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Editorial on the Research Topic

Host response to veterinary infectious diseases: role of coding and

non-coding RNAs as biomarkers and disease modulators

Introduction

The motivation behind hosting and maintaining this Research Topic is the interest in

the roles of host non-coding RNAs in infectious and zoonotic diseases, which we believe is

underappreciated in veterinary medicine, at least relatively to its counterpart in humans. The

latter is fueled by the evolving role of these molecules in human cancer research (1). The aim

of this topic is not only to draw scientific attention to the involvement of coding RNAs (i.e.,

mRNAs) in veterinary infectious diseases but also to portray their intricate relations with

non-coding RNAs (sncRNAs), which featuremultiple species such asmicroRNAs (miRNAs),

small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), and Piwi-interacting

RNAs (piRNAs), in addition to long non-coding RNAs (lncRNAs). Aspects such as their

regulation in animal infection with various pathogens, their biomarker potential, and their

biogenesis were and will continue to be covered here. After almost 2 years of publishing this

topic within the remit of Frontiers in Veterinary Sciences, we are continuing at a steady and

successful pace to attain our anticipated impact. With six articles being published, the topic

has witnessed a big leap in article views, from 2,354 views at its launch in 2021 to around

13,000 views in July 2023. These numbers, along with other statistics shown on the topic

website, alreadymirror the uniqueness of this field and calls for further in-depth exploration.

RNAs in veterinary infectious diseases: where we are:
reflections from published articles in the topic

Around 80% of the genomic DNA is transcribed, leaving out 20% as the non-

transcribed portion, the so-called junk DNA (2). Only 1–2% of the transcribed

mRNAs are translated to protein, and the remaining 78% encompasses ncRNAs

that can be either small sncRNAs (<200 nts) or long lncRNAs (>200 nts)

(3). These ncRNAs regulate the functionality of other mRNAs (Figure 1A).
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Studies on mRNAs have been exploring wide aspects of the

pathobiology of significant viruses such as avian influenza viruses

in chickens (4, 5) and bovine viral diarrhea in bovines (6),

zoonotic parasites such as toxoplasma (7) and cryptosporidium

(8), and economically important pathogens that cause mastitis in

bovines or caprine (9, 10). In virtue of small RNA sequencing,

similar studies are being conducted at a limited scale on

miRNAs and other sncRNAs. Both sncRNAs and lncRNAs

could fine tune gene expression at the transcriptional stage

and posttranscription (11). Since the discovery of the first

microRNAs (miRNAs), named as lin4, in 1993 by Lee et al. in

C. elegans (12), an obvious growth of miRNA numbers has been

evidenced. By now, 38,589 miRNAs have been annotated in the

most recent version of miRbase (release 22.1) (13). Figure 1B

shows the most recent numbers of annotated miRNAs in the

miRbase database.

It is not surprising that mastitis, a tricky problem in dairy

farming that causes decline of milk quality and remarkable

economic losses (14), has become an active area of research

for sncRNAs. The signature and potential function of lncRNA

associated with Staphylococcus aureus-caused mastitis in bovines

have been explored in some studies (15). Comparable efforts were

conducted for miRNAs in the same context (16, 17). An article in

our Research Topic (Luoreng et al.) tried to tackle this problem and

highlighted the roles of upregulated miRNAs (miR-320a, miR-19a,

and miR-19b) and other downregulated ones (miR-143, miR-205,

FIGURE 1

(A) Simplified schematic representation of how coding (mRNAs) and non-coding RNAs (sncRNAs and lncRNAs) are triggered and act during infection

of human or animal cell with a pathogen of interest. (B) Up-to-date numbers of annotated miRNAs in their precursors (immature) and mature

(functional) forms in humans and other animal species of veterinary importance.

and miR-24) as diagnostic markers for Staphylococcus aureus-

caused mastitis at the 5th and 7th day in an experimentally infected

animals. MiRNA regulatory functions have been also revealed in

a plethora of infectious diseases affecting animals [comprehensive

reviews are available here (18–20)].

Given the epigenomic regulatory role of sncRNAs on mRNA

genes, a common approach is to dually investigate the changes in

sncRNAs and their target mRNAs. This would provide a holistic

picture of what is operating during an infection event (21). A

study published in our topic by Chen Q. et al. exemplifies this

trend in canine distemper virus infection in an understudied

host, the mink. The authors found that mir-140-5p and mir-

378-12 targeted corresponding mRNA genes in the NF-kappa B

signaling pathway. The JAK-STAT signaling pathway was found to

be regulated by mir-425-2, mir-139-4, mir-140-6, mir-145-3, mir-

140-5p, and mir-204-2. Similar studies were also performed in the

context of avian influenza infection, yet these focused on mRNA-

lncRNAs interaction (22). Another research line has been the RNA

interference (RNAi), a phenomenon that involves an interaction

between natural or artificially introduced RNAs into the cell to

physically bind a target mRNA, thus leading to gene silencing (23).

The role of RNAi has just emerged in the veterinary infectious

disease field. A plethora of studies have studied the consequence

of this process on viruses (24–26) and parasites of veterinary

importance (27, 28). As shown in one of the articles published in

this topic, short hairpin RNA (shRNA), a form of RNAi, was found
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to suppress the replication of border disease virus (Hajihasani Arani

et al.). Border disease is a viral sickness of small ruminants and

pigs (29) that might lead to symptoms such as infertility, abortion,

stillbirth, and the birth of tiny, faint young (30).

Knowledge gap: aspects to be
addressed in future research

Highlighted here are some knowledge gaps that still need

to be addressed. With the expanding universe of sncRNAs (31),

some of their species have remained superficially studied or have

not been investigated at all in the context of animal infectious

diseases. PiRNAs, snoRNAs, and circular RNAs (circRNAs) are

examples of these overlooked molecules. Using a duck model

for H5N1 influenza virus, we have identified an organ-specific

expression pattern of piRNAs (32). Others have investigated roles of

piRNAs in insects that could allow to combat insect-borne diseases

(33). Interestingly, the genes involved in the piRNA pathway are

more rapidly evolving compared with other RNAi genes. Our

Research Topic is becoming a platform to explore some of these

overlooked molecules. The article published by Chen L. et al.

showed that circular RNAs interacting with miRNAs and mRNAs

could shape the host response to Newcastle disease virus (NDV),

a devastating chicken virus. They found that many circular RNAs

were differentially regulated and can determine the NDV-induced

metabolic changes in chicken embryo fibroblast cells via regulating

mRNA and miRNAs. They identified that just one of these circular

RNAs, circ-EZH2, inhibited NDV replication when overexpressed,

indicating that circRNAs are involved in NDV replication. These

studies and others call for additional research on this topic. An

annotation database also needs to be continuously built, refined,

and further completed for ncRNAs in less annotated animal

species. Surprisingly enough, miRbase, the miRNA database, lacks

annotation for miRNAs in cats, an important feline species. A

broad yet valid question is to what the extent the epigenomic

and regulatory logic of these sncRNAs is conserved across animals

and how this contributes to zoonotic potential or a cross-species

transmission of the pathogen. It is very important for researchers

in this field to remember that in vitro models of infection (e.g.,

cell lines and organ cultures) are by no means a reflection

of the mechanisms occurring in the respective natural animal

hosts of the pathogens of interest. Similarly, the use of non-

traditional animal models poses challenges of background genetic

differences, rendering the model non-representative. Considering

the economic deficits in middle- and low-income countries, which

cast a shadow on the lack of funds given to researchers, it is

recommended to keep the studies as complete as possible, even

if conducted on a small scale, in a way that enables reaching

solid conclusions.

Altogether, the field of coding and non-coding RNAs is rapidly

evolving, and the roles of these molecules in the pathogenesis and

outcome of veterinary infectious diseases are being continuously

discovered. This Research Topic represents a platform to explore

these aspects. The investigation of these molecules at the host level

could lead to remarkable discoveries, from biomarkers for infection

to therapeutic avenues, that researchers and veterinarians could use

for combating veterinary infectious diseases.
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