ and IL-10 levels 
in CSFV-immunized mice were distinctly increased by PTFP treatment. Overall, 
PTFP was a macromolecular heteropolysaccharide primarily containing glucose 
and rhamnose, and possessed the auxiliary effect of immune enhancement on 
the immune responses to classical swine fever vaccine.
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1. Introduction

Classical swine fever (CSF) is one of the most common reemergent, contagious, 
economically significant, multisystemic viral diseases in swine (1, 2), which is notifiable to 
the World Organization for Animal Health (OIE) due to its severe impact on the economy 
and public health (3). CSF virus (CSFV) is the only etiological agent of CSF (4, 5), and its 
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genome has one open reading frame encoding a polyprotein that is 
cleaved into four structural and eight nonstructural proteins (6, 7). 
Since unique pathogenic structure, there are scarce treatment 
options for CSF, and vaccination attenuated live against CSFV is 
commonly the main means of preventing CSF infection (8). To 
enhance the efficacy of vaccines, adjuvant vaccines have obviously 
improved the effectiveness of immunization through inclusion in 
the immunization programs (9). Although adjuvants have been used 
in vaccines to enhance vaccine efficacy for almost a century, only a 
few adjuvants have been licensed (10). Therefore, the new, safe, and 
effective vaccine adjuvants are worthwhile further research 
and development.

Polysaccharides are a common type of biological macromolecule 
in traditional herbal medicine with various biological properties, 
including antiviral, antitumor, antioxidant, anti-inflammatory, 
hypoglycemic, and immunomodulatory properties that have received 
widespread attention (11–14). Polysaccharides usually can adjust 
innate and adaptive immunity and have been primarily applied in 
human health care, achieving significant results in improving 
immunological function (15–19). Paulownia (Scrophulariaceae) is a 
fast-growing deciduous tree with economic potential owing to its 
wood value and high biomass production (20). In the previous studies, 
a variety of biologically active components, such as polyphenols and 
polysaccharides, have been discovered in Paulownia tomentosa. 
Paulownia tomentosa flower polysaccharide (PTFP) is among the 
principal active components of P. tomentosa. Recently, PTFP has been 
proven to enhance the immune response of chicken Newcastle disease 
vaccine by promoting lymphocyte proliferation, increasing specific 
antibody titers and IFN-γ secretion, suggesting the potentiality of 
PTFP as an adjuvant to elevate vaccine potency (21). However, there 
have been no reports on the role of PTFP in other 
vaccine immunizations.

In the current study, we  extracted PTFP from the flowers of 
P. tomentosa and revealed the structural characterization of PTFP for 
the first time. Subsequently, the extracted PTFP was orally 
administered to mice immunized with the CSFV vaccine to evaluate 
the adjuvant effect of PTFP on CSFV live attenuated vaccines and 
identify a potential candidate to be  used as a novel 
immunologic adjuvant.

2. Materials and methods

2.1. Materials

Dried-cultured P. tomentosa flowers were collected from Bozhou 
Guoxin Pharmaceutical Co. Ltd. (Anhui, China). Live attenuated 
CSFV (rabbit source) was purchased from Pulike Biological 
Engineering INC (China). Sources of fetal bovine serum (FBS), 
RPMI-1640 medium, ConA, LPS, CSFV E2 protein (CSFV E2), 
antibodies (IgG, IgG1, IgG2a, and IgG2b), and cytokine ELISA kits 
(IFN-γ and IL-10) are listed in Supplementary Table S1.

All the chemicals used in this study were analytical grade. The 
human leukemia cell line K562, which was sensitive to NK cells, was 
obtained from the Shanghai Institute of Cell Biology, Chinese 
Academy of Sciences. The cells were cultivated in the logarithmic 
phase of growth in RPMI 1640 medium supplemented with penicillin 

(100 IU/mL), streptomycin (100 g/mL), and FBS (10%) at 37°C 
and 5% CO2.

2.2. Preparation of PTFP

PTFP was extracted using a previously described method (21). 
Briefly, P. tomentosa flowers were decocted and filtered twice for 2 h 
and 1 h in water. Subsequently, the suspension condensed from the 
merged decoction was precipitated four times for 12 h in 95% ethanol. 
Finally, the samples were centrifuged and concentrated to a specific 
volume with 48% carbohydrate (D-glucose as the standard).

2.3. Scanning electron microscopic (SEM) 
of PTFP

The morphology of PTFP was observed by SEM (Zeiss Merlin 
Compact, Germany). The PTFP, coated with a thin gold layer, were 
laid on the placode, and then the images were analyzed by Sanshu 
Biotech. Co., LTD (Shanghai, China) under high vacuum at a 
magnification of 1,000 ×, 2000 ×, 5,000 × and 10,000 × fold.

2.4. Determination of monosaccharide 
composition in PTFP

PTFP with 5 mg was weighed accurately and placed in a sealed tube. 
Trifluoroacetic acid solution was added to the sample for acid hydrolysis, 
after hydrolysis, nitrogen gas was used to dry the residual PTFP in the 
tube. Wash with methanol, then blow dry and repeat methanol washing 
2–3 times. The residue was dissolved in deionized water and passed 
through 0.22 μm microporous membrane filtration. The PTFP filtrate 
was analyzed by high-performance anion exchange chromatography on 
a CarboPac PA-20 anion exchange column using a pulse current 
detector. Data were collected on ICS5000+ (Thermo Technology) and 
processed using chromeleon 7.2 CDS (Thermo Science).

2.5. Detection of PTFP molecular weight

PTFP was dissolved in NaNO3 aqueous solution (0.1 mol/L), and 
filtered through a 0.45 μm pore size filter. Furthermore, PTFP was 
also dissolved in dimethyl sulfoxide (DMSO) solution containing 
lithium bromide at a density of 1 mg/mL, then filtered through a 
0.45 μm pore size filter. The homogeneity and molecular weight of 
various fractions in PTFP were determined by using 
SEC-MALLS-RI. The weight, polydispersity index and number-
average molecular weight of PTFP various fractions in NaNO3 
aqueous solution or DMSO solution were measured by DAWN 
HELEOS-II laser photometer. Meanwhile, three tandem columns 
were provided and held at 45°C by using a model column heater. A 
differential refractive index detector (Optilab T-rEX, Wyatt 
Technology Co., United States) was simultaneously connected to give 
the concentration of fractions and the refractive index increment 
(dn/dc) value. The dn/dc value of the fractions in NaNO3 aqueous 
solution was measured to be 0.141 mL/g, and in DMSO solution was 
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determined to be 0.07 mL/g. Data were acquired and processed using 
ASTRA6.1 (Wyatt Technology).

2.6. Ultraviolet and infrared spectral 
measurement of PTFP

The ultraviolet–vis spectrum of PTFP water solution (5 mg/mL) 
was determined in a wavelength range of 200–1,000 nm by using a 
multifunctional microplate reader (Multiskan GO, Thermo Fisher 
Scientific, United States). Under the same conditions, pure water was 
used as blank control by Sanshu Biotech. Co., LTD.

Fourier Transform infrared (FT-IR) spectra of PTFP was 
measured by using a spectrometer (Nicolet iZ-10, Thermo Nicolet, 
United States). PTFP was mixed with KBr powder and then pressed 
into 1 mm pellets for FT-IR measurement in the range of 4,000 to 
400 cm−1 by Sanshu Biotech. Co., LTD.

2.7. Experimental animals

Male and female ICR mice were obtained from Shanghai Slake 
Laboratory Animal Co., Ltd., China. The mice were 5 weeks old and 
weighing 18–22 g, then allowed to acclimatize to the environment for 
one week for the following experiments. The mice were maintained in 
groups of less than five mice per cage under stable controlled conditions 
(24 ± 1°C, 50 ± 10% humidity, 12/12 h light/dark cycle), and food and 
tap water were freely available. The study was approved by the Animal 
Welfare and Ethics Committee of Zhejiang University (No. 18227).

2.8. Immunization treatment

ICR mice were raised in an environment free of specific 
pathogens, and separated into six groups and named: PBS, CSFV, 
APS, PTFP-L, PTFP-M, and PTFP-H groups, consisting of six male 
and six female mice each group. The experimental procedure was 
illustrated by schematic illustration (Figure 1). Except for the PBS 
group, the CSFV, APS, PTFP-L, PTFP-M, and PTFP-H groups were 
immunized twice by subcutaneous injection of 0.1 portion CSFV on 
day 6 and day 20 of the experiment. PBS and CSFV groups were 
gavaged with sterile PBS once a day. APS group was subjected to 
gavage APS (100 mg/kg) once a day. PTFP-L, PTFP-M, and PTFP-H 
were administered oral gavage at 30, 60, and 120 mg/kg doses of 

PTFP once a day, respectively. Throughout the experiment, PBS, APS, 
and PTFP were administered orally from day 1 to day 10 and from 
day 15 to day 24. On the day 34 of the experiment, mice were 
sacrificed by cervical dislocation, and the sera and splenocytes were 
reserved for further analysis.

2.9. Spleen proliferation assay

Splenocytes were separated as previously described (22). The 
spleen was aseptically removed and minced using scissors. The 
spleen tissue was then forced to pass through a fine steel mesh, and 
the cell suspension was collected. Erythrocytes were removed 
using ammonium chloride (0.8%, w/v). The collected splenocytes 
(5 × 105 cells/well) were spread into 96 well plates in 100 μL 
complete medium and treated with classical swine fever virus E2 
antibody (CSFV E2), concanavalin protein (ConA), or 
lipopolysaccharide (LPS) at 10, 5, and 10 μg/mL, respectively, while 
the blank medium was used as a control. After 44 h of culture at 
37°C and 5% CO2, 50 μL MTT (2 mg/mL) was added to each well 
and cultured for a further 4 h. Subsequently, the cultured samples 
were centrifuged, and the supernatant was removed. A volume of 
150 μL dimethyl sulfoxide was added to each well and incubated 
for 15 min. Finally, the absorbance was estimated at 570 nm 
using ELISA.

The stimulation index (SI) was measured according to the 
following equation:

 SI A CSFV E2,ConA or LPS A control� � � � �570 570/ .

2.10. Natural killer (NK) activity assay

The NK cell activity was evaluated by the MTT method (23). 
Specifically, K562 cells and splenocytes were defined as target and 
effector cells, respectively. K562 cells were seeded in 96-well 
U-bottom microtiter plates (2 × 104 cells/well) in medium. 
Splenocytes were seeded at a density of 1 × 106 cells/well, at an 
effector/target ratio of 50:1. After 20 h, NK cell viability was evaluated 
using the MTT method as follows: NK cell viability (%) = [A570T – 
(A570S–A570E)] / A570T × 100. A570T, A570S, and A570E were the 
absorbance values of the target control, test sample, and effector 
control, respectively.

FIGURE 1

The schematic illustration of the vaccination and treatment schedule of the experiment.
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FIGURE 2

SEM diagram of PTFP. (A)  ×  1.00  k. (B)  ×  2.00  k. (C)  ×  5.00  k. (D)  ×  10.00  k.

2.11. Antigen-specific antibody assay

CSFV E2-specific IgG, IgG1, IgG2a, and IgG2b antibodies in sera 
were measured using indirect ELISA (24). Briefly, 96 well ELISA plates 
were coated with 100 μL of CSFV E2 antigen (2.5 μg/mL in carbonate 
solution) per well at 4°C overnight. ELISA plates were blocked for 2 h at 
37°C. Then, 100 μL of serially diluted serum samples was placed into the 
plates and incubated for 2 h at 37°C. The plates were incubated with IgG, 
IgG1, IgG2a, or IgG2b antibodies at 1:8000, 1:6000, 1:4000, and 1:4000 
dilutions, respectively. After incubation for 2 h at 37°C, 100 μL of TMB 
was added to the plates and 50 μL of 2 mol/L H2SO4 was added 15 min 
after incubation to stop the reaction. Between each step, the ELISA 
plates were washed three times. Absorbance was measured at 492 nm.

2.12. Cytokine measurements

Splenocytes (5 × 106 cells/well) were cultured with CSFV E2 (10 μg/
mL) in 24-well plates. After incubation at 37°C in 5% CO2 for 72 h, the 
plate was centrifuged (2,500 rpm, 5 min), and supernatants were 
reserved for measurement of IL-10 and IFN-γ using ELISA kits (25).

2.13. Statistical analysis

All data were presented as mean ± standard deviation 
(mean ± SD). Statistical significance of differences was evaluated by 

ANOVA with Tukey’s post-hoc test. The significance threshold was 
set at p < 0.05.

3. Results

3.1. Morphological properties of PTFP

The molecular morphology of PTFP was investigated by SEM under 
1,000 ×, 2000 ×, 5,000 × and 10,000 × magnifications (Figure 2). The SEM 
results showed that the surface of PTFP was dense and rough, with a 
uniform dense layered structure, small fragments, no curling, and certain 
parts presented stacking phenomenon, suggesting that the intermolecular 
force of PTFP was strong and its molecular weight was large.

3.2. Monosaccharide composition and 
molecular weight analysis of PTFP

The monosaccharides composition in PTFP was analyzed by 
HPAEC (Figures 3A,B). The specific quantification results are shown 
in Table 1. PTFP was primarily composed of glucose (Glc), rhamnose 
(Rha), galactose (Gal), arabinose (Ara), mannose (Man), and xylose 
(Xyl), and the molar mass ratio of their monosaccharide composition 
was 30.93, 29.99, 15.66, 6.95, 5.52, 4.80%. Based on the above results, 
it was indicated that PTFP was a heteropolysaccharide mainly 
composed of Glc and Rha.
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Gel chromatography was used to analyze the molecular weight of 
PTFP (Figures 3C,D). As shown in the Figure 3C, the molar masses 
ranged from 1.0 × 105 to 1.0 × 107 (g/mol) with symmetric signal peaks, 
suggesting that PTFP possessed a homogeneous relative molecular 
weight distribution. The specific molecular weights of PTFP are 
displayed in Table 2. Weight-average molecular weight (Mw) is the 

main indicator reflecting the mass of macromolecular substances. The 
Mw of PTFP was 667.02 kDa, indicating that PTFP possessed a large 
molecular weight. Polydispersity is the ratio of Mw to number-average 
molecular weight (Mn), represents the distribution range of molecular 
weight, and polydispersity of PTFP was 10.23, demonstrating the 
dispersion of molecular weight distribution of components in 

FIGURE 3

Analysis of the composition, molecular weight, and molecular configuration of monosaccharides in PTFP. (A) Standard ion chromatogram. (B) PTFP 
sample ion chromatogram. (C) Absolute molecular weight analysis of PTFP. (D) Molecular configuration analysis of PTFP.

TABLE 1 Analysis of monosaccharide compositions of PTFP.

Monosaccharide name CAS number Molecular formula Monosaccharide composition 
(%)

Fucose (Fuc) 2,438-80-4 C6H12O5 1.09

Rhamnose (Rha) 10,030–85-0 C6H14O6 29.99

Arabinose (Ara) 5,328-37-0 C5H10O5 6.95

Galactose (Gal) 26,566–61-0 C6H12O6 15.66

Glucose (Glc) 50–99-7 C6H12O6 30.93

Xylose (Xyl) 58–86-6 C5H10O5 4.80

Mannose (Man) 3,458-28-4 C6H14O6 5.52

Fructose (Fru) 57–48-7 C6H12O6 0.00

Ribose (Rib) 50–69-1 C5H10O5 0.65

Galacturonic Acid (Gal-UA) 14,982–50-4 C6H10O7 0.71

Guluronic Acid (Gul-UA) 15,769–56-9 C6H10O7 0.69

Glucuronic Acid (Glc-UA) 6,556-12-3 C6H10O7 2.59

Mannuronic Acid (Man-UA) 6,814-36-4 C6H10O7 0.41
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TABLE 2 Analysis of molecular weights of PTFP.

Distribution name Value

Number-average molecular weight (Mn) 65.20 kDa

Peak-average molecular weight (Mp) 34.01 kDa

Weight-average molecular weight (Mw) 667.02 kDa

Z-average molecular weight (Mz) 16657.32 kDa

Polydispersity (Mw/Mn) 10.23

FIGURE 4

Analysis of ultraviolet and infrared spectrum of PTFP. (A) The curve of ultraviolet absorption spectrum of water as blank control. (B) The curve of 
ultraviolet absorption spectrum of PTFP. (C) The joint curve of ultraviolet absorption spectrum of water and PTFP. (D) Infrared spectral curve of PTFP.

PTFP. Figure 3D displayed the molecular configuration of PTFP, and 
conformation plot slope was 0.07 ± 0.00, implying that the molecular 
configuration of PTFP may be a spherical structure. Moreover, the 
chain conformation of PTFP did not alter obviously with changes in 
molecular weight, which may indicate that PTFP had stable 
molecular conformation.

3.3. Ultraviolet and infrared spectral 
analysis of PTFP

The component and chemical bonds of PTFP were analyzed by 
ultraviolet and infrared spectrum (Figure  4). Compared with the 
blank control, the PTFP sample had absorption in the wavelength 
range of 200–400 nm, refreshing that the PTFP sample may contain 
small amounts of pigments, proteins, and nucleic acids (Figures 4A–C). 
As shown in the Figure 4D, the absorption band was the absorption 
peak of -OH stretching vibration at 3600–3200 cm−1, which was the 

characteristic absorption peak of sugars. The absorption peak at 
3413.01 cm−1 was the stretching vibration O-H, representing the 
characteristic peak of sugars. The small absorption peak at 
2927.61 cm−1 was attributed to C-H shearing vibration and bending 
vibrations of free sugars. The C=O stretching vibration at 1630.01 cm−1 
suggested the existence of acetylation and uronic acid in 
PTFP. Furthermore, there was the absorption peak at 1038.99 cm−1, 
attributed to the stretching vibration of C-O.

3.4. Effect of PTFP on splenocyte 
proliferation

The SI changes of splenocyte induced by ConA, LPS, and CSFV 
E2 are shown in Figure  5. SI is the main index reflecting the 
proliferation of splenocyte. Under ConA induction, compared with 
CSFV group, SI of splenocyte in PBS, APS and PTFP groups was 
significantly increased (Figure 5A) (p < 0.05 or p < 0.01), as was the 
case under LPS induction (Figure 5B) (p < 0.05, p < 0.01, or p < 0.001), 
suggesting that CSFV vaccine-immunized represented inhibitory 
effect on the proliferation of splenocyte after ConA or LPS stimulation, 
while APS and PTFP could promote splenocyte proliferation. Under 
CSFV stimulation, SI of splenocyte in APS and PTFP groups was 
significantly elevated compared to that in the CSFV group (Figure 5C) 
(p < 0.05, p < 0.01, or p < 0.001), whereas SI of splenocyte in PBS group 
showed a downward trend (p < 0.05), indicating that after stimulation 
with CSFV E2, proliferation of splenocytes from CSFV immunized 
mice could be promoted, with APS and PTFP showing remarkable 
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effects. These data demonstrated that each dose of PTFP could 
significantly promote the proliferation of spleen cells induced by 
ConA, LPS, and CSFV E2 in mice immunized with CSFV, of which 
60 mg/kg had the best effect that was equal to APS.

3.5. Effects of PTFP on NK cell activity

Figure 6A presents changes in NK cell viability, APS and PTFP at 
the three doses significantly promoted the activity of NK cells in 
CSFV-immunized mice (p < 0.05, p < 0.01, or p < 0.001). The findings 
revealed that all doses of PTFP could significantly activate NK cells in 
mice immunized with CSFV, and this effect was equivalent to that of 
APS (p > 0.05).

3.6. Effect of PTFP on cytokine secretion

Considering that cytokines play a pivotal role in the immune 
response and to explore the interaction between the Th1 cytokine 
IFN-γ and Th2 cytokine IL-10, we evaluated the effects of PTFP on 
the secretion of cytokines from CSFV E2-stimulated splenocytes. 
Compared with CSFV group, IFN-γ and IL-10 levels in PBS group 
were significantly elevated (p < 0.05, or p < 0.001). Moreover, APS and 
PTFP at doses of 60 and 120 mg/kg significantly increased IFN-γ levels 
(Figure 6B) (p < 0.001). APS and PFTP at three doses also significantly 

improved the ability of CSFV E2-stimulated splenocytes in CSFV-
immunized mice to secrete IL-10 (Figure 6C) (p < 0.001).

3.7. Effect of PTFP on antigen-specific 
serum antibody responses

As the nature of the antigen may play a pivotal role in the 
mediation of immune responses induced by an adjuvant, we explored 
the adjuvant effects of PTFP on antigen-specific humoral immune 
responses to CSFV E2. The CSFV E2-specific IgG, IgG1 antibody titers 
in CSFV-immunized mice were distinctly increased by APS and PTFP 
at each dose (Figures  7A,B) (p < 0.05, p < 0.01, or p < 0.001). 
Furthermore, APS and PTFP at 60 mg/kg significantly enhanced the 
IgG2a and IgG2b titers (Figures  7C,D) (p < 0.05). There was no 
obvious difference in the titers of CSFV E2-specific antibodies in sera 
between the three doses of PTFP, whereas the middle-dose group had 
the best effect equivalent to APS (p > 0.05).

4. Discussion

Polysaccharides isolated from various kinds of Chinese herbal 
medicines have gradually been proven to have lower side effects and 
various pharmacological actions, such as antioxidant, antiviral, 
antitumor and immunomodulator over the past few decades (17, 

FIGURE 5

Effect of PTFP on splenocyte proliferation in the mice immunized with CSFV. (A) The SI was measured by stimulating splenocyte with ConA. (B) The SI 
was measured by stimulating Splenocyte with LPS. (C) The SI was measured by stimulating Splenocyte with CSFV E2.
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FIGURE 6

Effect of PTFP on NK cell activity and cytokine production in the splenocytes from the mice immunized with CSFV. (A) The NK cell activity in the 
splenocytes was measured by the MTT method. (B) Splenocytes were incubated with CSFV E2 protein, and the supernatants were collected for the 
detection of IFN-γ levels. (C) Splenocytes were incubated with CSFV E2 protein, and the supernatants were collected for the detection of IL-10 levels.

26). Therefore, the isolation, characterization, and pharmacological 
mechanism elucidation of polysaccharides from Chinese herbal 
medicines have become a hot research topic. By determining the 
characterization of polysaccharides, the structural information of 
active ingredients can be  further clarified, which contribute to 
elucidate their pharmacological mechanisms at the molecular level. 
In the present study, PTFP was isolated from P. tomentosa flowers, 
and the SEM displayed that the surface of PTFP was dense and 
rough, indicating that PTFP possessed high molecular weight and 
strong intermolecular force. We further measured the molecular 
weight and configuration of the PTFP and confirmed that the Mw of 
PTFP was 667.02 kDa and the molecular configuration of PTFP was 
a spherical structure, which was consistent with the SEM results. 
Numerous studies reported that high molecular weight 
polysaccharides (> 100 kDa) were provided with better immune 
regulatory actions than low molecular weight polysaccharides (< 
50 kDa), implying PTFP may have kind immune regulatory function 
(27, 28).

The composition of monosaccharide components is one of the 
fundamental parameters for characterizing polysaccharides, mainly 
hinging on its wide or narrow scope (29). Polydispersity reflects the 
distribution range of components in polysaccharides, with a value of 
approximately 1 indicating a narrow distribution range (30). In this 
study, polydispersity of PTFP was 10.23, suggesting that the molecular 
weight distribution of PTFP components was scattered. We further 
demonstrated that PTFP was a heteropolysaccharide, mainly 

composed of Glc, Rha, Gal, Ara, Man, and Xyl, especially Glc and Rha 
with the highest molar mass ratio. Among them, Glc, as a substrate for 
glycolysis, produced intermediate metabolites, such as citrate, 
itaconate and succinate during metabolism, which played critical roles 
in activating immune cells (31). Additionally, polysaccharides 
primarily rich in Glc, Rha, Gal, Ara, etc. have been demonstrated to 
possess potent immunomodulatory activities (32, 33). That is to say, 
PTFP could possess immunomodulatory potential.

In recent years, research has mainly focused on polysaccharides 
obtained from Chinese medicinal herbs due to their value as novel 
immune adjuvants against infections (34, 35). For example, Astragalus 
polysaccharides (APS) was evaluated for its potential as an effective 
adjuvant in vaccines against Porcine reproductive and respiratory 
syndrome virus (PRRSV) or CSFV, and demonstrated that APS had 
immunomodulatory effects on pig peripheral blood mononuclear cells 
exposed to PRRSV or CSFV (36, 37). PTFP has been proven to 
enhance the immune effectiveness of Newcastle disease vaccine in 
chickens (21). The current study aimed to explore the adjuvant effects 
of PTFP in mice immunized with the CSFV vaccine. In splenocyte 
proliferation experiments, CSFV significantly decreased the responses 
of splenic lymphocytes to mitogen stimulation in the vaccine alone 
group, which was in accordance with previous studies (38). 
Nevertheless, PTFP could induce the initiation of splenic lymphocytes 
in CSFV-immunized mice in this study, which was a committed step 
in triggering non-specific and antigen specific cell-mediated immune 
responses, and may enhance the immune function of mice.
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NK cells are a group of cytotoxic lymphocytes that have 
non-specific killing abilities against virus-infected target cells and 
certain tumor cells. Although NK cells are activated after being 
attacked by viruses and bacterial pathogens, they are mainly 
considered essential for clearing viral infections (39). T cells, 
including helper T cell, cytotoxic T cells, and regulatory T cell, 
among which helper T cells can secrete a variety of cytokines, such 
as IFN-γ, IL-10, etc. to sensitize specific immune responses (40). In 
the present study, CSFV vaccine immunization significantly 
inhibited NK cell activity and promoted the secretion of IFN-γ and 
IL-10, while PTFP markedly enhanced NK cell activity and further 
facilitated IFN-γ and IL-10 secretion. These results indicated that 
vaccination with CSFV could predominantly activate specific 
immune responses, and PTFP exhibited potent effects in promoting 
both non-specific and specific immune responses after vaccination. 
IFN-γ and an accelerated IgG2a, IgG2b, and IgG3 are typical for the 
Th1 cell response, while IL-10 and an increased IgG1 and IgA are 
characteristic of the Th2-type response (41, 42). To clarify whether 
Th1/2 cell-induced the secretion of specific antibody participated in 
the PTFP adjuvant, we further investigated IgG and its isotype IgG1, 
IgG2a and IgG2b titers in the mice immunized with CSFV. The 
results showed that PTFP obviously increased the antibody titers of 
IgG, IgG1, IgG2a, and IgG2b, proving that PTFP enhanced Th1- and 
Th2-type responses to CSFV in mice.

5. Conclusion

In summary, PTFP was a macromolecular heteropolysaccharide 
primarily containing glucose and rhamnose. PTFP, as an adjuvant for 
CSFV, could provide effective protection against CSFV by stimulating 
both humoral and cellular immune responses. Through this study, 
we obtained further knowledge on structural characterization and the 
adjuvant value of PTFP in the prevention of CSF.
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