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The safety of reclaimed urban wastewater (RUW) for the production of 
hydroponic barley forage (HBF) was evaluated in terms of effluent and forage 
characteristics, as well as the health and performance of lactating cows. The 
study was conducted on a dairy farm equipped with two hydroponic chambers 
producing approximately 620  kg/d of HBF as fed. For experimental purposes, HBF 
was produced using RUW collected from an aqueduct plant processing urban 
wastewater in a membrane bioreactor treatment chain. A feeding trial was carried 
out with HBF derived from RUW. Sixty lactating cows were randomly assigned to 
two balanced groups fed a standard total mixed ration (TMR) or a TMR in which 
10  kg of HBF replaced 1  kg of oat hay and 0.5  kg of maize. The experimental period 
lasted 7  weeks, including a 2-week adaptation period, during which each cow 
underwent a physical examination, BCS scoring, blood sampling for a complete 
blood count and biochemical panel, recording of body weight and milk yield and 
quality, including fatty acid composition and heavy metal content. Ruminal pH 
was continuously monitored by reticulorumen boluses, and nutrient digestibility 
and N balance were determined at week 7. RUW showed an acceptable microbial 
load and an overall good quality as irrigation water, even though the supply of 
N and P did not influence the yield and quality of HBF. The characteristics of 
HBF reflected the quality of RUW supplied to the hydroponic chambers and no 
anomalous components (i.e., high ion concentration) were found. Feeding RW-
derived HBF to lactating cows had no major positive or negative effects on animal 
health and production, including milk quality, ruminal pH, in vivo digestibility, and 
N balance. The use of RUW under the conditions tested appears to be safe for 
the health status of lactating cows and the quality of the milk obtained. Overall, 
the results do not reveal any major limitations for the use of tertiary wastewater 
as irrigation water for the hydroponic production of forage barley, so that a wider 
use of wastewater in hydroponic systems seems realistic.
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1. Introduction

Ongoing climate change threatens global freshwater security 
which is one of the United Nations sustainable development goals (1). 
Despite the inevitable uncertainty in forecasting models, the countries 
of the Southern European Union (EU) are expected to experience 
severe changes in both the availability and quality of water resources, 
which potentially lead to unprecedented pressure on the water 
resources (2). Currently, the agricultural sector of some Southern 
regions of the Euro-Mediterranean area already uses 80% of water 
resources, while the rest of Europe consumes only 44% and the world 
about 75%, on average (3, 4). Within the primary sector, it is estimated 
that livestock production uses 29% of the total agriculture water 
demand, with a large going to crops to produce animal feed (5). In this 
scenario, recovering urban treated or reclaimed wastewater for 
irrigation purposes has an enormous potential to face increasing water 
scarcity, preserving potable resources and reducing the environmental 
impact associated with the discharge of effluents into water bodies (6, 
7). To date, the use of reclaimed wastewater in producing vegetables 
and fruit for human consumption has been successfully implemented 
in many rural Mediterranean areas, proving an economically feasible 
option to mitigate the water consumption associated with several 
crops production (8–11). However, less attention has been paid to the 
use of wastewater in forage and feed production systems (5, 12).

The use of wastewater for agricultural purposes presents concerns 
related to the presence of pathogenic microorganisms that could be a 
source of infection for humans and animals (5, 13). Similarly, there 
may be organic and inorganic chemicals that can enter the food chain, 
accumulate in the soil, be absorbed by plants, and then have humans 
as final consumers (14, 15). Currently, in the European context, the 
use of wastewater for irrigation is strictly regulated. In treatment 
plants, urban wastewater, as defined by EU Directive 91/271, 
undergoes sequential treatment to remove suspended solids and 

pollutants as well as unwanted compounds and microorganisms (16). 
Wastewater treated to remove pathogens and stabilize water quality, 
hereafter referred to as reclaimed urban wastewater (RUW), can 
be used for irrigation of raw and processed food crops and non-food 
crops, such as pasture and forage (17). In this scenario, hydroponics 
is now seen as an agricultural technology that can be easily adapted to 
reuse alternative water sources, reducing both irrigation water 
demand and wastewater disposal, and improving the environmental 
and economic sustainability of crop production and wastewater 
treatment technologies (18). Hydroponics is a type of vertical, soilless, 
indoor cultivation in which the growing environment is controlled in 
terms of temperature, humidity, light and in which the use of 
chemicals tends to be much lower than in traditional crop systems (19, 
20). In recent years, hydroponics has also been proposed to produce 
fresh forage, a natural, palatable, and easily digestible feed that can 
improve the health and performance of lactating animals and even the 
nutraceutical properties of dairy products (21–23), which is however 
not available year-round in the climatic conditions of southern Europe 
(24, 25). Fresh hydroponic forage (HF) production is based on indoor 
germination and growth for a short time (6–8 d) of cereal seeds 
(especially barley) characterized by high and rapid germinability (26). 
In addition to producing fresh, high-quality forage all year round, 
regardless of weather conditions and without land requirements, HF 
production is also expected to reduce water consumption compared 
to conventional forage crops (27, 28) and has been proposed as a 
suitable system for livestock farms with limited availability of arable 
land and irrigation water (29, 30). The use of alternative water sources 
has been found to increase water use efficiency as well as the 
nutritional quality of HF (31–34), but the effects of such forage on 
animal performance and health have not been addressed so far.

Furthermore, in the European context, taking into consideration 
the requirements defined by the recently enacted European regulation 
2020/741 (17), it is pivotal to assess the potential animal health risks 
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associated with the reuse of RUW for hydroponic fodder production. 
Indeed, though hydroponic fodder is not explicitly mentioned in the 
EU regulation, it falls under the category “non-food crops,” including 
pasture and forage.

Thus, assuming its safety, this study was designed as a first attempt 
to evaluate the use of RUW for HBF production in terms of water 
characteristics, feed quality, and effects on the health and production 
of dairy cows, elements that have been considered separately or not at 
all in the available literature.

2. Materials and methods

2.1. Ethics approval

The study was conducted according to the guidelines of the 
Declaration of Helsinki and approved by the Institutional Review 
Board of the Italian Ministry of Health (protocol code 74371-X/10, n. 
1,031/2020-PR, Date of approval 19, November 2021). The withdrawal 
and use of RUW were authorized by the Apulian Aqueduct 
(Acquedotto Pugliese S.p.A.) which was a partner in the framework 
of the Hydrofodderpuglia research project financed by the Apulian 
region (PO FE5R 2014/2020-Azione 6.4-Sub-Az 6.4.a.DGR 
2321/2017).

2.2. Study site and production of 
hydroponic barley fodder

The study was carried out on a dairy farm in the Apulian region, 
in southern Italy (40°48′N 16°56′E; 360 m a.s.l.). The farm has two 
hydroponics chambers (E-6-TC and EC-2-T models, Eleusis 
International, Madrid, Spain) with a potential daily production of 
hydroponic barley fodder (HBF) of 500 kg and 120 kg and a capacity 
of 32 and 8 perforated polyethylene trays (60×60 cm), respectively. 
Regardless of production capacity, each chamber consisted of a well-
insulated room equipped with climate control, air extractors, a surface 
irrigation watering system, a fluorescent tube lighting system (40 W, 
with 12 to 16 daily light), and a set of shelves where the seed 
germination trays are placed. The temperature inside the chambers 
was set to a working range of 18°C to 21°C and the relative humidity 
was adjusted by about 70% using air circulation. Clean, sound, intact, 
untreated, barley seeds (Hordeum vulgare L.) of high quality 
(germination above 95%) were used. Daily, the seeds were first soaked 
in 1.5% sodium hypochlorite solution for 30 min, rinsed, and soaked 
in fresh water for 16 h. Then, the water was drained, and the seeds 
were left without water for 24 h (pre-germination). Subsequently, the 
seeds were spread into the perforated polyethylene trays at a sowing 
rate of 4–6 kg/m2. The growth cycle, from seed placement to harvest 
lasted 8 days, after which the fodder, consisting of a mass of roots, seed 
kernels and the aerial green part of the seedlings (from 12 to 14 cm), 
was manually discharged from the trays, scored for the presence of 
mould according to the five-point scale of Soder et al. (35), and loaded 
into the mixer wagon equipped with an electronic scale for inclusion 
in the total mixed ration (TMR).

For experimental purposes, HBF was produced using RUW taken 
from the treatment plant of the Apulian aqueduct located in Noci 
(40°48′N 17°08′E), which adopts a membrane bio reactor wastewater 

treatment chain. Once a week, RUW was taken from the waterworks 
reservoirs, transported to the farms in a dedicated tank and stored in 
non-toxic polyethylene tanks with the weekly addition of chlorine 
dioxide (0.58 ppm/L), connected to the growth chamber irrigation 
system. The amount of water required to daily produce 620 kg of HBF 
was approximately 1.5 m3. Before the start of the feeding trial, the 
characteristics of RUW were assessed for the main water quality 
parameters (17, 36) by a reference laboratory (EuroQuality Lab S.r.l., 
Gioia del Colle, Italy) according to standard methods 
(Supplementary Table S1).

To evaluate the potential influence of RUW on forage growth, the 
yield and height of forage produced using well water and RUW were 
measured in October 2021. Measurements were taken in both 
chambers for 10 consecutive days for each type of water. Furthermore, 
two samples of the forages so produced were evaluated for the 
presence and load of Escherichia coli (β-glucuronidase method) and 
Salmonella spp. and for the content of metals and non-metals (N, P, 
Na, Cd, Cr, Cu, Mn, Ni, Pb, Zn, Fe, K, Ca, Mg) by a reference 
laboratory (EuroQuality Lab S.r.l., Gioia del Colle, Italy) according to 
standard methods (Supplementary Table S2).

2.3. Animal enrolment

In November 2021, the health status of eighty lactating cows from 
the herd was evaluated. The animals were visually examined, weighed, 
and scored for body condition using a 1 to 5 scale (37). Blood samples 
were taken from the coccygeal vein, immediately used for 
quantification of the beta-hydroxybutyrate (BHB) level using a 
ketometer (CentriVet GK), and placed in a K3 EDTA tube (10 mL) to 
perform a complete blood count (CBC) (CELL-DYN 3700 
Hematology Analyzer, Abbott), and in a plain tube (5 mL) to obtain 
serum after centrifugation (15 min at 1500 × g) for the biochemical 
panel (including albumin (Alb), alkaline phosphatase (ALP), alanine 
transaminase (ALT), aspartate transaminase (AST), calcium (Ca), 
chloride (Cl), creatinine (Cr), glucose (Glu), potassium (K), 
magnesium (Mg), sodium (Na), not esterified fatty acids (NEFA), 
phosphorus (PHOS), total bilirubin (T Bil), total iron (Ti), total 
proteins (Tp); Beckman Coulter, Clinical Chemistry Analyzer AU680). 
Furthermore, faecal samples (about 10 g) were collected from the 
rectum by using sterile polyethylene gloves, stored in plastic bags, and 
examined for gastrointestinal helminths (38). Deworming with 
eprinomectin (Eprinex Multiple Pour, Boehringer Ingelheim) was 
performed due to positive results. To be enrolled in the study, cows 
had to be clinically healthy, have a temperature of 38.8°C, 5–6 rumen 
contractions every three minutes measured by auscultation of the 
lumbar fossa, and no clinical signs of laminitis, metritis, and mastitis.

2.4. Study design, animals, and diets

Sixty dairy cows matched the selection criteria and were enrolled 
in a prospective, randomized, controlled, on field study that lasted 
from December 2021 to February 2022. The enrolled cows were 
randomized into two groups balanced for breed, milk yield, days in 
milk (DIM), parity, body condition score (BCS), and body weight 
(BW) (Supplementary Table S3). The control group (CG) was fed the 
TMR used by the farmer, while the other group (HBFG) was fed the 
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same TMR in which 10 kg of HBF replaced 1 kg of oat hay, and 0.5 kg 
of maize. The diets were isonitrogenous and isoenergetic and 
formulated for a production level of 28 kg of energy-correct milk 
(ECM) per day (39). Rations were fed twice a day (08:00 and 15:00) in 
equal amounts, with several pushing of feed to the animals. Feed 
refusals (5%–10%) were removed daily before discharging the freshly 
prepared TMR. Animals had free access to drinking water. The groups 
were housed in two adjacent concrete-floored barns equipped with 
deep-bedded stalls (2.6 × 1.25 m, sand bedding) and an open-access 
clay training field (30 × 10 m). The trial lasted 9 weeks, 2 weeks for 
adaptation to diets, and 7 for experimental measurements and 
sampling according to the schedule shown in Figure 1.

2.5. Physical examination and blood 
sampling

The physical examination, body weight recording, BCS scoring, 
and blood sampling of the enrolled cows were repeated at T-14, T14, 
T28, and T42 as described above (Figure 1).

2.6. Dry matter intake, feed sorting, and 
feed analyses

Feed intake was weekly measured on a group basis by the 
difference between TMR discharged and residuals. Feeds and TMR 
were also sampled, pooled by group, and analyzed to determine the 
content of dry matter (DM; method 930.15), ash (method 942.05), 
crude protein (CP; method 976.05), and ether extract (EE; method 
954.02) (40). Neutral detergent fiber (NDF), acid detergent fiber 
(ADF) inclusive of residual ash (41), acid detergent lignin (ADL) (42), 

total sugar (43), and enzymatic starch (44) were also determined. 
Proteins were fractionated (PA, PB1, PB2, PB3, PC) according to the 
Cornell Net Carbohydrate and Protein System (CNCPS) version 6.5 
(45). The non-fibrous carbohydrates (NFC) were calculated as detailed 
elsewhere (46, 47). Additional samples of TMRs and refusals were 
taken every two weeks during the sampling period to assess physical 
structure of the diets (particle size, and physically effective NDF) and 
sorting activity by the cows. The particle size distribution of the fresh 
TMRs and refusals was stratified into long (>19 mm), medium 
(<19 mm, >8 mm), and short (<8 mm; Pan) particles using a Penn 
State particle separator (PSPS) with two screens (19 and 8 mm) (48). 
The physical effectiveness factor (pef), physically effective NDF 
(peNDF), and feed sorting index (SI) of the diets were determined 
according to DeVries et al. (49).

2.7. Milk sampling and analysis

Milk yield of each cow was measured using an electronic machine 
recorder (DeLaval Corp., Tumba, Sweden) and sampled in the 
morning milking (07:00) at weekly intervals (Figure 1). The samples 
were sent refrigerated at 4°C to the laboratory for the analysis of fat, 
protein, casein, lactose, total solids, non-fat solids, milk urea nitrogen 
(MUN), cryoscopy index, titration acidity, somatic cell count (SCC) 
and milk clotting properties which were performed on the same day 
using an infrared milk analyzer (CombiFoss TM7, Foss, Hillerød, 
Denmark). At T42, two more milk samples were collected from a 
selected subgroup of 10 cows/diet. One was evaluated for heavy metal 
concentration (As, Cd, Co, Cu, Ni, Pb) by inductively coupled plasma 
mass spectrometry (ICP-MS) while the other was used to determine 
fatty acid (FA) composition as detailed elsewhere (50). Milk fat was 
extracted by the Röse-Gottlieb method, the Supelco 37 component 

FIGURE 1

Timeline of the study project including time points and scheduled procedures. Created with BioRender.com.
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mixture (Supelco, Bellefonte, PA, United States) and a mixture of 
conjugated linoleic acid isomers (Nu-Chek Prep. Inc. Elysian, MN, 
United  States) were used as external standards for gas 
chromatographic analysis.

2.8. Monitoring of ruminal pH

At enrolment (Figure 1), all cows received an indwelling wireless 
reticolo-ruminal sensor (pH Plus Bolus; smaXtec Animal Care GmbH, 
Graz, Austria) according to the manufacturer’s directions. Boluses 
provided continuous measurement of rumen pH, body temperature and 
activity levels of animals. The data were recorded every 10 min, 
transmitted wirelessly to a base station placed in the barn, and available 
in real time from a computer software/cell phone application. The risk 
of subacute rumen acidosis (SARA) was notified by the ruminal bolus 
when the pH value fell below 5.8. The daily pH mean, minimum and 
maximum values were calculated per cow and per day. The percentage 
of animals that presented at least one SARA risk alarm, number, and 
time (min) of SARA risk alarms were also measured.

2.9. Total tract apparent digestibility, 
microbial protein synthesis, and nitrogen 
balance

At T42 and for 3 consecutive days, faecal grab samples (∼200 g) 
were collected three times daily from a selected subgroup of 10 cows/
diet, kept at +4°C in closed plastic bags, and then composited by cow. 
Samples of faeces, diets and refusals were dried, ground and analyzed 
for acid insoluble ash (AIA) (51), as well as for ash, organic matter 
(OM), CP, and NDF. The AIA content was used as an internal marker 
to estimate the apparent total tract digestibility of nutrients and the 
fecal output of DM (52).

At the same time as the faecal sampling, spot urine samples were 
also gathered either through voluntary urination or stimulation of the 
pudendal nerve according to the procedure of Spanghero (53). The 
samples (∼100 mL) were immediately acidified (10% v/v with sulfuric 
acid solution) and stored at −20° C until analysis. After thawing (4° C), 
the samples were assessed for total N (40) and creatinine and purine 
derivatives (PD; i.e., allantoin and uric acid) as described by George 
et al. (54). Daily urine volume and excretion of total N, allantoin, uric 
acid, and total PD (allantoin plus uric acid) were estimated based on 
BW and urinary creatinine concentration assuming a constant 
creatinine excretion rate of 29 mg/kg of BW (55). The ruminal synthesis 
of microbial nitrogen (MN) was estimated from the excretion of PD 
using the equation of Chen and Gomez (56). Nitrogen balance (NB) was 
calculated as reported by Spanghero and Kowalski (57).

2.10. Statistical analysis

The a priori sample size was based on 30 as a minimum and the 
ratio of 1:1 sample size was chosen. Bovine characteristics are reported 
as mean ± standard deviation (M ± SD), and as frequencies and 
percentages (%) for categorical variables. For testing the associations 
and the corrected randomization between arms (HBFG vs CG), the 
Wilcoxon rank-sum (Mann–Whitney) for continuous, and Chi-square 

or proportion test for categorical were used. Before statistical analysis, 
normality and homogeneity of variance of data were tested by the tests 
of Shapiro-Wilks and Levene, respectively. Repeated measures 
ANOVA was used to determine the mean difference of repeated 
parameters (namely BW, BCS, milk production, biochemical panel, 
and CBC) with treatment, time, and interaction as factors. Data on 
dry matter intake, in vivo digestibility, and nitrogen balance were 
analyzed by one-way ANOVA to determine the fixed effects of the 
treatment. Rumen bolus data were analyzed using the Wilcoxon rank 
sum test (Mann–Whitney). When testing the null hypothesis of no 
association, the probability level of error at two tails was 0.05. All 
statistical computations were made using StataCorp.  2021. Stata 
Statistical Software: Release 17. College Station, TX: StataCorp LLC.

3. Results

3.1. Reclaimed urban wastewater and 
hydroponic forages findings

The microbiological and chemical characteristics of the RUW 
used for HBF production are shown in Tables 1, 2. To assess the 
irrigation quality of RUW, the guidelines reviewed by Hashem and Qi 
(14) and Ayers and Westcot (36) were used for the parameters not 
included in Regulation 2020/741 (17).

The RUW was classified in class A for turbidity, total suspended 
solids, and presence of nematode eggs, whereas the BOD value and 
E. coli load led to the wastewater being classified as Class B (17). No 
Salmonella spp. was not detected. Levels above the recommended 
range but far from dangerous levels were detected for electrical 
conductibility, NO−3, total N, Na and Cl. The levels of metals were 
below or just close to detection limits. Table 3 shows the contaminant 
levels of HBF produced with RUW compared to the reference sample 
produced with well water.

No Salmonella or moulds were detected in both forages and the 
E. coli load remained below 10 CFU/g. The forage produced with 
RUW had almost five times the Na content and twice the P content of 

TABLE 1 Characteristics of the reclaimed urban wastewater used in the 
study in relation to the EU requirements for irrigation use (regulation 
2020/741).

Parameter Reclaimed 
urban 

wastewater

Classification1

Turbidity, NTU <1 A

Biochemical oxygen 

demand (BOD), mg 

O2/L

10.7 B

Total suspended 

solids, mg/L

<1 A

Escherichia coli, 

CFU/100 mL

55 B

Intestinal nematodes, 

eggs/L

<1 A

1 Class A, RUW suited for all food crops, including root crops consumed raw and food crops 
where the edible portion is in direct contact with reclaimed water. Class B, RUW suited for 
non-food crops including crops to feed milk- or meat-producing animals.
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the reference sample, while the latter had a very high N content. There 
was no effect of water type on forage height (12.35 vs 12.38 cm for 
RUW and well water respectively, SEM 0.41, p = 0.94) and yield (545 
vs 519 kg as fed, SEM 21.5, p = 0.41). The nutritional characteristics of 
HBF and TMR are shown in Tables 4, 5.

The HBF was characterized by a significant amount of NFC and 
soluble sugars, a moderate CP content, consisting mainly of 

non-protein nitrogen and highly soluble protein, and a very low ADF 
and lignin content. However, the composition of the Control and HBF 
TMR was very similar.

3.2. Clinical, hematological, and 
biochemical findings

No cows showed clinical signs of active disease during the study. 
No significant differences were observed between the groups in terms 
of final BW (660.0 vs 661.7 kg for CG and HBFG, respectively, SEM 
12.9, p = 0.91) and BCS (3.1 vs 3.2, SEM 0.04, p = 0.32). BHB and CBC 
values remained within the reference range and were not affected by 
the dietary treatment (Supplementary Table S4), as well as most of the 
biochemical findings (Table 6).

The only exceptions were urea, phosphorus and cholesterol, 
whose levels were slightly outside the optimal reference range in 
both CG and HBFG (Table  6). Moreover, against similar initial 
values (T-14), Cl and Na levels showed an erratic trend, being 
higher in CG at T14 (p = 0.04 and p = 0.007, for Cl and Na, 
respectively) and at T42 (p = 0.004 and p < 0.001), and in HBFG at 
T28 (p = 0.02 and p = 0.07). Finally, the significance of the iterations 
for T Bil, Alb, Cr, PHOS and NEFA seems to be mainly due to the 
erratic differences, sometimes only numerical, between the 
two groups.

3.3. Dry matter intake, feed sorting, ruminal 
pH findings

Dry matter intake tended to be higher (p = 0.07) in HBFG group 
(22.1 vs 23.4 kg/head/d SEM 0.34 for CG vs. HBFG), whereas no 

TABLE 2 Salmonella load and chemical and physical characteristics of the 
reclaimed urban wastewater used and recommended range for irrigation 
use.

Parameter Reclaimed 
urban 

wastewater

Recommended 
range

Salmonella spp., 

CFU/g

No detected 0 a

pH 7.54 6.5–8.4a

Electrical 

conductivity at 20°C, 

μS/cm

845 <700a

Total dissolved solids 

180°C, mg/L

432 <1,000b

Sodium adsorption 

ratio (SAR), meq/L

3.9 3÷9b

Ammonium 

Nitrogen, 

mg/L N-NH4

1.2 <15 a

Nitrate Nitrogen, 

mg/L N-NO3

5.1 <5.0a

Total Nitrogen, 

mg/L N

9.1 <5.0 a

Phosphorus, mg/L P 1.7 <2.0 a

Chlorine, mg/L Cl 149 <100a

Fluoride, mg/L F 0.22 1÷15b

Sodium, mg/L Na 138 <70 a

Potassium, mg/L K 19.1 –

Magnesium, mg/L Mg 10.9 –

Calcium, mg/L Ca 77.6 –

Aluminium, μg/L Al 0.039 5,000÷20000b

Arsenic, μg/L As 0.005 100÷2000b

Boron, μg/L B 0.1888 750÷2000b

Cadmium, μg/L Cd 0.005 10÷50b

Chromium, μg/L Cr 0.005 100÷1000b

Iron, μg/L Fe 0.031 5,000÷20000b

Manganese, μg/L Mn 0.0095 200÷10000b

Mercury, μg/L Hg 0.0005 <1 b

Nickel, μg/L Ni 0.005 200÷2000b

Lead, μg/L Pb 0.005 5,000÷10000b

Copper, μg/L Cu 0.005 200÷5000b

Vanadium, μg/L Va 0.005 100÷ 1000b

Zinc, μg/L Zn 0.319 2000÷10000b

aAccording to Ayers and Westcot (36).
bOptimal value for sprinkler irrigation suggested by Hashem and Qi (14).

TABLE 3 Load of Escherichia coli and Salmonella spp. and content of 
metals and non-metals of hydroponic barley forage (HBF) produced with 
reclaimed wastewater and with well water.

Parameter HBF produced 
with reclaimed 

wastewater

HBF produced 
with well water

Escherichia coli, CFU/g <10 <10

Salmonella spp., CFU/g Not detected Not detected

Cadmium, mg/kg Cd <0.010 <0.005

Chromium, mg/kg Cr <0.010 0.039

Manganese, mg/kg Mn 2.70 3.317

Iron, mg/kg Fe 6.20 11.78

Nichel, mg/kg Ni 0.067 0.286

Lead, mg/kg Pb <0.010 0.03

Copper, mg/kg Cu 0.78 1.69

Zinc, mg/kg Zn 0.004 0.003

Total N, % 0.29 4.9

Calcium, mg/kg Ca 174.0 407.7

Phosphorus, mg/kg P 196.7 86.8

Magnesium, mg/kg Mg 150.0 316.7

Sodium, mg/kg Na 254.0 57.7

Potassium, mg/kg K 646.0 536.9
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differences were observed for diets particle size sorting 
(Supplementary Table S5). The daily mean pH, the percentage of 
animals with at least one SARA risk alarm and the number and time 
of SARA risk alarms detected by the ruminal pH sensor are shown in 
Table 7.

On average, approximately half of the cows (i.e., 16 vs 15 cows for 
CG and HBFG) in both groups had at least one SARA risk detected. 
The number and duration of SARA alerts were numerically higher for 
HBFG, but the differences were far from statistical significance.

3.4. Milk production and quality

The milk yield and milk macro components of the GC and HBFG 
groups are shown in Table 8. The inclusion of HBF from RUW had no 
effect on the actual milk yield (kg/d) or the percentage of fat, protein, 
non-fat solid and total solid. Consequently, ECM, fat, and protein 
production (kg/d) did not differ between the two groups, even though 
protein production was significantly higher at T1, so that a diet × time 
interaction was observed (data not shown). Similarly, the higher 
lactose content at T7 and T42 in HBFG explains the significance of 
the interaction.

Regarding milk constituents and parameters related to 
technological and hygienic properties, no effects of diet were observed 
for SCC and casein. On the other hand, the values of cryoscopic index 
and rennet coagulation time (r) were higher (p = 0.003) and lower 
(p = 0.04), respectively, in HBFG than in CG. In addition, differences 

TABLE 5 Ingredients (kg as-fed), chemical composition (% of dry matter 
unless stated), and particle size distribution (% of dry matter retained of 
the sieve) of the diets fed to lactating cows.

Item Control diet1 HBF diet1

Ingredient

  Sprouted barley – 10.0

  Oat hay 8.0 7.0

  Dehydrated alfalfa hay 3.0 3.0

  Corn meal 7.5 7.0

  Concentrate mix2 5.5 5.5

  Soybean meal3 (44% CP) 2.4 2.4

  Molasses 0.4 0.4

  Mineral-vitamin premix4 0.4 0.4

  Water 15.0 7.0

Chemical composition

  DM (% of fresh matter) 56.1 56.0

  Ash 9.9 9.9

  CP 16.1 16.3

  NDF 35.2 34.3

  ADF 20.0 19.6

  ADL 4.3 4.1

  Ether extract 3.78 3.8

  NFC5 35.1 33.5

  Starch 26.2 24.9

  Total sugar 3.8 5.4

  NEL
6 (MJ/kg DM) 6.7 6.7

Protein fractions (% CP)7

  PA 19.2 21.3

  PB1 9.6 9.5

  PB2 34.1 33.8

  PB3 29.9 28.2

  PC 7.2 7.1

Particle size distribution (mean ± SD)

  >19.0 mm 49.3 ± 6.0 52.3 ± 7.3

  19.0 to 8.0 mm 16.0 ± 2.1 10.2 ± 1.2

  <8.0 mm 34.7 ± 4.0 37.6 ± 7.1

  Pef8 0.65 ± 0.04 0.62 ± 0.07

  PeNDF9 22.9 ± 0.7 21.4 ± 2.0

1 Diets containing (HBF) or not (Control) hydroponic barley forage. 2 Contained (g/kg of 
mix, on a fed basis): 541 g of whole flaked soybean, 196 g of steam-flaked barley, 97 g of 
whole barley grain, 60 g of calcium carbonate, 50 g of sodium chloride, 34 g of monocalcium 
phosphate, 22 g of sodium carbonate. 3 Solvent extracted. 4 Contained (/kg of premix; based 
on the manufacturer’ declared content): 4.000.000 IU of vitamin A; 100.000 IU of vitamin 
D3; 1,500 mg of vitamin E; 1,400 mg of vitamin B6; 1,400 mg of vitamin C; 1,100 mg of 
vitamin B1; 500 mg of vitamin B2; 5,000 mg of choline chloride; 1,000 mg of biotin; 800 mg of 
pantothenic acid; 700 mg of niacinamide; 180 g calcium; 38 g of phosphorous; 70 g of sodium; 
15 g of magnesium; 1,000 mg of S as copper-II-sulphate; 1,600 mg of Mn as manganese-II-
oxide; 5,400 mg of Zn as zinc sulphate, monohydrate; 80 mg of I as calcium iodate, 
anhydrous; 10 mg of Se as sodium selenite. 5 Non-Fibre Carbohydrate calculated as 
100 − (%NDF + %CP + %EE + %Ash). 6 Net Energy of Lactation, calculated according to 
INRA equation (39). 7 According to the Cornell Net Carbohydrate and Protein System 
(CNCPS) system version 6.5 (45). 8 Physical effectiveness factor, determined according to 
DeVries et al. (49). 9 Physically effective NDF, determined according to DeVries et al. (49).

TABLE 4 Nutritional characteristics (% of dry matter unless stated) of 
hydronic barley forage used in the feeding trial.

Item Hydronic barley forage

Chemical composition

  DM (% of fresh matter) 15.40

  Ash 6.49

  CP 14.02

  NDF 30.97

  ADF 17.21

  ADL 1.17

  Ether extract 3.50

  NFCa 45.0

  Starch 7.14

  Total sugar 25.97

  NEL
b (MJ/kg DM) 6.00

Protein fractions (% CP)c

  PA 60.61

  PB1 5.63

  PB2 22.85

  PB3 7.13

  PC 3.78

aNon-Fibre Carbohydrate calculated as 100 − (%NDF + %CP + %EE + %Ash).
bNet Energy of Lactation, calculated according to INRA equation (39).
cAccording to the Cornell Net Carbohydrate and Protein System (CNCPS) system version 6.5 (45).
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TABLE 6 Biochemical blood panel (Mean  ±  SD) of lactating cows fed diets containing (HBFG) or not (CG) hydroponic barley forage on days T-14, T14, 
T28, and T42.

Time points Effect (P)

Parameter T−14 T14 T28 T42 Diet Time Diet × 
Time

AST (55–150 IU/L) 0.6355 0.255 0.6973

  CG 122.90 ± 47.29 107.87 ± 59.45 112.83 ± 40.07 106.60 ± 30.90

  HBFG 124.00 ± 51.37 120.10 ± 46.49 116.63 ± 39.47 121.77 ± 40.70

  p * 0.92 0.30 0.74 0.19

ALT (17–37 IU/L) 0.7841 <0.0001 0.3036

  CG 28.30 ± 8.22 33.53 ± 7.27 36.50 ± 5.89 35.20 ± 7.03

  HBFG 29.43 ± 7.73 33.90 ± 5.43 34.60 ± 5.05 36.53 ± 6.46

  p * 0.51 0.83 0.27 0.44

ALP (29–99 IU/L) 0.4318 <0.0001 0.2549

  CG 85.53 ± 35.45 58.40 ± 21.63 65.00 ± 29.82 57.60 ± 23.51

  HBFG 78.57 ± 39.83 61.40 ± 25.57 55.60 ± 24.56 50.00 ± 24.93

  p * 0.35 0.69 0.21 0.31

T Bil (0.1–0.6 mg/dL) 0.7590 <0.0001 0.0012

  CG 0.28 ± 0.13 0.07 ± 0.04 0.14 ± 0.04 0.10 ± 0.06

  HBFG 0.31 ± 0.14 0.11 ± 0.06 0.08 ± 0.03 0.07 ± 0.05

  p * 0.14 0.03 0.001 0.12

TP (5.9–7.7 g/dL)

  CG 7.49 ± 0.45 7.36 ± 0.95 7.63 ± 0.40 7.81 ± 0.58 0.6294 0.0181 0.2091

  HBFG 7.31 ± 0.67 7.49 ± 1.04 7.79 ± 0.74 7.64 ± 0.60

  p * 0.31 0.48 0.37 0.36

Alb (2.9–3.5 g/dL) 0.2858 0.095 0.004

  CG 3.47 ± 0.29 3.39 ± 0.38 3.38 ± 0.26 3.54 ± 0.28

  HBFG 3.43 ± 0.32 3.43 ± 0.42 3.63 ± 0.21 3.59 ± 0.22

  p * 0.58 0.58 0.002 0.50

Cholesterol (70–

170 mg/dL)

0.8960 <0.0001 0.3676

  CG 150.33 ± 36.56 241.77 ± 59.24 248.37 ± 47.53 238.77 ± 48.95

  HBFG 152.63 ± 53.16 234.33 ± 50.32 256.00 ± 49.08 255.60 ± 45.70

  p * 0.86 0.56 0.55 0.19

Urea (15–35 mg/dL) 0.3527 <0.0001 0.4657

  CG 33.70 ± 7.11 41.73 ± 8.65 37.13 ± 6.94 35.37 ± 6.59

  HBFG 32.97 ± 8.72 37.73 ± 6.31 36.70 ± 5.95 32.73 ± 5.78

  p * 0.70 0.03 0.81 0.15

Cr (0.70–1.10 mg/dL) 0.5834 <0.0001 0.0111

  CG 1.06 ± 0.12 1.05 ± 0.11 0.95 ± 0.14 0.96 ± 0.13

  HBFG 1.04 ± 0.14 1.03 ± 0.16 1.01 ± 0.09 1.05 ± 0.14

  p * 0.53 0.44 0.07 0.01

Glu (37–71 mg/dL) 0.8533 <0.0001 0.4470

  CG 49.57 ± 11.59 63.70 ± 5.51 67.43 ± 4.63 66.73 ± 4.49

  HBFG 50.53 ± 10.11 63.87 ± 8.22 65.23 ± 6.18 68.53 ± 4.42

  p * 0.61 0.93 0.25 0.34

Ca (8.4–10.5 mg/dL) 0.0519 <0.0001 0.6845

(Continued)
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bordering on statistical significance were also observed for curd 
firming time (K20) (p = 0.06) and curd firmness (A30) (p = 0.04), 
which were higher and lower, respectively, in CG. Analogous to 
protein production and lactose content, the significance of the diet × 
time iterations found for urea, pH and coagulation properties reflect 
their irregular trend over the observation period (data not shown). 
Finally, no significant differences were found between the groups for 
the FA composition of the milk fat (Supplementary Table S6). No 
heavy metals were detected in the milk.

3.5. Digestibility, nitrogen balance, urine 
purine derivatives, microbial N supply

No differences between the groups were observed for in vivo 
digestibility (Supplementary Table S7). Table  9 shows the N 
metabolism parameters.

The HBF-fed group had a higher (p = 0.04) N intake (+ 39 g/d) due 
to the higher DMI (+ 1.3 kg/d), together with a higher estimated urine 
volume (p = 0.06). In contrast, the distribution of N in milk, urine and 

TABLE 6 (Continued)

Time points Effect (P)

Parameter T−14 T14 T28 T42 Diet Time Diet × 
Time

  CG 9.63 ± 0.43 9.25 ± 0.57 9.74 ± 0.34 9.76 ± 0.50

  HBFG 9.55 ± 0.48 9.06 ± 0.90 9.49 ± 0.36 9.68 ± 0.46

  p * 0.53 0.15 0.07 0.54

PHOS (4.5–8.5 mg/

dL)

0.5351 <0.0001 0.0375

  CG 6.16 ± 0.86 5.87 ± 0.85 5.58 ± 0.74 5.63 ± 0.79

  HBFG 6.21 ± 1.07 5.52 ± 1.07 5.71 ± 0.76 6.09 ± 0.80

  p * 0.82 0.13 0.56 0.04

Mg (2.0–2.9 mg/dL) 0.0576 <0.0001 0.3966

  CG 2.39 ± 0.31 2.45 ± 0.30 2.26 ± 0.25 2.74 ± 0.56

  HBFG 2.41 ± 0.29 2.52 ± 0.32 2.41 ± 0.24 2.66 ± 0.31

  p * 0.82 0.42 0.08 0.36

Na (136–144 mEq/dL) 0.5150 <0.0001 0.022

  CG 138.33 ± 2.35 134.77 ± 4.37 135.87 ± 3.29 139.47 ± 3.11

  HBFG 137.67 ± 2.37 130.90 ± 12.77 138.43 ± 4.12 134.13 ± 2.78

  p * 0.64 0.007 0.07 <0.001

K (4.5–5.5 mEq/dL) 0.4817 0.0032 0.0835

  CG 4.54 ± 0.26 4.27 ± 0.41 4.41 ± 0.29 4.45 ± 0.36

  HBFG 4.49 ± 0.31 4.38 ± 0.50 4.23 ± 0.27 4.38 ± 0.37

  p * 0.61 0.23 0.05 0.47

Cl (90–105 mEq/dL) 0.9329 <0.0001 0.0188

  CG 96.37 ± 2.37 93.13 ± 4.30 94.03 ± 4.20 98.40 ± 2.44

  HBFG 95.80 ± 2.54 90.50 ± 9.90 97.03 ± 5.33 94.73 ± 2.98

  p * 0.65 0.04 0.02 0.004

Ti (57–160 μg/dL) 0.3830 0.0024 0.6222

  CG 125.20 ± 27.18 127.53 ± 35.85 139.53 ± 27.20 138.40 ± 37.59

  HBFG 118.70 ± 30.87 128.73 ± 28.41 132.17 ± 36.92 143.83 ± 29.13

  p * 0.43 0.88 0.37 0.51

NEFA (0.10–

0.50 mEq/L)

0.1549 <0.0001 0.002

  CG 0.20 ± 0.08 0.12 ± 0.04 0.15 ± 0.04 0.12 ± 0.04

  HBFG 0.18 ± 0.07 0.14 ± 0.06 0.11 ± 0.03 0.11 ± 0.08

  p * 0.15 0.14 0.004 0.72

Significant p-values are printed in bold. Alb, Albumin; ALP, alkaline phosphatase; AST, aspartate aminotransferase; ALT, alanine aminotransferase; Ca, calcium; Cl, chloride; Cr, creatinine; Ti, 
total iron; Glu, glucose; K, potassium; NA, sodium; Mg, magnesium; NEFA, not esterified fatty acids; PHOS, phosphorus; T Bil, total bilirubin; TP, total proteins. * Diet effect at each time.
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faeces and the urinary excretion of allantoin and uric acid were not 
affected by the dietary treatments, although a trend towards an 
increase in estimated MN supply (p = 0.07) was observed in the 
HBFG group.

4. Discussion

4.1. Reclaimed urban wastewater and HBF 
yield and quality

The great interest in the use of reclaimed wastewater for 
agriculture purposes mainly concerns arid and semi-arid regions, but 
increasing water consumption for irrigation has led to technological 
innovations and regulatory frameworks for its safe use also in the 
EU. The criteria set out in Regulation 2020/741 (17) focus on the 

physico-chemical (e.g., oxygen demand, total suspended solids, 
turbidity) and microbiological (e.g., Salmonella and E. coli load) 
characteristics of the effluent. According to this legislative framework, 
the RUW used in the present study to produce HBF falls under ‘class 
B’ and can be used for non-food crops, including those intended for 
the feeding of dairy or meat livestock. Other irrigation water quality 
criteria related to human and livestock safety, crop growth, soil 
protection and irrigation methods (e.g., toxicant levels, pH, electrical 
conductivity, and SAR) indicated an overall good suitability of RUW 
(14, 36). There is no regulatory framework for the use of RUW both 
for HF production and, in general, for hydroponic systems, and the 
literature on this specific topic is scant and hardly addresses the issue 
of water quality. Connecting hydroponic systems to urban wastewater 
treatment plants can provide both a continuous supply of RUW 
throughout the year and nutrients to the plants, especially nitrogen 
and phosphorus, which as the main plant nutrients do not pose a risk 

TABLE 7 Rumen pH (mean  ±  SD), percentage of animals that presented at least one subacute rumen acidosis (SARA) risk alarm, number and time (min) 
of SARA risk alarms detected during the experimental period by ruminal pH sensors in lactating cows fed diets containing (HBFG) or not (CG) 
hydroponic barley forage.

Parameter Group

CG HBFG p ^

Daily mean pH value 6.25 ± 0.28 6.24 ± 0.31 0.76

SARA risk alarm-animals, % 50.0 53.3 0.85 *

SARA risk alarms, n 3.13 ± 6.12 5.73 ± 8.67 0.38

Duration of SARA risk alarms, min 1509.67 ± 3061.42 2728.33 ± 4380.27 0.40

^ Wilcoxon rank-sum (Mann–Whitney) test. * Test of proportions.

TABLE 8 Milk production (LSM) of cows fed diets containing (HBFG) or not (CG) hydroponic barley forage.

Parameter Group SEM Effect (p)

CG HBFG Diet Time Diet × Time

Milk yield kg/d 30.78 30.80 1.104 0.9915 <0.0001 0.0508

Energy corrected milk kg/d 30.90 30.73 0.896 0.895 0.0001 0.3508

Fat kg/d 1.24 1.23 0.036 0.818 0.0210 0.6341

Protein kg/d 1.12 1.15 0.028 0.5043 <0.0001 0.0237

Fat % 4.10 4.07 0.113 0.8123 0.0234 0.7302

Protein % 3.70 3.80 0.075 0.3476 <0.0001 0.6045

Lactose % 4.80 4.88 0.030 0.0512 0.0029 0.0388

SCC1, 103 cells/ mL 164.06 225.18 47.878 0.3705 0.1095 0.1726

Total solid (%) 13.22 13.41 0.176 0.4578 <0.0001 0.6204

Non fat solid % 9.15 9.35 0.079 0.0722 <0.0001 0.4917

Casein % 2.93 3.02 0.067 0.3267 <0.0001 0.7717

Urea mg/dL 30.20 29.77 0.615 0.6286 <0.0001 <0.0001

pH 6.63 6.65 0.008 0.2372 <0.0001 <0.0001

Cryoscopy index −530.77 −534.16 0.758 0.0025 <0.0001 0.116

Clotting properties

  r, min 23.23 26.80 1.287 0.0542 <0.0001 0.0014

  K20, min 7.83 7.13 0.253 0.0549 <0.0001 0.0370

  A30, mm 29.96 27.79 0.647 0.0210 <0.0001 0.0014

Significant p-values are printed in bold. 1 Somatic cell count.

https://doi.org/10.3389/fvets.2023.1274466
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Ceci et al. 10.3389/fvets.2023.1274466

Frontiers in Veterinary Science 11 frontiersin.org

per se in irrigation water (18). However, in contrast to the results of 
others (32, 34), who observed an improvement in fodder production, 
the yields of HBF herein described were not different when using 
RUW or well water. Thus, on the one hand, the use of RUW did not 
adversely affect the germination and growth processes, as may be the 
case when high levels of contaminants (i.e., heavy metals and toxic 
substances and organic pollutants) remain in the effluent (58, 59). On 
the other hand, the lack of improvement in yield indicates that the 
extremely short production cycle of HBF did not allow the nutrient 
supply of the RUW to be exploited. Hypothetically, the high nitrogen 
content of the HBF from the well water (Table 3) could be indicative 
of nitrate pollution of the groundwater, which could have masked the 
differences between the HBF yields. However, it is important to note 
that photosynthetic activity does not begin until five days after the first 
root appears, and only then is N required for plant growth (60).

The chemical composition of HBF differs from that of 
conventionally produced forage due to the very short growth cycle, 
which does not allow the deposition of cellulose and lignin on the cell 
wall, and for the presence of not only of the epigeal part (leaves and 
stems) but also of ungerminated or germinated residue seeds and 
young roots. These characteristics explain the lower content of lignin 

and cellulose, the better digestibility of NDF, and the higher content 
of soluble proteins and sugars compared to conventional forages (61, 
62). As a feed, HBF could be compared to maize silage or mash, with 
the major difference, as already mentioned, that it is a fresh feed. Our 
results on the composition of HBF are largely in agreement with 
literature reports (31, 35, 63–66) further confirming that RUW did not 
interfere with normal seed germination and growth processes during 
HBF production.

4.2. Cow health

The use of RUW to produce HBF can pose health risks to lactating 
cows, mainly due to the potential presence of microbiological agents. 
Indeed, hydroponic forage production implies that water comes into 
contact with the forage, potentially carrying harmful microorganisms. 
As mentioned above, the EU Regulation aims to significantly reduce 
this risk by setting strict limits for Salmonella and E. coli loads, i.e., the 
main microbial species used for certificate water safety (67). The RUW 
disinfection with chlorine dioxide used in the present study and as it 
is commonly used in hydroponic systems to prevent mould growth in 
a high RH environment (68), provided a further microbiological risk 
reduction. Indeed, the HBF produced with RUW had no Salmonella 
spp., E. coli levels within safe limits [i.e., < 10 CFU (13)], and, 
considering that the mould index was close to zero during the trial, no 
relevant mould growth was detected. Urban effluent can contain levels 
of heavy metals that are hazardous to animal and human health (5, 
13). However, these contaminants were at very low or near zero levels 
in the RUW used and were not detected in the HBF or in the milk 
samples collected at the end of the trial, i.e., after 7 weeks of daily 
feeding with the RUW-produced HBF. Compared to the existing 
literature, these results are of particular interest, because the use of 
RUW in traditional forage production systems can leads to feed 
contamination, exposing animals to an unavoidable microbiological 
risk (67, 69–72) and a dangerous increase in heavy metal intake 
(73–76).

The HBF-fed cows were in good health and no clinical 
manifestations of mastitis, laminitis, or other diseases or health and 
metabolic disorders occurred during the study. In addition to the 
absence of clinical signs of ongoing disease, indirect but crucial 
indicators of the health status of the cows such as CBC and key 
biochemical findings did not show significant variations (77, 78), 
being within the reference range for healthy cows and not differing 
substantially between the CG and HBFG groups. The very high Na 
and Cl contents in both RUW and HBF (Tables 2, 3) may have 
influenced their irregular serum levels (Table  6) through ionic 
excretion phenomena typical of the renal tubules (79), although a 
definitive explanation will require future investigation. Overall, these 
results support the hypotheses that the use of RUW for HBF 
production under the conditions tested can be considered safe for the 
health status of lactating cows. The effects of wastewater-derived feeds 
on animal metabolism and health have been investigated in a limited 
number of studies (5, 80). Therefore, this study can be considered one 
of the first to address the need for a more sustainable use of water in 
livestock production by recycling this finite and limiting resource. As 
for the study by Terrè et al. (5), they found that the use of RUW for 
drinking and preparing milk replacer had no short-term effects on the 
health and performance of young calves. In contrast, Al-Qudah et al. 

TABLE 9 Nitrogen balance, urinary excretion of creatinine and purine 
derivatives (PD), and microbial N supply (LSM) of lactating cows fed diets 
containing (HBFG) or not (CG) hydroponic barley forage.

Item Group SEM p

CG HBFG

N balance, g/d

  N intake 574.82 603.31 8.81 0.04

  Faecal N 

excretion

189.16 191.46 5.45 0.76

  Urinary N 

excretion

182.63 194.27 8.17 0.33

  N in milk 186.55 195.01 9.23 0.52

  N retained 16.47 22.57 9.08 0.64

  Productive Na 217.58 223.41 9.33 0.28

  Total N 

excretionb

371.80 385.73 9.33 0.30

Urinary excretion

  Urine volume, 

L/d

26.21 31.96 2.11 0.07

  Creatinine, 

mmol/d

1188.83 1204.24 39.16 0.78

  Allontoin, 

mmol/d

363.52 384.90 10.68 0.17

  Uric Acid, 

mmol/d

63.15 71.79 5.37 0.27

  Total PD, 

mmol/d

426.67 456.69 11.67 0.08

Microbial N 

supplyc, g/d

267.93 289.34 8.08 0.07

aCalculated as sum of N in milk and N retained (57).
bCalculated as sum of faecal N and N in urine (57).
cCalculations based on equation from Chen and Gomes (56).
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(80) found symptoms of nitrate poisoning in dairy herds fed fresh 
grass irrigated with treated municipal water.

4.3. Milk performances, dry matter intake, 
in vivo digestibility, and nitrogen balance

The inclusion of RUW-produced HBF in the diet had no 
significant effect on most of the physiological parameters and 
production traits measured during the feeding trial. A conservative 
level of inclusion was used, but it was in line with most studies 
evaluating the effect of hydroponic forage on milk yield and quality 
(35, 81–86). The lack of differences between the CG and the HBFG in 
terms of DMI and feed sorting, as well as in vivo digestibility and 
rumen pH, confirms both the palatability of the HBF and the 
regularity of the digestive process. The scientific literature and our 
results agree that HBF is a rich source of vitamins, minerals, bioactive 
enzymes, soluble sugars, and soluble nitrogen (87, 88). However, in 
agreement with our results, other work has found no effect of HBF on 
milk yield or quality (35, 82, 83, 89, 90). These contrasting results 
could easily be due to the different levels of HF inclusion and/or the 
different diets used. In particular, the improvement in milk yield 
seems to be related to the amount of HF included in the ration (30). 
The lack of significant differences in milk quality is also reported by 
most previous studies (35, 89, 90). Worth noting, the lack of significant 
differences for SCC is a non-trivial result, as feeding unhealthy, 
mouldy, contaminated, etc. feed can lead to increased SCC in milk 
even in the absence of clinical signs of disease (91, 92). The worsening 
trend of clotting aptitude in HBFG milk, probably driven by the 
higher cryoscopic index, is not confirmed in the literature and further 
research is needed to clarify this finding. However, all values of the 
rheological parameters were well within the normal range. It is well 
known that fresh forage can have positive effects on the FA 
composition of milk fat in terms of increasing PUFA, MUFA, and 
CLA content (21, 25, 93). The lack of significant effects of HBF that 
we found is not inconsistent with the literature because, as we have 
shown in previous work (21), low levels of fresh forage inclusion in the 
diet are unlikely to significantly alter milk fatty acid composition.

The lack of differences for in vitro digestibility is in agreement 
with the observation of others for similar diets (94, 95). For both 
groups, the level of N excretion was within the range reported by 
Spanghero and Kowalski (57) for similar N intake, while the NB 
estimate was lower, probably due to the higher milk N recorded in our 
study or a combination of unaccounted for N, such as urinary N 
excretion in forms not detected by the Kjeldhal method (e.g., nitrate), 
volatile losses of gaseous N and ammonia, and dermal scurf (57, 96). 
Although the N intake was higher for HBFG, no differences between 
the groups were observed for N excretion, in contrast with a large 
body of literature reporting a close relationship between N intake and 
N urinary excretion (97–101). This finding could be due to a more 
efficient utilization of ruminal ammonia in HBFG cows resulting in 
lower portal ammonia uptake and consequently lower urinary N 
(102). The tendentially higher total PD recovered in urine together 
with the lack of differences for urea concentration in milk and plasma 
can indirectly supports this hypothesis. The higher urine production 
of cows fed the HBF-containing diet probably reflects the higher 
intake of Na, along with other minerals and trace elements, resulting 

in increased urine production to maintain optimal plasma osmolarity 
(103, 104).

5. Conclusion

Water and land use associated with livestock production could 
be  reduced by changing feed production methods and using 
additional water sources, such as wastewater from urban areas. In this 
study we investigated the effects of using tertiary urban wastewater 
for hydroponic barley forage production on forage quality, lactating 
cow health and performance, and milk quality. Wastewater treatment 
using membrane bioreactor technology was found to be effective in 
removing bacteria and nematode eggs, while on-farm disinfection of 
RUW further contributed to maintaining the coliform load at the 
level set by EU Regulation 741/2020 for irrigation water intended for 
crops fed to dairy or beef cattle. RUW showed good overall quality as 
irrigation quality and a fair N and P content as fertilizers, which, 
however, did not affect the yield and quality of HBF. The 
characteristics of HBF reflected the quality of the RUW delivered into 
the growth chambers. The feeding of lactating cows with 
RUW-derived HBF had no major positive or negative effects on 
animal health and production, including milk quality, in vivo 
digestibility, and nitrogen balance. It follows that the use of RUW 
under the conditions considered appears to be safe for the health 
status of lactating cows and the quality of the milk obtained. Overall, 
the results do not indicate any major limitations to the use of tertiary 
wastewater to produce hydroponic barley forage. Therefore, a wider 
application of RUW as irrigation water in hydroponic systems seems 
realistic. Future studies that take into account the accurate 
measurement of RUW consumption, characteristics and utilization 
of RUW effluent from hydroponic chamber along with the evaluation 
of the impact of higher feeding levels of RUW-produced HBF on 
animal health and performance, i.e., the main limitations of this 
study, will be of interest to fully validate these outcomes and provide 
a more comprehensive indication of the potential of the two coupled 
technologies to improve the environmental sustainability of animal 
agriculture. Furthermore, even if the quality of RUW is certified by 
the treatment plant, its use still requires on-farm monitoring of crops 
and the health status of lactating cows, as well as the adoption of 
appropriate hygiene practices.

Finally, it should be stressed that the economic aspect of HBF 
production cannot be considered “negligible” in the decision to use 
this type of cultivation, although it does support the objectives of this 
paper. Despite the possibility of reusing a water resource such as 
wastewater, hydroponic cultivation required significant economic 
investment and variable costs, mainly related to the purchase of 
growth chambers and barley seeds, which could affect the economic 
sustainability of this type of production. Further technological and 
design studies are needed to develop growth chambers that increase 
productivity and reduce costs.
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