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Editorial on the Research Topic

High-impact respiratory RNA virus diseases

The text discusses the serious threat of high-impact “respiratory RNA virus” (RRV)

infections to global health (1, 2). These viruses can spread rapidly, causing severe respiratory

illnesses and significant socioeconomic burdens (3). The emergence and reemergence of

these viruses continuously hinder public health preparedness and control measures (1).

“RRVs” form a diverse group sharing genetic material of single and double-stranded

RNA (4–6). They can lead to various respiratory disorders, from mild symptoms to

life-threatening respiratory distress (5).

Notable examples of RRVs include canine distemper virus (CDV) (7) and Newcastle

diseases virus (NDV) (8), Influenza virus (IV) (9), porcine reproductive and respiratory

syndrome virus (PRRSV) (10), the coronavirus disease 2019 (COVID-19) caused by

SARS-CoV-2 (11, 12), and the less well-known African horse sickness virus (AHSV)

(13) are some of the most notable high-impact RRVs (14). Past pandemics, like the IV

in humans and animals (15, 16) and SARS in the twenty-first century highlighted the

challenges of zoonotic transmission and controlling outbreaks (11). The ongoing COVID-

19 pandemic demonstrates the relevance of these diseases (17–21) (Jarrah et al.). RRVs can

have substantial economic consequences, including disruptions to global trade, tourism, and

healthcare systems (22–24). The interconnectedness of global health security underscores

the importance of international collaboration, data sharing, and robust surveillance systems

to detect and respond to emerging viral threats (25).

RRVs have the potential to spread widely, causing severe respiratory illnesses and

far-reaching consequences beyond health, including economic disruptions and impacts on

global trade, tourism, and healthcare systems (26). The emergence and reemergence of these

viruses continuously challenge public health measures (1). RRVs refer to a diverse group

of viruses with RNA genetic material, typically with a protein coat or capsid, surrounding

their genome (27), causing various respiratory disorders in human and animal populations.

Some RRVs have an envelope derived from the host cell membrane (28). The RNA virus-

genomic structure and replication strategies can vary, influencing their ability to infect

and replicate within host cells (29). RRVs are characterized by high mutation rates, rapid

replication cycles, and the ability to cause various clinical consequences (5, 25, 30). Their

genetic structure allows for (+) sense or (–) sense RNA, leading to diverse viral populations

(31–33). RRVs reflex a higher mutation rate, enabling them to adapt and evolve rapidly,

evading host immune responses and developing resistance to antiviral drugs (25, 34–36). The
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epidemiology of RRVs varies based on factors such as transmission

mode, viral stability, host range, and population susceptibility

(19, 37, 38). Some RRVs exhibit seasonal patterns, while others

cause sporadic outbreaks or persistent endemic infections (39).

The transmission dynamics depend on the specific virus and can

occur through respiratory droplets, direct contact, vector-borne

transmission, or fecal-oral transmission (19).

Diagnosing RRV diseases involves various laboratory

techniques, including molecular methods like polymerase

chain reaction (PCR) (40–43) (Machado et al.), and serological

tests to detect viral genetic material or antibodies (ELISA

test) (44–48). Overall, understanding the characteristics,

transmission, and diagnostic methods of RRVs is crucial for

effectively combating these infections and improving global

health preparedness. Some examples of RRVs are briefly

described below:

a) SARS-CoV-2 has a single-stranded (+) sense RNA virus

genome, which means it can serve as a messenger RNA

(mRNA) for protein synthesis once it enters a host cell (9, 49).

The genome structure includes regions encoding structural

and non-structural proteins (50, 51). Its genome can undergo

mutations, leading to the emergence of different variants that

may impact transmissibility, virulence, and vaccine efficacy

(52–54). Continuous monitoring of viral genomic sequences

helps researchers understand the evolution and spread of

the virus (18, 23, 55) (Padilla-Blanco et al.). Diagnosing in

animals is crucial for understanding its impact on animal

health and welfare, studying transmission dynamics, adopting

a One Health approach that considers human, animal,

and environmental health, and enhancing public health

and epidemiological surveillance (56). Animals can become

infected with SARS-CoV-2 through zoonotic transmission,

and studying such cases provides valuable data for tracking

the virus’s spread and assessing its potential impact on

human populations. Collaborative efforts between human

health professionals and veterinary experts are essential for

comprehensive disease surveillance, prevention, and control

(18, 57).

b) PRRSV is a significant viral pathogen affecting pigs

worldwide (58). It is an enveloped, single-stranded RNA

virus, family Arteriviridae, genus Betaarterivirus (59), with

a genome containing several ORFs encoding viral proteins,

including structural and non-structural proteins (60–62).

There are two major genotypes: PRRSV type 1 (PRRSV-1)

and PRRSV type 2 (PRRSV-2) (63). PRRSV is characterized

by causing reproductive failure, respiratory illness, and

immunosuppression in pigs (64). Its genetic diversity

challenges disease control and vaccine efficacy (65, 66).

Recently a new type of active vaccine demonstrated superior

results against the PRRSV (Trevisan et al.).

c) IV is an enveloped RRV of the Orthomyxoviridae family

classified into four genera: Alphainfluenzavirus (influenza

A virus, IAV), Betainfluenzavirus (influenza B virus,

IBV), Gammainfluenzavirus (influenza C virus, ICV),

and Deltainfluenzavirus (influenza D virus, IDV) (67–69).

The viral genome comprises segments of single-stranded

RNA, encoding structural and non-structural proteins

(68, 70). The replication and transcription processes

involve interactions between viral components and host

cell machinery (71). Influenza viruses can cause seasonal

flu outbreaks (Fujiwara et al.), occasionally leading to

pandemics (15, 16).

d) NDV is an enveloped, single-stranded RNA virus belonging

to the Avulavirus genus in the Paramyxoviridae family (72).

It affects domestic poultry and wild bird species (72). NDV

has a non-segmented RNA genome, and its replication and

transcription processes involve interactions between the viral

polymerase complex and viral RNA (73, 74). Vaccination is

crucial for controlling NDV outbreaks (8).

e) CDV is a highly contagious viral disease affecting dogs

and other Canidae family members (75, 76). It belongs

to the Morbillivirus genus within the Paramyxoviridae

family (77). The CDV genome is segmented RNA and

encodes various structural and non-structural proteins (78).

Vaccination is the most effective preventive measure against

CDV (79, 80).

f) AHS, a member of the Orbivirus genus within the Reoviridae

family (13, 81), has a segmented genome with 10 RNA

segments, each encoding specific proteins (82, 83). The

virus is primarily transmitted through insect vectors, and

vaccination and vector control are essential for disease

prevention (82). AHS can cause various clinical signs, varying

from peracute to chronic (Adesola et al.). Research focuses

on understanding the viral genome and developing effective

control strategies (83).

The challenges of prevention, diagnosis, and treatment

are examined, highlighting the necessity for continuous

research, surveillance, and preparedness. To mitigate the

effects of RRVs, it is essential to prioritize surveillance,

prevention, diagnostics, and research efforts while fostering

collaboration among scientists, healthcare professionals,

and policymakers to enhance global preparedness for

future outbreaks.
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