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Introduction: Rabies, a deadly zoonotic viral disease, accounts for over 50,000

fatalities globally each year. This disease predominantly plagues developing

nations, with Thailand being no exception. In the current global landscape,

concerted e�orts are being mobilized to curb human mortalities attributed to

animal-transmitted rabies. For strategic allocation and optimization of resources,

sophisticated and accurate forecasting of rabies incidents is imperative. This

research aims to determine temporal patterns, and seasonal fluctuations, and

project the incidence of canine rabies throughout Thailand, using various time

series techniques.

Methods: Monthly total laboratory-confirmed rabies cases data from January

2013 to December 2022 (full dataset) were split into the training dataset (January

2013 to December 2021) and the test dataset (January to December 2022).

Time series models including Seasonal Autoregressive Integrated Moving Average

(SARIMA), Neural Network Autoregression (NNAR), Error Trend Seasonality (ETS),

the Trigonometric Exponential Smoothing State-Space Model with Box-Cox

transformation, ARMA errors, Trend and Seasonal components (TBATS), and

Seasonal and Trend Decomposition using Loess (STL) were used to analyze the

training dataset and the full dataset. The forecast values obtained from the time

seriesmodels applied to the training dataset were comparedwith the actual values

from the test dataset to determine their predictive performance. Furthermore, the

forecast projections from January 2023 to December 2025 were generated from

models applied to the full dataset.

Results: The findings revealed a total of 4,678 confirmed canine rabies cases

during the study duration, with apparent seasonality in the data. Among the

models tested with the test dataset, TBATS exhibited superior predictive accuracy,

closely trailed by the SARIMA model. Based on the full dataset, TBATS projections

suggest an annual average of approximately 285 canine rabies cases for the

years 2023 to 2025, translating to a monthly average of 23 cases (range: 18–30).

In contrast, SARIMA projections averaged 277 cases annually (range: 208–214).
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Discussion: This research o�ers a new perspective on disease forecasting

through advanced time series methodologies. The results should be taken into

consideration when planning and conducting rabies surveillance, prevention, and

control activities.
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1 Introduction

Rabies is one of the most significant public health problems

in several countries worldwide (1, 2). This disease is caused by

the rabies virus belonging to the genus Lyssavirus of the family

Rhabdoviridae. Rabies is a fatal disease in humans and is considered

to be somewhat neglected (3). Based onWorldHealth Organization

(WHO) data, it is estimated that ∼59,000 people die from dog-

mediated rabies each year, mostly in Asia and Africa (4). Due to the

global burden of rabies, the WHO, in cooperation with the Global

Alliance for Rabies Control, the Food and Agriculture Organization

of the United Nations (FAO), and the World Organization for

Animal Health (OIE) have set a goal to reduce human rabies deaths

to zero by 2030 (5).

In Thailand, rabies is considered an important notifiable disease

(6, 7). From 2010 to 2015, rabies claimed 46 lives, and annually, over

600,000 individuals undergo post-exposure prophylaxis treatment.

Dogs are identified as the primary reservoirs for the rabies virus

and play a crucial role in transmitting the disease to humans

and other animals (8, 9). Notably, a significant proportion of

confirmed rabies cases in Thailand are linked to dogs (9, 10). As

a result, rabies prevention efforts predominantly focus on curbing

the transmission from dogs (11, 12). Collaborative efforts across

various organizations in Thailand aim to reduce rabies incidence

in both humans and animals. Within the animal sector, the

Department of Livestock Development (DLD) assumes a pivotal

role in overseeing rabies trends and executing control strategies

to diminish animal rabies cases. The surveillance of animal rabies

in the country encompasses both active and passive methodologies

(9, 10).

Accurate prediction of infectious disease trends is pivotal for

optimizing resource allocation and strategizing future prevention

and control measures. Essentially, predictions about future events

are often based on historical data (13, 14). In the field of infectious

disease epidemiology, forecasting the number of prospective

cases or fatalities is a predominant focus, particularly when the

magnitude of the susceptible population is not clearly defined (15–

19). At present, several advanced time series methods are available,

providing a wide range of techniques to work with various types of

data with high-level predictability (14, 18).

Time series analysis is universally acknowledged as a

cornerstone for forecasting across various fields, including

economics (20), medicine (21, 22), veterinary science (23, 24),

environmental studies (25), and agriculture (26–28). For instance,

many recent studies have employed time series analysis to project

COVID-19 case numbers, aiding in the formulation of disease

control strategies and evaluating intervention efficacy (29–31).

In the context of animal health, time series analysis has been

instrumental in forecasting trends in diseases like rabies (24) and

infectious disease in livestock (23, 32).

This research evaluates the efficacy of the seasonal

autoregressive integrated moving average (SARIMA) in forecasting

the number of confirmed canine rabies cases, representing

classical time series modeling. Additionally, we explored advanced

time series models (13), encompassing error trend seasonality

(ETS), the trigonometric exponential smoothing state-space

model with Box-Cox transformation, ARMA errors, Trend and

Seasonal components (TBATS), and seasonal trend decomposition

procedures based on loess (STL). The study also incorporates

the neural network autoregression (NNAR), a common method

aligned with machine learning approaches.

To our knowledge, prior studies have not employed advanced

time series techniques to analyze and project the incidence of

canine rabies cases in Thailand based on national surveillance data.

This presents a significant gap in predictive knowledge, which

is imperative for livestock authorities and relevant stakeholders

to devise effective strategies against canine rabies. Therefore, this

study aims to determine the patterns, seasonality, and to forecast

the incidence of canine rabies using time series methodologies,

including SARIMA, NNAR, ETS, TBATS, and STL models.

2 Materials and methods

2.1 Data and time series decomposition

2.1.1 Rabies cases data
In this study, we utilized data on confirmed canine rabies cases

sourced from the Department of Livestock Development (DLD).

This data was gathered through both active and passive rabies

surveillance initiatives done by the Thai government (9). Passive

surveillance primarily involved the laboratory submission of

animal samples, either carcasses or heads, suspected of rabies. These

samples were typically provided by veterinarians or animal owners.

Meanwhile, active surveillance, done by veterinary services,

focused on animals that succumbed to ambiguous symptoms. A

baseline level of active sampling is also maintained, ensuring the

collection of at least one sample from every subdistrict annually

(9). Diagnostic procedures for all suspected animal rabies cases

were conducted in nine DLD-accredited laboratories and one

affiliated with the Queen Saovabha Memorial Institute. Diagnostic

methods employed included the fluorescent antibody test and

the mouse inoculation method (9, 10). All laboratory findings

were subsequently uploaded to the centralized “ThaiRabies.net”

platform (9). The dataset evaluated spans canine rabies cases

recorded from January 2013 to December 2021.
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2.1.2 Time series decomposition and
determination of seasonality in the time series
data

The Ollech and Webel’s combined seasonality test (WO-test)

was used to ascertain the presence of seasonality in the rabies

dataset. The WO-test combines the results of both the QS test

and the KW-test, which are computed based on the residuals of

an automated non-seasonal ARIMA. A time series is classified as

having seasonality by the WO-test if the p-value of the QS test is

<0.01 or if the p-value of the KW-test is <0.002 (33).

The WO-test was performed using the R statistical software,

leveraging the “seastests” package via the “combined_test” function

(33). Comprehensive details of the test can be found in the package’s

manual. Additionally, the ETS model procedure was utilized to

evaluate the seasonal component present in the data. Further details

about the ETS can be found in the next section.

2.2 Time series analysis and forecasts

2.2.1 Analytical and modeling procedure
This study encompassed two primary phases: (i) Identification

of the most efficacious forecasting model by finalizing a model

from each time series method and subsequently evaluating its

performance using a validation dataset, and (ii) Utilization

of the superior time series method, as determined from the

previous phase, to predict future canine rabies cases based on a

comprehensive dataset. Forecasts derived from other time series

models, aside from the top-performing one, were also examined

for comparison.

This study involved two different approaches. First, the full

dataset (January 2013 to December 2022) was divided into a

training dataset (January 2013 to December 2021) and a test

dataset (January to December 2022). Forecasts for January 2022

to December 2022 were then generated from the training dataset

and compared with the actual values within the same period in

the test dataset to assess the forecasting model’s performance.

Second, in an effort to ensure up-to-date and accurate forecasts,

it is suggested that the most current data be used for prediction

(28, 34).Therefore, all time series models were applied to the full

dataset to generate forecasts for the following 3 years (January

2023–2025). A schematic representation of themodeling procedure

is provided in Figure 1 for clarity.

2.2.2 Time series models
2.2.2.1 SARIMA model

The SARIMA is an extension of the autoregressive integrated

moving average (ARIMA) that explicitly supports univariate

time series data with a seasonal component. It adds three new

hyperparameters to specify the autoregression, differencing, and

moving average for the seasonal component of the series, as well

as an additional parameter for the period of seasonality. The form

of SARIMA is written as (35).

φP (B) Φp

(

Bs
)

(1− B)d
(

1− Bs
)D

xt = θQ (B) ΘQ

(

Bs
)

ωt (1)

where ϕ and θ are the parameters of the autoregressive and moving

average, respectively. The terms Φ and Θ represent the parameters

of the seasonal autoregressive and seasonal moving average.

Additionally, SARIMA can be defined as SARIMA (p,d,q)(P,D,Q).

The terms p, d, and q denote the order of autoregression, degree of

differencing, and order ofmoving average, respectively.Meanwhile,

P, D, and Q represent the orders of the seasonal autoregression,

degree of seasonal differencing, and order of seasonal moving

average, respectively. The term S refers to seasonal periodicity. The

parameters were estimated using the maximum likelihood method.

The best fit model was identified based on the minimum value of

the corrected Akaike’s Information Criterion (AIC) (13).

2.2.2.2 NNAR model

The NNARmodel can be thought of as a network of neurons or

nodes displaying complex non-linear relationships and functional

forms. The term NNAR (p, k) is defined to indicate that there are

(p) lagged inputs and (k) nodes in the hidden layer. With seasonal

data, the NNAR model can be written as

NNAR
(

p, P, k
)

m
(2)

where p is the number of non-seasonal lagged inputs for the linear

autoregressive process (AR), P indicates the seasonal lags for the

AR process, k denotes the number of neurons in the hidden layer,

andm represents the seasonal period.

The forecasting process can be divided into two phases.

Initially, the order of autoregression is determined. Subsequently,

with the training dataset, the neural network is trained in

accordance with the previously determined autoregression order.

The number of input nodes or time series lags within the neural

network is determined from this autoregression order.

2.2.2.3 ETS model

The state-space equations can be written as follows (36).

yt = w (xt−1) + r (xt−1) εt (3)

xt = f (xt−1) + g (xt−1) εt (4)

where w, f, r and g are coefficients while εt denotes the Gaussian

white noise series. Equation (3) is known as the measurement

equation, describing the relationship between the unobserved

states xt−1 and the observation yt . Equation (4) is the transitional

equation, describing the evolution of states over time. The use

of identical errors in these two equations makes it an innovative

state-space model (13).

The final ETS model is represented by a three-character string

(Z, Z, Z), where the first, second, and third characters represent

the error (A or M), type of trend (A or Ad or N), and the type

of season (A or N or M), respectively. The letters A, Ad, N, and

M denote additive, additive damped, none, and multiplicative (36).

Additionally, the ETS forecasts are based on a weighted average of

past observations, and the weight decays exponentially over time.

As a result, the final observations have a greater weight than the

earlier ones.

2.2.2.4 TBATS model

The TBATS is an advanced adaptation of the BATS model,

designed to accommodate multiple seasonal cycles. This model is
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FIGURE 1

The modeling procedure involves several steps. First, the full dataset (January 2013 to December 2022) is divided into a training dataset (January

2013 to December 2021, shown as the orange box) and a test dataset (January to December 2022, shown as the blue box). The training dataset is

used for model fitting using SARIMA, NNAR, ETS, TBATS, STL, and THETA methods. The final models from these methods are then evaluated for

performance by applying them to the test dataset. Error metrics from these models are compared. Furthermore, the full dataset is used to build

forecast models and implement the forecasting procedure to forecast the number of rabies cases in the period of January 2023 to December 2025.

supported by a trigonometric framework adept at navigating the

intricacies of seasonality within a time series (19, 37).

The TBATS models is represented as

TBATS(ω, p, q,ϕ, {m1, k1, {m2, k2}, ..., {mT , kT}). This formulation

leverages a trigonometric representation of seasonal characteristics,

drawing from the Fourier series. Within this model, the parameters

p and q are associated with the ARMA process. The terms

m1,.....mT specify the respective seasonal periods. The parameter

k represents the number of harmonics designated for the seasonal

characteristic. Additionally, ω is indicative of the Box-Cox

transformation, and ϕ represents the dampening parameter

value.

2.2.2.5 STL model

The STL model employs a locally weighted regression method

to partition a time series into its constituent trend, seasonal, and

remainder components. The trend component is estimated through

LOESS regression. In contrast, the seasonal component is typically

assessed via SARIMA or ETS models, as detailed in (38). A notable

strength of the STL model is its adaptability to shifts in the series

trend. Furthermore, it exhibits robust resistance to outliers present

within the series. Another salient feature of the STL model is its

proficiency in managing seasonal frequencies that exceed one, as

highlighted in (39).

2.2.3 Model performance evaluation and
forecasting

In this study, we employed a range of evaluation error metrics

to assess prediction performances across models developed from

both the full and training datasets. These metrics included the

mean absolute error (MAE), mean absolute percent error (MAPE),
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mean absolute scaled error (MASE), and root mean squared error

(RMSE) as detailed in (13).

To ensure the utilization of the most recent data for forecasting,

we applied all the final time series models to the full dataset. This

approach facilitated the modeling and forecasting of canine rabies

cases for the three subsequent years post the last observation data

incorporated in this study, as described in (28).

Data organization, decomposition, and segmentation of the

time series were executed using the R statistical software,

leveraging the “xts” and “TSstudio” packages. The “forecast” and

“forecastHybrid” packages (13) provided a suite of functions

instrumental in the development of the time series model and

the subsequent evaluation of its predictive performance. These

functions were also pivotal in forecasting the canine rabies cases

for the upcoming 3 years. Specifically, the functions auto.arima(),

nnetar(), ets(), tbats(), and stl() were employed to facilitate the

SARIMA, NNAR, ETS, TBATS, and STL models, respectively. A

comprehensive description of these functions can be found in the

package manual (40). For graphical representation, we utilized

packages such as “ggplots”, “plotly”, “scales”, and “ggsci”.

3 Results

3.1 Descriptive and time series
components

A total of 4,678 reported cases of canine rabies were reported,

affecting 1,908 females and 2,770 males. Among these cases, 2,405

dogs were linked to individual or public owners. The remaining

cases pertained to either stray dogs or dogs without a traceable

owner history. From a geographical perspective, positive rabies

cases were observed in 64 out of 78 provinces. Notably, Chon Buri

reported the highest number of rabies cases, totaling 463, followed

by Songkhla with 347 cases, Surin with 278 cases, Roi-Et with 211

cases, and Bangkok with 203 cases. Amap depicting these provinces

is available in the Supplementary Figure S1.

Figure 2 presents the confirmed positive and negative canine

rabies cases as documented by government laboratories. Over the

study period, a total of 4,678 canine rabies cases were recorded.

Between 2013 and 2017, there was a consistent rise in the number

of cases, ending in a peak in 2018. Subsequently, a decline was

observed from 2020 to 2021, with a resurgence in 2022.

Figure 3A delineates the annual and monthly distribution of

canine rabies cases. Figure 3B depicts the monthly number of rabies

cases, including the mean and standard error values (mean and

error bar). On a monthly average, 39 dogs were identified as rabies-

positive. The peak of canine rabies cases was recorded in March

2018, closely followed by March 2017. Notably, the period from

February to April consistently registered the highest number of

cases each year (Figure 3B). Yet, certain years also witnessed spikes

in June, October, November, and December.

To effectively visualize the raw time series data, which

comprises multiple components, data decomposition becomes

imperative. Figure 4 decomposes the time series data of canine

rabies cases into its trend, seasonality, and residual (or error)

components. The trend analysis reveals a growth trajectory from

January 2013 to December 2017, succeeded by a decline from

FIGURE 2

Bar graphs for number of positive (light red bar) and negative (light

green bar) rabies cases confirmed by government laboratories.

August 2018 to January 2020. Post this period, the trend stabilizes.

The seasonality inherent in the dataset is further confirmed by the

WO-test, consistent with the ETS result. The model, with the form

ETS (M, A, M), indicates the presence of a seasonal component in

the data.

Figure 3B portrays the mean and standard deviations of canine

rabies cases spanning 2013 to 2022. A pronounced surge in cases

is evident during January and April relative to other months. It is

pertinent to note that the heightened cases in January and April can

be linked to the pronounced incidence of canine rabies in specific

years, such as 2018.

3.2 Prediction performance

Figure 5 provide visual depictions of the observed vs. predicted

canine rabies cases, derived from the testing and training datasets,

respectively. A comparative analysis of the TBATS model against

other models reveals a notable alignment of its forecasted values

with the actual data. While the predictions from the SARIMA and

NNAR models remain stable with slight variations, the ETS and

STL models consistently project an upward trajectory. Notably, the

STL model’s forecasts display a mix of increasing and decreasing

trends, with certain predictions deviating significantly from the

actual values, as illustrated in Figure 5.

Table 1 presents the error metrices for the time series models

applied to the dataset. Among these, the NNAR, THETA, and

SARIMA models exhibited commendable performance on the

training dataset. The NNAR model, in particular, showcased
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FIGURE 3

Number of canine rabies cases by year and month (A) and mean ± standard error of the mean for canine rabies cases by month based on data from

2013 to 2022 (B).

FIGURE 4

Decomposition of data on time series rabies into trend, seasonality,

and remainder.

superior performance on the test data. However, it displayed signs

of overfitting, as evidenced by its strong performance on the

training data but suboptimal results on the test data. In the test

dataset, it was observed that the error metrics values for the TBATS

model were comparatively lower than those of other models. This

suggests that the TBATS model exhibited superior performance in

comparison to the other models.

3.3 Forecasting

Figure 6 illustrates the forecasted number of canine rabies

cases for the years 2023 to 2025, as predicted by TBATS and

SARIMA models applied to the full dataset. The forecasts from

all models are further detailed in Supplementary Table S1 and

Supplementary Figure S2. The aggregated predictions across all

models estimate the average canine rabies cases to be 278, 288, and

300 for the years 2023, 2024, and 2025, respectively.

The TBATS model, which exhibited the highest predictive

accuracy, estimates an annual average of ∼285 canine rabies cases

for the period 2023 to 2025. This translates to a monthly average

of 23 cases, with a range of 18–30 cases. In contrast, the SARIMA

model, the subsequent top performer, projects a gradual increase

in cases: 207 in 2023, 212 in 2024, and 213 in 2025 (Figure 6). The

NNAR model’s forecasts suggest consistent values across months,

while the STLmodel’s predictions indicate variability, with peaks in

February and March and troughs in July and September each year

(Supplementary Figure S2).

4 Discussion

For an effective rabies intervention program and efficient

resource allocation, it is crucial to have a deep understanding and

precise forecasting of rabies trends. The primary objective of this

study was to analyze and forecast the trends of canine rabies cases
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FIGURE 5

Depictions of the actual values of canine rabies cases (blue dots)

from the test dataset (January to December 2022) and forecast

values for the period of January to December 2022 (red dots)

generated from time series forecast models applied to the training

dataset (January 2013 to December 2021). The black and orange

dots represent actual and fitted values from the last 24 observations

of the training dataset, respectively. Notably, the fitted values from

the STLM are not available for presentation.

in Thailand. Drawing on a decade’s worth of national data, various

time series methodologies were employed to achieve this.

Historically, there was a noticeable rise in canine rabies

cases from 2013 to 2017, reaching its peak in 2018. However, a

subsequent decline was observed until early 2020. This decrease is

potentially attributable to the concerted efforts of the government

to curtail human rabies cases. In fact, the last decade has witnessed

an increase in rabies surveillance, leading to a higher number of

reported canine rabies cases (41–43).

The post-2018 decline might be proof of the collaborative

endeavors of both the public and private sectors. These strategies

encompassed a range of measures, from enhanced surveillance

and community engagement to robust public relations and

the dissemination of knowledge. Approach to rabies control

includes (i) setting up animal rabies monitoring, (ii) overseeing

animal shelters, (iii) strengthening human rabies surveillance, (iv)

assisting local communities in rabies prevention, (v) prioritizing

public awareness, (vi) facilitating data sharing on rabies, (vii)

concentrating on monitoring rabies cases, and (viii) disseminating

knowledge and technological advancements (9).

Furthermore, the data also revealed apparent seasonal patterns

in rabies occurrences, with pronounced spikes in March, June, and

December. Such findings emphasize the importance of sustained

rabies awareness throughout the year, rather than confining it to

specific seasons.

In the aspect of prediction, the TBATS model stood out as

the top performer. One of the primary reasons for its superior

performance could be its proficiency in managing the complexities

associated with seasonal variations and the non-linear nature of the

data (19, 37, 44). This model is specifically designed to address such

complexities, making it particularly suited for the task. Similarly,

the SARIMAmodel showcased impressive results. Like the TBATS,

SARIMA is equipped to handle datasets that have strong seasonal

patterns, which is evident from its performance (45–47). Both

these models, TBATS and SARIMA, have proven their capability

in dealing with data that has a high degree of seasonal variation,

making them invaluable tools in this context. On the other hand,

the NNAR model, despite its merits, faced challenges when it came

to managing data with intricate seasonal patterns. While it is a

robust model in many scenarios, its limitations became evident

in the face of complex seasonality, which affected its forecasting

accuracy (13, 32).

The implications of this study are diverse. It explains how

diverse forecasting models can be instrumental in shaping policy

decisions. These forecasts can act as pivotal reference points,

enabling authorities to set aspirational targets for the future. For

instance, a tangible objective might be to ensure that the actual

number of rabies cases remains below the forecasted figures.

Furthermore, forecasting techniques should be integrated into

existing rabies surveillance systems to assure that projections are

based on the most recent data available.

However, it is imperative to acknowledge certain limitations.

The data predominantly came from passive surveillance, which

hinges on samples dispatched to labs either by individuals or

pertinent authorities. This method might inadvertently lead to

underreporting, given that some potential rabies cases might

remain untested (6). However, such underreporting is a common

challenge in epidemiological data (48–51). To address this issue, it

is essential to intensify public awareness campaigns to encourage

more extensive testing of suspected cases. Furthermore, the models

deployed were somewhat myopic, focusing solely on the number of

rabies cases and the corresponding months, without exploring into

other potential determinants of rabies trends.

In this study, we employed time series models to analyze

data available up to 2022. Should more recent data, such as from

2023 onward, become accessible, these models can be adapted

accordingly. Future research should consider the development and

evaluation of hybrid time series models (32, 52), as well as other

time series models (23, 53), in order to determine their potential
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TABLE 1 Error metrics for time series models applied to training data (January 2013 to December 2021) to forecast canine rabies cases for January to

December 2022, compared with actual values present in the test dataset (January to December 2022).

Method Training set Testing set

MAE MAPE MASE RMSE MAE MAPE MASE RMSE

SARIMA 11.91 30.69 0.36 21.01 4.27 25.32 0.13 5.60

NNAR 3.86 14.69 0.12 5.04 5.78 40.64 0.17 7.03

ETS 12.41 34.97 0.37 23.08 14.52 94.74 0.44 16.95

TBATS 10.56 25.69 0.32 20.61 4.15 24.87 0.12 5.58

STL 12.00 40.25 0.36 19.46 10.41 57.46 0.31 13.51

SARIMA, seasonal autoregressive integrated moving average; NNAR, neural network autoregression; ETS, error trend seasonality; TBATS, trigonometric exponential smoothing state-space

model with Box-Cox transformation, ARMA errors, Trend and Seasonal components; STL, seasonal and trend decomposition using LOESS.

FIGURE 6

Forecast of monthly canine rabies cases in Thailand from 2023 to

2025 based on seasonal autoregressive integrated moving average

(SARIMA) and trigonometric exponential smoothing state-space

model with Box-Cox transformation (TBATS) models.

for enhancing the accuracy of canine rabies cases predictions.

Additionally, while the primary focus of this study is on canine

rabies, a comprehensive examination of the relationship between

human and canine rabies cases at a national scale is recommended

for subsequent investigations.

5 Conclusion

In a pioneering effort, this study utilized time series modeling

to analyze and predict canine rabies cases based on national data.

Observations revealed a decline in rabies cases from 2017 to

2019, stabilizing between 2020 and 2021. Of the models tested,

the TBATS emerged as the most accurate predictor. Forecasts

suggest that rabies cases will likely remain consistent in the near

future, underscoring the need for intensified efforts to reduce

these numbers. These predictions can guide authorities in strategic

planning and resource allocation for rabies prevention and control.

Ultimately, the methodologies showcased here offer a valuable tool

for anticipating canine rabies trends in the years ahead.
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