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Hexavalent chromium Cr (VI) is one of the most hazardous heavy metals in the 
environment and is toxic to living organisms causing tissue damage, disruption 
of the intestinal microbiota and cancer. However, there is little information on 
the relationship between the Cr (VI) and broiler chickens. The current study 
was performed to investigate the effect of Cr (VI) on growth performance, 
serum biochemical analysis, histopathological observations, and metabolomics 
analysis in broilers. Results show that Cr (VI) exposure significantly decreased the 
body weight (p  < 0.01) and caused liver damages in broilers. With the extension 
of Cr (VI) action time, the liver appeared obvious pathological changes, 
including hepatic cord disorder, incomplete hepatocyte additionally, decreased 
serum biochemical indices of calcium (Ca), phosphorus (P), total protein 
(TP), phosphatase (ALP), and globin (GLB) significantly (p  < 0.01). Moreover, 
metabolomics analysis indicated that 29 differential metabolites were identified, 
such as phytosphingosine, L-Serine, 12, 13-DHOME, Alpha-dimorphecolic acid, 
L-Methionine, L-Phenylalanine, 3-Dehydroshikimate, L-Tyrosine, and N-Acetyl-
L-phenylalanine were significantly decreased under the action of Cr (VI) 
(p  < 0.05). These 29 differential metabolites are mainly involved in 35 metabolic 
pathways, such as aminoacyl-tRNA biosynthesis, phenylalanine metabolism, 
sphingolipid, and linoleic metabolism. The study revealed that exposure to Cr 
(VI) resulted in a decrease in growth performance and metabolism, with the 
hazards and toxicity in broiler chicken. The findings provided new insight and 
a comprehensive understanding of the relationship between Cr (VI) and broiler 
chickens.
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1. Introduction

Environmental pollution is aggravated by industrial development and urban expansion, 
which is accompanied by the production of large amounts of pollutants, including liquid 
waste, exhaust gases, and other industrial waste. Heavy metals are regarded as one of the 
sources of pollution in waste and wastewater (1). The deposition and proliferation of heavy 
metals have seriously affected the ecosystem (1, 2). Chromium is the most abundant and 
natural element present in rocks, soil and living things (3). Chromium has various 
oxidation states from −2 to +6 (3), of which Cr (VI) is widely used in industrial production 
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such as pigments, metallurgy, plastics, and chromite. Also, Cr (VI) 
is often found in industrial waste, sewage, combustion exhaust gas 
and cigarette smoke (4). Living organisms are exposed to Cr (VI) 
through a variety of routes, such as skin contact, food intake, and 
inhalation of chromium particles (5). Therefore, Cr (VI) exposure 
to humans or animals is very common and widespread as it is 
widely present in the environment and has many 
exposure pathways.

Cr (VI) is considered as living body carcinogens of group 1 by 
the International Agency for Research on Cancer (IARC) due to 
its involvement in DNA damage and oxidative stress (6). Cr (VI) 
is usually dissolved in water in the form of oxidation, migrates and 
accumulates in the food chain, showing strong toxicity and 
carcinogenicity (7). Previous studies have shown that Cr (VI) can 
change gene expression and induce the production of a large 
number of free radicals, however, the body is unable to effectively 
remove accumulated free radicals in a timely manner and is in a 
state of oxidative stress (8, 9). Currently, sufficient evidence 
demonstrated that Cr (VI) is associated with diseases in humans 
or animals (10), for example, Cr (VI) exposure to women resulted 
in breast cancer (3). Simultaneously, Cr (VI) contamination also 
affects aquatic systems and products, and in Ni’s study, hexavalent 
chromium caused severe toxic effects on the liver of marine 
medaka (11).

Global broiler chicken production has continued to grow in 
recent years based on demand for protein and nutrients. 
Statistically, global broiler chicken production reached 101.08 
million tons in 2022, according to the US Department of 
Agriculture (USDA). Simultaneously, China’s annual broiler 
production reached 1.43 million tons in 2022, accounting for 
14.14 percent of global broiler production and ranking in the top 
two in the world, according to the National Bureau of Statistics of 
China. Broiler chickens, especially those raised on farms near the 
chemical and chromite industries, are easily exposed to chromium 
by drinking polluted water, eating contaminated crops, or inhaling 
air containing chromium (12). Previous studies have found that 
chronic exposure to Cr (VI) leads to pronounced changes in the 
diversity and composition of gut microbiota in broilers, with a 
significant reduction in short-chain fatty acid-producing bacteria, 
posing a risk to broiler farming. (5). In addition, studies have 
shown that Cr (VI) not only causes economic losses but also poses 
a serious threat to public health and food safety (13). 
Consequently, an in-depth understanding of the negative effects 
of Cr (VI) on broilers is urgent and meaningful.

Metabolomic analysis has been an effective tool for visualizing 
the state of health and revealing endogenous metabolites (10). 
However, to our knowledge, few studies have been conducted to 
investigate the effects of Cr (VI) on broilers from a metabolic 
point of view. Therefore, in the study, we  also focused on 
untargeted liquid chromatography-mass spectrometry (LC–MS) 
metabolic analysis to determine the changes in metabolites and 
health status of broiler chickens under the exposure of Cr (VI).

Collectively, in the study, we aimed to investigate the effects 
of Cr (VI) on broiler chickens from a new perspective. Our 
findings shed light on the relationship between Cr (VI) and 
broilers based on a series of experiments, and provides a basis for 
further understanding of Cr (VI). At the same time, this study 
further strengthens environmental risk assessment and protection.

2. Materials and methods

2.1. Animal experiment

In total, 60 broiler chickens (1 day old, 45–53 g) were bought from 
a commercial hatchery (Jingzhou, China) and transported to the 
Huazhong Agricultural University Animal Centre. All broilers were 
housed in the standard environmental conditions (temperature, 
33 ± 3°C; humidity, 55 ± 10%) and acclimatized to the environment for 
7 days prior to the experiment. At the beginning of the experiment, to 
ensure the safety and accuracy of the research, 60 broiler chickens 
were randomized to two groups: Group A (n = 30) and group B 
(n = 30). Broilers in group A were provided with a standard diet, and 
broilers in group B were fed the standard diet supplemented with 
potassium dichromate (K2Cr2O7). According to Li’s method (5), 
K2Cr2O7 was dissolved in water and K2Cr2O7 was fed at the 
supplemental level of 0.07424 mg/kg/d according to the body weight 
of broilers for 35 days.

2.2. Body weight measurement and serum 
biochemical analysis

The body weight of the broilers was measured once a week during 
the experiment, i.e., initial body weight, day 7, day 14, day 21, day 28, 
and day 35, respectively. In addition, blood was taken from the jugular 
vein of broiler chickens by means of a 21 gauge needle on day 21 and 
day 35, respectively. The serum was separated after centrifuging 
(1,000 g/min, 20 min), and 200 mL of serum was transferred to a new 
tube for serum biochemistry analysis. The biochemical assays included 
calcium (Ca), phosphorous (P), total protein (TP), total cholesterol 
(TC), alkaline phosphatase (ALP), alanine aminotransferase (ALT), 
globin (GLB), and aspartate aminotransferase (AST). All serum 
biochemical indexes were measured using biochemical assay kits 
(Nanjing Jianjian Bioengineering Research Institute, Nanjing, China) 
according to the manufacturer’s operating procedures.

2.3. Histological pathological observations

At the end of the experiment (on day 35), all broiler chickens were 
humanely slaughtered after 24 h of fasting according to Li’s method 
(5). The liver from each broiler in both groups were fixed in 4% 
paraformaldehyde for 48 h, followed by dehydration, cleaning and 
embedding. Finally, the tissue sections were stained with hematoxylin 
and eosin (H&E) staining (14). The histopathological changes in tissue 
sections were observed under an inverted microscope.

2.4. Pretreatment and metabolomics 
profiling of serum samples

Serum samples were thawed at 4°C and vortexed for 1 min. 
Accurate transfer of 100 μL sample into a 2 mL centrifuge tube for 
metabolites separation and extraction (<1,500 Da). First, 400 μL of 
methanol was added to vortex with the samples for 1 min and 
centrifuged at 12000 rpm for 10 min at 4°C. The supernatant was then 
transferred to a new 2 mL centrifugal tube and concentrated. After 
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that, 150 μL 2-chloro-I-phenylalanine solution was dissolved with the 
sample. At last, the supernatants were filtered by a membrane 
(0.22 mm) and transferred into the decision bottle for liquid 
chromatography–tandem mass spectrometry (LC–MS) detection.

The ACQUITY UPLC System (Waters, Milford, MA, 
United States) coupled to a LTQ Orbitrap XL instrument (Thermo 
Fisher Scientific, United States). Simultaneous sample analysis was 
performed by MS1 and MS/MS (Full MS-ddMS2 mode, data-
dependent MS/MS) acquisition. The parameters were set as follows: 
spray voltage of 45 carbs, aux gas flow of 15 carbs, a capillary 
temperature of 325°C, spray voltage, 4.80 kV and −4.50 kV for ESI(+) 
and ESI (−), respectively. MS1 range, m/z 89–1,000 and 114–1,000 in 
the positive and negative modes, respectively. The LC–MS system was 
performed by reference to Zelena’s method (15). The mobile phases 
consisted of A and B, of which solvent A was 0.1% formic acid in water 
(v/v) and solvent B was 0.1% formic acid in acetonitrile (v/v). The 
separation gradient was set as follows: 2% B at 0–1 min, 10% B at 
5 min, 98% B at 8 min, 98% B at 10 min, 2% B at 15 min, and 2% B at 
16 min. Additionally, the flow rate was set to 0.25 mL/min and 
injection volume was set 5 μL.

The acquired LC–MS raw data were converted to mzXML format 
by MSConvert using Proteowizard software (v3.0.8789). The raw data 
were then processed using R XCMS software, including peak selection, 
integration and retention correction. Finally, to further explore 
differences in metabolic profiles, the processed data were subjected to 
principal component analysis (PCA), partial least squares discriminant 
analysis (PLS-DA), and orthogonal partial least squares discriminant 
analysis (OPLS-DA). Metabolites with significant differences were 
identified based on variable importance plot (VIP) > 1 and p < 0.05. 
Concurrently, correlations between metabolites were analysed by 
calculating the Pearson correlation coefficient. In addition, metabolic 
pathways of different metabolites were determined by MetaboAnalyst 
and the KEGG database.

2.5. Statistical analysis

In the study, data were analyzed by one-way analysis of variance 
(ANOVA) through SPSS (v 23.0) and box plots were drawn by 
Graphpad Prism software (v 8.0). Also, data were expressed as 
means + SD, and the criterion for determining a statistically significant 
difference was p < 0.05.

3. Results

3.1. Growth performance

To examine the effect of Cr (VI) on growth performance in 
broilers, we constructed a Cr (VI)-infection model by feeding broilers 
with Cr (VI). Our findings showed no significant difference between 
the two groups during the first 14 days of the study. At day 21, however, 
there was a significant difference in body weight between groups A 
and B. Moreover, the difference became more pronounced as the day 
progressed. As shown in Figure 1, at day 35, the average body weight 
of broilers in the B group was significantly lower than that of the A 
group, with a different value of approximately 250.8 g (p < 0.01) 
(Figure 1).

3.2. Histological observation of the liver

To explore the hazards of Cr (VI) on broilers, we  observed 
histopathological changes in the liver. As shown in Figure 2, the liver 
structure of broilers fed a standard diet exhibits a healthy state, with 
liver cells being neat and regular (Figures 2A,B). In turn, the livers of 
broiler chickens in the Cr group exhibit obvious pathological changes, 
with disturbed hepatic cords and incomplete hepatocytes, 
accompanied by rupture and lysis of the hepatocytes. In addition, 
vacuoles were found in the cytoplasm and cell nuclei were lost, which 
was suspected to be due to steatosis (Figures 2C,D).

3.3. Serum biochemistry test

To better understand the correlation between Cr (VI) and broiler, 
serum biochemical tests were performed during the study period, at 
days 21 and 35, respectively. On day 21, TP, TC, AST, and GLB levels 
in Group A were significantly higher than those in the B group 
(p < 0.01) (Figure  3A). As expected, this difference became more 
significant as the duration of the experiment increased. On day 35, Cr 
(VI) significantly decreased Ca, P, TP, ALP, and GLB levels of broilers 
(p < 0.01), and conversely, AST levels increased (p < 0.01) (Figure 3B).

3.4. The effect of Cr (VI) on the metabolism 
of the body in broilers

To further explore the correlation between Cr (VI) and health in 
broilers, we performed non-target metabolic profiling of serum in 
both groups. PLS-DA and OPLS-DA in the positive and negative 
modes showed that the dots in the B group were clearly separated 
from those of group A, indicating significant differences in serum 
metabolism between groups A and B (Figures 4A,B). Additionally, the 
permutation test of OPLS-DA showed that values of R2 and Q2 were 
both lower than original of R2 and Q2 on the upper right, which 
demonstrated the validity and authenticity of the OPLS-DA model 
(Figures 4A,B).

As depicted in Figures 4C,D, 133 metabolites were found in 
both groups. Alpha-dimorphecolic acid, Aminoadipic acid, 
4-Hydroxycinnamic acid, and N-Acetyl-L-phenylalanine (VIP > 1).

3.5. The effect of Cr (VI) on the metabolism 
pathways in broilers

The significantly different metabolites were subjected to KEGG 
pathways analysis using MetaboAnalyst1. The data indicated that 
significantly different metabolites were involved in 35 pathways, and 
the representative pathways were shown in Figures 5C,D. Among the 
representative pathways, the top 5 pathways with extremely significant 
impact value were aminoacyl-tRNA biosynthesis, phenylalanine 
tyrosine and tryptophan biosynthesis, phenylalanine metabolism, 
sphingolipid metabolism and linoleic metabolism. As shown in the 

1 www.metaboanalyst.ca
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metabolic diagram, 9 potential biomarkers were associated with the 
top  5 pathways, including phytosphingosine, L-Serine, 12, 
13-DHOME, Alpha-dimorphecolic acid, L-Methionine, 
L-Phenylalanine, 3-Dehydroshikimate, L-Tyrosine, N-Acetyl-L-
phenylalanine (Figure 6A).

3.6. The correlations between different 
metabolites

Correlation analysis was conducted by calculating Pearson’s 
correlation coefficient to detect the associations between differential 
metabolites. In our findings, niacinamide was negatively associated 
with L-Serine and N-Acetyl-beta-alanine. 4-Hydroxyproline was 
positively associated with N-Acetyl-beta-alanine. Dopamine was 
negatively associated with L-Serine but positively associated with 
Niacinamide, N-Acetyl-beta-alanine, 4-Hydroxyproline and 
5, 6-Dihydro-5-fluorourac. L-Methionine was positively associated 
with Niacinamide, 4-Hydroxyproline, and Dopamine. 
4-Hydroxycinnamic acid was positively associated with Niacinamide, 
N-Acetyl-beta-alanine, 4-Hydroxyproline, 5, 6-Dihydro-5-fluorourac, 

Dopamine and L-Methionine. Beta-Alanyl-L-arginine was positively 
associated with Niacinamide, 4-Hydroxyproline, 5, 6-Dihydro-5-
fluorourac, Dopamine, L-Methionine and 4-Hydroxycinnamic acid. 
Phytosphingosine was negatively associated with L-Serine, but 
positively associated with Niacinamide, N-Acetyl-beta-alanine, 
Dopamine, L-Methionine and 4-Hydroxycinnamic acid (Figure 6B).

4. Discussion

Heavy metal contamination in the environment (such as air, soil, 
and groundwater) has been a serious concern for animal husbandry 
and food safety, which affect the living organisms health by perturbing 
gut microbiota or metabolism (16). Hexavalent chromium is 
considered a hazardous metal contaminant, and there is increasing 
evidence that hexavalent chromium can cause cancer, tumor 
development, gastrointestinal disorders, and liver damage (3, 16, 17). 
The Cr (VI) promotes the formation of active oxygen forms (AFCs), 
followed by cellular damage (3, 18). Zhitkovich et al. demonstrated 
that Cr (VI) can interact with amino acids or DNA, resulting in DNA 
breakage or damage (19). However, information regarding the 

FIGURE 1

Hexavalent chromium (Cr VI) decreased the body weight of broilers. Dynamic changes in body weight of broilers in groups A (standard diet) and B 
(standard diet and chromium), i.e., initial weight and weekly post-trial weight records. *p  <  0.05, ***p  <  0.01, and ****p  <  0.001.
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correlation between Cr (VI) and broilers is limited, especially from the 
growth and metabolism perspective. Metabolism, the sum of chemical 
reactions and energy absorption and utilization processes, and the 
synthesis of organic matter. Therefore, the correlation of Cr (VI) and 
broilers from the metabolism point is necessary and urgent.

In the study, the hazards of Cr (VI) on the growth performance of 
broilers was notable. As the data shows, Cr (VI) significantly reduced 
the body weight of broilers compared to the control group, and the 
difference becomes more pronounced with the extension of time. Our 
data are consistent with Zhang’s study, where Cr (VI) resulted in 
significant weight loss in mice (16). Based on previous research (16, 
20) and our data, a possible explanation is that Cr (VI) may disrupt 
the gut microbiota balance and body metabolism, resulting in weight 
loss. Our data have provided evidence that calcium (Ca) and 
phosphorus (P) levels have been significantly reduced (p < 0.05) in the 
B group compared to the control group, indicating Cr (VI) impair the 
metabolism of Ca and P. Similarly, Brzoska et al. also demonstrated 
that cadmium retention and accumulation has severe negative effect 
on calcium metabolism in rats (21). Alanine aminotransferase (ALT) 
and aspartate aminotransferase (AST) are important circulating 
enzymes, indicating the damage and death of liver cell (22). The new 
study also suggests that ALT and AST should be  considered as 
significant indicators for predicting malignant tumour. For example, 
in the study of Zhou et al., the AST/ALT ratio is a reliable predictor 
for estimating the risk of prostate cancer incidence (23). Meaningfully, 
we observed that the level of AST in the A group was significantly 
higher than that in the B group (p < 0.01), indicating that Cr (VI) had 
a damaging effect on the liver of broilers. Simultaneously, we found 
that chromium reduced the levels of TP and GLB, which may 
be related to the hepatotoxic effects of hexavalent chromium. Our 

findings are consistent with the report by Rosa et al. The damaged liver 
cells are characterized by inhibition of protein synthesis accompanied 
by a decrease in TP and GLB (24). On the other hand, the liver of a 
broiler exposed to Cr (VI) for an extended period of time showed 
distinct pathological changes, including hepatic cord disorders, 
hepatocyte rupture, and vacuoles in the cytoplasm. Our findings are 
consistent with Ni’s report that Cr (VI) also causes acute pathological 
changes in the liver of marine medaka, including cellular vacuolation, 
nuclear aggregation, and migration (11).

Metabolites can serve the function by acting on organs, including 
stomach, kidney, liver, genital system, and blood circulation, therefore 
metabolism acts as an important role in living organisms, determining 
the health status of living organisms throughout life. In our finding, it 
was shown that a total of 29 metabolites were affected by hexavalent 
chromium, including 3 upregulated and 26 downregulated 
metabolites. Then, metabolites with significantly different profiles 
(p < 0.05) were subjected to KEGG pathway analysis. Cr (VI) exposure 
clearly affects 35 metabolic pathways, of which 5 representative 
pathways are aminoacyl-tRNA biosynthesis, phenylalanine, tyrosine 
and tryptophan biosynthesis, phenylalanine metabolism, sphingolipid 
and linoleic metabolism. The altered metabolites and metabolic 
pathways may be the main cause of the negative effects of Cr (VI) on 
the host. In the study, we found significant changes in the Aminoacyl-
tRNAs synthesis pathway. Previous researches have demonstrated that 
aminoacyl-tRNAs synthesis pathway plays a crucial role in matching 
amino acids with tRNAs containing the corresponding anticodon, 
precisely identifying the genetic code to be  interpreted as the 
corresponding amino acid (25–27). One possible explanation for this 
change is that Cr (VI) impairs the synthesis of aminoacyl-tRNAs. 
Next, a significant change was observed in phenylalanine, tyrosine and 

FIGURE 2

Hexavalent chromium (Cr VI) caused liver pathological changes. (A, B) The H&E staining of liver histology in the control group. There was no damage 
to the liver, which was structurally intact and displayed a healthy state with neat and regular liver cells. (A): 20X microscope observation. (B): 40X 
microscope observation. (C, D) Liver histological changes of broilers in the B group (Cr (VI)  +  standard diet). (C): 20X microscope observation. (D): 40X 
microscope observation. Cr (VI) exposure causes serious liver damage, which is summarized as follows. a. Disordered hepatic cord arrangement; b. 
Hepatocytes rupture; c. Vacuoles are found in the cytoplasm; d. Absence of nucleus.
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tryptophan biosynthesis pathway, accompanied by the significant 
reduction in N-Acetyl-L-phenylalanine, L-phenylalanine and 
L-Tyrosine (p < 0.05). Amino acids are essential for the maintenance 

and promotion of metabolism, including immune regulation, 
oxidative stress regulation and protein biosynthesis (28–30), of which 
L-Tyrosine is a valuable amino acid with a variety of applications, 

FIGURE 3

Hexavalent chromium (Cr (VI)) exposure altered the serum biochemical index of broilers. (A′) Serum biochemical indices on day 21. (B′) Serum 
biochemical indices on day 35. (A) The control group. (B) Cr (VI)-exposure group.
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contributing to stimulating brain activity, enhancing brain memory 
and mental alertness, inhibiting depression, relieving the pressure, and 
promoting growth performance (31). What’s more, L-Tyrosine is a 
precursor to the synthesis of catecholamine, dopamine (DA), and 
norepinephrine (NE) (32). Simultaneously, Cr (VI) also caused 
changes in phenylalanine metabolism together with significant reduce 
of phenylalanine level. Among the latest points, the metabolism of 
phenylalanine is closely linked to the disease, for example, in Liu’s 
report, the metabolism of phenylalanine is dysregulated in Alzheimer’s 

disease (33). Phenylalanine is an important aromatic amino acid that 
acts as a precursor to most essential and vital building blocks of living 
organisms (34, 35). Numerous studies claimed that phenylalanine is 
commonly associated with glycose metabolism and lipid metabolism, 
and is involved in regulating homeostasis and health (36–40). 
Therefore, we  speculate that Cr (VI) exposure affects glucose 
metabolism and lipid metabolism by impairing phenylalanine 
metabolism and decreasing phenylalanine levels. This may be  the 
reason why Cr (VI) exposure reduces body weight in broilers.

FIGURE 4

The metabolites analysis between groups A (C stands for Group A) and B (Cr stands for Group B). (A) In the positive model, multivariate statistical 
analyses including PLS-DA score spot and OPLS-DA score spot showed the difference of metabolites between groups. Additionally, the permutation 
test of OPLS-DA demonstrated the reality and reliability of the OPLS-DA model. (B) PLS-DA score spot, OPLS-DA score spot, and permutation test of 
OPLS-DA in the negative mode. (C) The heatmap of metabolites in the positive model. (D) The heatmap of metabolites in the positive model.
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FIGURE 5

Cr (VI) exposure significantly altered metabolite concentrations and metabolic pathways in broilers. (A) Volcano plots manifested the differential 
metabolites. The red colored dots indicate the increased concentration of metabolites in the Cr (VI)-exposure group compared to the control group. 
In turn, the blue dots indicate a decrease in the concentration of metabolites under Cr (VI) effect compared to the control group. (B) Metabolite 
content (Z-score indicate the content) in groups A (C stands for Group A) and B (Cr stands for Group B). Closer to the right, the relative content of the 
current metabolite in that sample is higher, and closer to the left, the current metabolite content is lower. (C, D) Enrichment analysis of metabolic 
pathways.

FIGURE 6

(A) Top representative metabolism pathways with extremely significant impact value between groups A and B. (B) Correlation analysis of differential 
metabolites. Red and blue indicate positive and negative correlations, respectively, p  <  0.05 represents significant correlation.
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Interestingly, our results demonstrate that Cr (VI) changed the 
sphingolipid and linolenic acid metabolism in broilers, which confirmed 
our hypothesis. Linolenic acid metabolism is an important metabolism 
pathway involved in maintaining health and regulating the immune 
system (41–43). In the study of Zhang et al., they pointed out that the 
disturbance of linoleic acid metabolism may cause cardiovascular disease 
(44). Similarly, Wang et al. also demonstrated that linoleic acid metabolism 
is strongly associated with chronic heart failure (45). Also, Cr (VI) 
significantly reduced the levels of short chain fatty acid (SCFAs) (p < 0.05), 
including Alpha-dimorphecolic acid, aminoadipic acid, 
4-hydroxycinnamic acid, and deoxycholic acid. Increasing evidence 
demonstrated that linolenic acids are vital and essential monounsaturated 
fatty acids which contribute to maintain heart health and prevent disease 
(such as cardiovascular) (44, 46–49). Significantly, Cr (VI) exposure also 
reduced the level of nicotinamide in broilers (p < 0.05). Previous research 
has shown that niacinamide is an important amide of vitamin B3 (niacin), 
which has functions of anti-pruritic, vasoactive, antimicrobial, 
photoprotective, sebostatic and brighten effects in living organisms. 
Additionally, niacinamide is able to inhibit the nuclear poly (ADP-ribose) 
polymerase-1 (PARP-1) and controls the NFκB-mediated transcription 
of signalling molecules (7, 50). It is worth noting that there is a correlation 
between the reduction of niacinamide and the addition amount of Cr 
(VI), which is likely to be the reason for the poor growth performance of 
broilers in Cr group.

5. Conclusion

Overall, our study revealed complex changes in broiler chicken 
exposure to Cr (VI) with respect to growth and metabolism. Cr (VI) has 
considerably reduced the growth of broiler chickens, characterized by 
weight loss and liver damage. Additionally, the serum metabolism results 
highlight the toxic effect and potential hazards of Cr (VI) exposure to 
broilers, including 35 metabolic pathways and 29 metabolites biomarkers 
were dramatically altered. The changed metabolic pathways were essential 
and crucial to the health of living organisms, such as aminoacyl-tRNA 
biosynthesis, phenylalanine metabolism, this study not only broadens the 
understanding of the hazards and risks of Cr (VI), but also reveals that 
metabolic alterations may be a key pathway for Cr (VI) to exert its toxic 
effects. Meaningfully, we  also found a correlation between some 
metabolites. These differently metabolites may affect the other metabolite 
level through the interaction under the action of Cr (VI).
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