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Introduction: African swine fever (ASF) is a notifiable disease of swine that impacts
global pork trade and food security. In several countries across the globe, the
disease persists in wild boar (WB) populations sympatric to domestic pig (DP)
operations, with continued detections in both sectors. While there is evidence
of spillover and spillback between the sectors, the frequency of occurrence and
relative importance of di�erent risk factors for transmission at thewildlife-livestock
interface remain unclear.

Methods: To address this gap, we leveraged ASF surveillance data fromWB andDP
across Eastern Poland from 2014–2019 in an analysis that quantified the relative
importance of di�erent risk factors for explaining variation in each of the ASF
surveillance data from WB and DP.

Results: ASF prevalence exhibited di�erent seasonal trends across the sectors:
apparent prevalence was much higher in summer (84% of detections) in DP, but
more consistent throughout the year in WB (highest in winter with 45%, lowest in
summer at 15%). Only 21.8% of DP-positive surveillance data included surveillance
in WB nearby (within 5 km of the grid cell within the last 4 weeks), while 41.9% of
WB-positive surveillance samples included any DP surveillance samples nearby.
Thus, the surveillance design a�orded twice as much opportunity to find DP-
positive samples in the recent vicinity of WB-positive samples compared to the
opposite, yet the rate of positive WB samples in the recent vicinity of a positive DP
sample was 48 times as likely than the rate of positive DP samples in the recent
vicinity of a positiveWB sample. Ourmachine learning analyses found that positive
samples in WB were predicted by WB-related risk factors, but not to DP-related
risk factors. In contrast, WB risk factors were important for predicting detections
in DP on a few spatial and temporal scales of data aggregation.

Discussion: Our results highlight that spillover from WB to DP might be more
frequent than the reverse, but that the structure of current surveillance systems
challenge quantification of spillover frequency and risk factors. Our results
emphasize the importance of, and provide guidance for, improving cross-sector
surveillance designs.
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1. Introduction

Understanding the risks of pathogen transmission across the wildlife-livestock

interface is key to mitigating threats to human health (1), food security (2), and

endangered wildlife (3). Pathogen transmission from wildlife to domestic hosts

or the reverse results from a combination of epidemiological, ecological and
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behavioral drivers of pathogen pressure in the reservoir host,

pathogen exposure in the receiving host, and structural barriers

to contact at the interface between them (4, 5). Force of infection

at the interface will depend on the pathogen prevalence in the

donor host population, contact rate between the reservoir and

recipient host, and probability of infection given contact (6).

On the donor host side, pathogen pressure is generated by the

interaction of host ecology (population distribution, connectivity,

and density, host movements and contact structure) and pathogen

ecology (routes of transmission, survival in the environment)

which determine prevalence, persistence and spread (4, 7). If

wildlife and domestic host populations have similar susceptibility

and transmission ability to a particular pathogen, transmission

between the two can be bidirectional (8–10), yet with distinct

disease dynamics in each population due to differences in ecological

context. Surveillance systems that include data from each host

population jointly are important for understanding transmission

risk at the wildlife-livestock interface (7, 11).

African swine fever (ASF) is a highly transmissible viral disease

of swine that impacts global trade of swine and pork products. In

Eurasia, ASF occurs in wildlife (wild boar; WB) and domestic pigs

(DP) (8). In domestic pig populations, circulation is maintained

through direct transmission between pigs within farms (12) as well

as indirect transmission through fomites (e.g., contaminated feed,

material, equipment) (13) or soft tick vectors in areas where the

vectors exist (14). Proximity to infected farms and local density

of DP are risk factors of farm ASF incidence in the Italian

island of Sardinia (15, 16), Nigeria (17), Romania (18), Russia

(19, 20), and globally (21). Between-farm transmission, involving

transport of infected animals (direct transmission), equipment,

feed and other fomites (indirect transmission), is closely related

to trade and contact networks (22). For example, density of

regional road networks is the most important risk factor for

ASF occurrence in DP in Russia (19). Introduction of stringent

regulations regarding domestic pigmovements in the infected areas

of the European Union (European Commission Implementing

Regulation 2023/594) has reduced the risk associated with transport

of live animals in relation to transmission through fomites.

In WB, ASF circulation is thought to occur through

host-to-host contacts (direct transmission) and contaminated

environments and infectious carcasses (indirect transmission).

Patterns in ASF surveillance data in WB and modeling of ASF in

WB suggests that the disease can persist endemically in the WB

in some conditions (23–27). WB population density and habitat

quality appear to drive patterns of ASF occurrence (26–30). High

WB abundance enhances direct transmission (26), while carcass-

based transmission is thought to be a key mechanism allowing

low-level and long-term ASF persistence in WB populations,

particularly at low densities (26, 29, 31). Studies in several different

countries estimated an effective or basic reproduction number of

∼1.5 between groups of WB from ASF surveillance data (11, 32–

34) supporting the notion of endemic transmission levels in WB.

However, these studies did not consider the potential role of DP in

the estimates of effective reproductive numbers.

While DP and WB populations could each maintain ASF

independently, bidirectional cross-cycle transmission is thought

to occur (35). A primary mechanism of emergence of ASF in

WB in new areas likely occurs through inappropriate disposal

of infectious domestic pig carcasses or pork products in WB

habitat followed by transmission among WB (12, 36). Once ASF

occurs in WB populations, it is thought that the most likely

routes of transmission from WB to DP is through contaminated

feed or environments, and through direct contact depending on

husbandry practices (12). Several studies have pointed to WB

as an important risk factor for outbreaks in DP (13, 37), both

in low-biosecurity backyard farms (18, 38) and high-biosecurity

commercial farms (39). But, two important gaps remain: (1)

determining if repeated transmission from DP to WB is important

for explaining the patterns of detection in WB populations and,

if so, how much transmission is important for persistence in

WB (26, 40), and (2) whether transmission from WB to DP

occurs and, if so, at what frequency. For example, Lange et al.

(40) found little evidence of spatio-temporal clustering of WB

detections suggesting lack of autonomous persistence in WB

populations while Podgórski et al. (27) found substantial evidence

for spatio-temporal clustering of detections in WB suggesting

endemic transmission within WB populations. Pepin et al. (26)

found autonomous persistence was likely in WB but depended on

WB density and the frequency of carcass-based transmission, but

this study did not include the potential for transmission from DP

throughout the study area.

Few studies have examined surveillance data from WB

alongside DP (e.g., 20, 32, 39) making it difficult to understand

the occurrence and drivers of transmission dynamics among these

host populations. While transmission from WB has been often

implicated in ASF outbreaks in DP (18, 39), transmission from

DP to WB has been rarely studied (20). Here, we integrate

ASF surveillance data from WB and DP populations to better

understand potential transmission between these host contexts.

Our main objectives were to characterize risk factors of ASF

occurrence in WB and DP populations and determine the relative

frequency of transmission in each direction: WB-to-DP vs. DP-

to-WB. We addressed these objectives by considering risk for WB

and DP separately using covariates from the other population. We

expected to observe greater transmission risk from WB to DP

than the reverse based on the numerous reports of transmission

risk from WB to DP, widespread occurrence of detections in

WB, and free-roaming lifestyle of WB. Our analysis highlights

important considerations for surveillance design at the wildlife-

livestock interface.

2. Materials and methods

2.1. Surveillance data

ASF surveillance in Poland is regulated by international and

national legislation [e.g., European Commission Implementing

Regulation (EU) 2021/605 of April 7, 2021]. Intensity of

surveillance and control measures follows a zoning system of

restricted areas: zone III (ASF in DP and WB), zone II (ASF

in WB), zone I (ASF high risk area, bordering zone II or III).

Obligatory testing of all hunted (active surveillance), found dead,

and road-killed (passive surveillance) WB is implemented in zones

I (PCR test), II and III (PCR and ELISA/IPT tests), where our

study area is contained (41). DP are tested in zones I, II and III
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TABLE 1 Number of data points within 2 × 2km grid cells for di�erent temporal aggregations.

Aggregation Any
sample

≥ 1WB
sample

≥ 1 DP
sample

≥ 1WB & 1
DP sample

≥ 1WB
positive

≥ 1 DP
positive

≥ 1WB & 1
DP positive

2× 2 km grid cell

by serial week

516,105 127,835 403,813 16,121 5,457 279 12

2× 2 km grid cell

by year and season

152,405 91,873 94,975 34,642 3,979 191 23

2× 2 km grid cell

across all time

21,136 20,552 15,727 15,153 2,881 182 55

FIGURE 1

Maps of data included in the analysis. The inset map of Europe illustrates the location in Poland of the surveillance data using a red circle. (A) Includes
all grid cells within 20 km (Euclidian distance) of a grid cell that was positive at some point during 2014–2019 (the entire time frame of our
surveillance data). Small gray circles indicate a grid cell that was sampled at least once but never found to be positive. Light blue circles are locations
of at least one positive WB sample during the 6 years. Orange squares are locations of at least one positive domestic pig. Black triangles are grid cells
where at least one positive WB and one positive domestic pig was found at some point during the 6 years, not necessarily during the same time. (B)
Shows the sampling design for grid cells that had sampling of both WB and DP at di�erent time scales. The three colors distinguish the time frames
within which at least one sample from each of WB and DP was collected: ever (gray, 106,247 unique grid cells), same season (black, 86,336), same
week (blue, 7590 unique grid cells). The distribution of WB and DP samples collected in the same week (blue) is similar to that over broader temporal
scales (gray and black).

(PCR) when moved from the holding to abattoir (all animals)

and randomly within the holding (number of animals sampled

scaled by holding size according to “Procedure for collecting

and sending samples for laboratory diagnostics for African swine

fever,” Chief Veterinary Officer, Poland, April 2020).Samples

collected by veterinary services and hunters were analyzed by the

National Reference Laboratory for ASF diagnostics at the National

Veterinary Research Institute in Puławy, Poland. All positive results

were confirmed by the European Reference Laboratory for ASF

in Valdeolmos, Spain. We used surveillance data collected in

2014–2019 which totaled 1,244,117 test results of DP (including

2,184 ASF-positive results from 261 focal outbreaks, i.e., pig

holdings) and 196,800 test results of WB (including 9,213 ASF-

positive results, i.e., individual cases). Geographic coordinates were

available for all domestic pig samples and positive WB samples.

Negative WB samples were available aggregated at the level of

commune, the smallest administrative unit in Poland. To make

this subset of data compatible with the rest, we created a number

of locations equal to negative WB tests in a given commune and

assigned them randomly-generated geographic coordinates.
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TABLE 2 Covariates used in the analyses.

Variable Description and mechanism Processing References for
source data

Area developed Description: surface of the developed area in

each grid cell Mechanism: drives contact

rates between WB and DP

Total surface area of all built-up and

developed areas within the cell (km2)

Topographic Objects

Database (BDOT10k), Head

Office of Geodesy and

Cartography (https://bit.ly/

3Ji1Mdh)

Human population density Description: density of human population in

each grid cell Mechanism: contamination

between WB and DP through humans as

a vector

Each grid cell was assigned with a density of

human population (ind/ km2) from the

commune (mean size of 126.2 km2) the cell

was in

Statistics Poland (https://stat.

gov.pl/en/)

WB habitat suitability Description: quality of available habitats

(QAH) based on global land cover

vegetation (GLOBCOVER) Mechanism:

higher quality habitats will sustain higher

WB numbers and drive transmission

Average value of QAH was assigned to each

grid cell. Input database categorized QAH

into 7 levels at 300× 300m resolution.

(28)

Extensive farming of DP

(more land to increase yield –

e.g., holdings at lower density

and biosecurity over more

land)

Description: density of pigs bred in an

extensive system. Mechanism: extensive pig

farming facilitates transmission between WB

and DP

Pig density (ind./km2) assigned to each grid

cell from the FAO database available at the 5

minutes of arc (49.3 km2)

Food and Agriculture

Organization (FAO) Gridded

Livestock of the World;

Global pigs distribution in

2015 (43, 44)

Hunter harvest Description: number of WB harvested in

each year and each grid cell. Mechanism:

high WB numbers and hunting activity

drive transmission

Each grid cell was assigned a hunting bag

from the hunting ground the cell was in

(mean size of a hunting ground was 6128

km2).

Forest Data Bank (https://bit.

ly/3WDVlnJ)

Season Description: Season that the sample was

collected. Mechanism: transmission is higher

at particular times of the year.

A level 1–4 was assigned to each data point.

1) December–February (weeks 49–53, 1–9)

2) March–May (weeks 10–22)

3) June–August (weeks 23–35)

4) September–November (weeks 36–48)

See Processing step

Sample size Description: Number of surveillance samples

submitted. Mechanism: Affects detection

probability.

The count of surveillance samples submitted

by grid and week for the response variable

Derived from surveillance

data

Prevalence in neighborhood

DP

Description: Recent prevalence in DP in

neighboring grid cells. Mechanism:

Proximity to infectious individuals

drives infection.

The number of PCR+ samples from DP

within the last 4 weeks within 5 km of the

grid cell divided by the total number of

samples in the same time/space scale.

Derived from surveillance

data

Prevalence in neighborhood

WB

Description: Recent prevalence in WB in

neighboring grid cells. Mechanism:

Proximity to infectious individuals

drives infection.

The number of PCR+ samples fromWB

within the last 4 weeks within 5 km of the

grid cell divided by the total number of

samples in the same time/space scale.

Derived from surveillance

data

Closest positive in DP Description: Closest distance of recent

positive detections in DP. Mechanism:

Proximity to infectious individuals

drives infection.

Minimum distance between a focal grid cell

and the location of a PCR+ domestic pig

sample within the last 4 weeks.

Derived from surveillance

data

Closest positive in WB Description: Closest distance of recent

positive detections in WB. Mechanism:

Proximity to infectious individuals

drives infection.

Minimum distance between a focal grid cell

and the location of a PCR+WB sample

within the last 4 weeks.

Derived from surveillance

data

All variables were continuous except for season which was categorical variable with 4 levels.

2.2. Data processing

Surveillance data (number of positives by PCR and number

of samples collected) were aggregated at a weekly scale on a

2 km by 2 km grid cell resolution across all of Poland. Only grid

cells that were ever positive themselves during the time frame

of surveillance (2014–2019) or within 20 km of a positive were

included in the analysis to control for biased weighting of landscape

covariates that were never in the vicinity of disease. We also

excluded an isolated western cluster in Lubuskie Voivodeship

because it was small and contained and not thought to be involved

in driving the dynamics in the eastern side of Poland (42). This

resulted in 516,105 grid-cell-by-week combinations of data. DP

samples were collected in 403,813 grid-cell-by-week data points,

while WB samples were collected in 127,835 grid grid-cell-by-

week data points (Table 1). There were 21,136 unique grid cells

with at least 1 surveillance sample of any kind, and 15,153

of these unique grid cells had at least 1 surveillance sample
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collected from each of DP and WB during the 6 years of data

(Table 1, Figure 1).

The independent variables used in the analyses, rationale for

including them, and data sources are presented in Table 2. The

response variable (binary) was the presence of positive samples

within grid cell k in week t – a 0 if none of the samples in grid

cell k in week t were positive and a 1 if at least one sample

in grid cell k at week t was positive. We analyzed the data at

different temporal scales of aggregation (week, season, or over all

time) because timescales of disease persistence in carcasses remain

poorly understood and we wanted to examine how the effects of

covariates depended on the temporal aggregation of the response

data. For the weekly aggregation, we created 4 response variables

that we analyzed separately: all samples fromWB (WB full model),

all samples from DP (DP full model), samples from WB that

occurred within 5 km of a PCR+ sample in DP in the last 4 weeks

(WB submodel), and samples from DP that occurred within 5 km

of a PCR+ sample in WB in the last 4 weeks (DP submodel).

The last two responses allowed us to test for potential factors

driving transmission between host populations (WB submodel,

DP submodel) without noise from data points that were too far

away to be linked to transmission. We chose 5 km distance because

between-sounder contact and transmission is most likely within

this distance (45, 46). For the season aggregation, we summed

surveillance data for 4 separate seasons as specified in Table 2.

Finally, we analyzed the data by summing over all time, thus only

effects of spatial covariates were tested.

2.3. Analyses

All analyses were conducted inMatlab R2021b (TheMathworks

Inc, Natick, Massachusetts) using the Statistics and Machine

Learning Toolbox. We modeled the data using boosted regression

trees with a least-squares boosting loss function. We chose this

approach because we expected complex interrelationships among

independent variables in their effects on the response data and

non-linear relationships. We optimized hyperparameters for each

regression ensemble model using Bayesian optimization and 10-

fold cross-validation aimed at minimizing the mean squared error

implemented in fitrensemble using the Optimize Hyperparameters

option. We co-optimized the following hyperparameters using the

following specified prior ranges: number of learning cycles [50,

2000] (except DP week full model was [50, 1000] for computational

feasibility), learning rate [0.0001, 0.1] (except DP week full model

was [0.001, 0.1] for computational feasibility), minimum leaf size

[50, 100], maximum number of splits [1, 60] (Table 3). The small

range on maximum number of splits and high minimum value

on minimum leaf size was chosen to reduce overfitting. The

optimization was run for 5000 iterations on each data set except

for the DP full model that was run for only 1000 iterations

(because the dataset was very large and preliminary runs showed

early convergence).

We then fit the final models with the optimal hyperparameters

to estimate variable importance and make inferences about

the effects of independent variables on the responses for

each model.
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3. Results

3.1. Spatial and temporal trends in cases

Of the 15,153 unique grid cells that had at least one surveillance

sample from each of WB and DP during the 6 years of surveillance,

2,881 cells had at least one positive WB sample, while only 182 cells

had at least one positive DP sample (Table 1). Only 55 grid cells

found at least one positive WB and DP sample in the same grid

cell during the 6 years of surveillance. Of the 16,121 surveillance

data points that involved collection of at least 1WB and 1 DP

sample in the same grid cell on a given week, 5,457 grid cell-

by-week data points had at least one WB positive sample, while

only 279 had at least one positive sample for DP. There were only

12 grid-cell-by-week data points and 23 grid-cell-by-season data

points that had at least 1 positive sample for each of WB and DP

samples (Table 1, Figure 1). Thus, given the wide spatial extent of

WB positive samples (2,881 unique grid cells), and numerous data

points where at least one WB and one DP sample were collected

in the same grid cell in the same week (16,121), most WB positive

samples did not temporally overlap with the unique grid cells where

positive DP samples were found. Only 6.6% (12/182) occurred in

the same grid cell in the same week, 12.6% (23/182) occurred in the

same grid cell in the same season, and 30% (55/182) occurred in the

same grid cell ever (across 6 years).

Of the 279 grid-cell-by-week data points that had at least one

DP positive sample, there were only 61 (21.8%) with at least one

surveillance sample from WB within 5 km of the grid cell within

the last 4 weeks, and only 15 of those instances (25% ofWB samples,

5.4% of the DP-positive grid-cell-by-weeks) had at least one positive

WB sample. There were 217 DP-positive grid cells that had at least 1

DP surveillance sample in the vicinity (77.8%), but only 10 of those

had a DP-positive sample (10/217 = 4.6% of DP-positive samples

with DP surveillance samples or 3.6% of the total DP-positive grid-

cell-by-weeks). Thus, the large majority of DP positive surveillance

data did not include surveillance in WB nearby, despite including

DP surveillance nearby, but when surveillance did occur nearby it

was more likely that the WB samples were positive relative to the

DP samples.

In contrast, of the 5,457 grid-cell-by-week data points that had

at least one WB positive sample, 2,287 (41.9%) had at least one

surveillance sample from DP within 5 km of the grid cell within the

last 4 weeks, but only 12 (0.52% of DP samples, 0.22% of the WB-

positive grid-cell-by-weeks) had at least one positive surveillance

sample from DP. Thus, the surveillance design afforded twice as

much opportunity to findDP-positive samples in the recent vicinity

of WB-positive samples compared to the opposite (compare 41.9 to

21.8%), yet the reverse occurred – the rate of positive WB samples

in the recent vicinity of a positive DP sample was 48 times as likely

than the rate of positive DP samples in the recent vicinity of a

positive WB sample (divide 25% for WB-positive samples collected

in the recent vicinity of a DP positive by 0.52% of the DP-positive

samples collected in the recent vicinity of a WB-positive sample).

Cases in WB were detected throughout the year at similarly

high levels with the highest detection rates occurring in winter

(45%; 4150/9198) and spring (25%; 2351/9198) relative to summer

(14.9%; 1366/9198) and fall (14.5%; 1331/9198) (Figures 2A, C). In

contrast, cases in DP showed a distinct seasonality with most cases

(84.2%; 1832/2174) occurring in summer despite a similar number

of samples being collected during each season with the most being

collected in the fall (Figures 2B, D).

3.2. Correlation with potential risk factors

The distribution of cases in WB tracked the distribution of

independent variable values closely (Figures 3A–D, H, J) except

there were: (1) a small number of very high values for DP extensive

and hunter harvest whereWB cases were not found (Figures 3E, F),

(2) visible trends of more cases at closer distances of recent cases

in WB and higher neighborhood prevalence in WB (Figures 3G,

I), and (3) visible trends of higher prevalence at larger sample size

(Figure 3K). The distribution of cases in DP showed similar trends

relative to independent variables except that cases clustered toward

the closer distances of cases in both WB and DP (Figure 4).

3.3. Risk factors involving DP were not
important for predicting ASF detection in
WB

In the WB week submodel, which limited the data only to WB

samples that occurred within 5 km of a PCR+ sample in DP in the

last 4 weeks, the number of WB harvested and closest distance to

the nearest WB-positive detection were the most important risk

factors, followed by sample size (Figure 5A). However, when all the

WB samples were considered in the model, the only important risk

factor of WB positivity was the neighborhood prevalence in WB

(Figure 5C). When aggregating the data at seasonal scale both the

neighborhood prevalence in WB and distance to the nearest WB

sample were important risk factors (Figure 5E), whereas when all

data was pooled, only distance to the nearest WB sample was an

important risk factor (Figure 5G).

3.4. Risk factors involving WB were
important for predicting ASF detection in
DP

In the DP week submodel, which limited the data only to DP

samples that occurred within 5 km of a PCR+ sample in WB in

the last 4 weeks, the number of WB harvested (a proxy for WB

density) was the most important risk factor, followed by distance

to the closest DP-positive sample, recent neighborhood prevalence

in WB, sample size, and season (Figure 5B). However, in the full

model for DP, the most important variable was neighborhood

prevalence of DP, followed by neighborhood prevalence of WB

(Figure 5D), although the best full model did not fit the data very

well (AUC = 0.61). When aggregating the data to the season

scale neighborhood prevalence in WB was the strongest risk factor,

followed by neighborhood prevalence in DP and sample size

(Figure 5F), whereas when the data were aggregated across all time,

only proximity to DP-positive samples was an important risk factor

(Figure 5H).
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FIGURE 2

ASF surveillance data over time.

4. Discussion

Our analysis revealed surprisingly few surveillance data

containing samples for both WB and DP (12.6% for WB

and 4.0% DP data) on spatial and temporal scales that are

most relevant to transmission (e.g., within 4 km2 and the

same week). This emphasizes that active surveillance of WB

around DP premises might be needed in addition to passive

surveillance to understand transmission routes and frequency

between WB and DP host populations from ASF surveillance

data. We addressed the surveillance design issues by examining

effects of risk factors across a variety of spatial and temporal

scales. At all scales, positive samples in WB were predicted by

WB-related risk factors (e.g., recent proximity to WB-positive

samples, hunter-harvest samples - a proxy for WB density, WB

sample size), but not to DP-related risk factors. In contrast,

WB risk factors were important for predicting detections in DP

on a few spatial and temporal scales. These trends occurred

even though the sampling design afforded more opportunity to

detect DP as a risk factor of ASF detection in WB relative

to the ability to detect WB as a risk factor of ASF detection

in DP.

In several studies, the presence of ASF-infected WB in

close vicinity to DP holdings has been cited as a main risk

factor for ASF outbreaks in DP (47). Our results are consistent

with these findings. However, we also addressed the gap (48,

49) of whether DP pose a risk of transmission to WB. Our

results in eastern Poland suggested that the WB were almost 50

times more likely to pose a transmission risk to DP than the

other way around. Experimental infection data show that WB

and DP are equally susceptible to ASF virus when inoculated

through similar routes (50) thus these differences are likely

due to ecological or behavioral factors at the wildlife-livestock

interface (51). For example, WB are social and disruptions of/in

social structure affects movement behavior (52). It is possible

that in areas with wide circulation of virulent strains of ASF

or high hunting pressure WB change their movement behavior

and seek interaction with other swine, even DP (51), or escape

disturbance (53, 54). This could lead to higher rate of transmission

among WB and from WB to DP. Also, studies that investigated

interaction frequency between WB and DP have documented

a wide range of interaction rates depending on the husbandry

practices, biosecurity levels, and ecological context (49, 51, 55).

Some of these studies documented high rates of direct contact

while others mainly indirect contacts. It is also likely that indirect

contact routes pose different transmission risks between WB to

DP relative to the reverse. Accounting for variation within these

contextual factors in analyses of ASF surveillance data would be

valuable for quantifying the frequency of WB-DP transmission by

different routes.

Similar to previous work we found that seasonal peaks of

ASF detections in WB and DP were not synchronized (winter-

spring for WB vs. summer for DP) (15, 56), but quantitative

information on how much transmission varies seasonally is

currently missing. Our results in eastern Poland suggest that

85% of transmission among DP occurred in summer, while only

15% of transmission in WB occurred in each of summer and

fall. The low rates of detection in DP in fall and winter but
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FIGURE 3

Distribution of WB samples and positive tests by PCR within the range of each independent variable.

FIGURE 4

Distribution of DP samples and positive tests by PCR within the range of each independent variable.
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FIGURE 5

Relative variable importance for each model. Absolute goodness-of-fit for each model was measured by AUC and is shown in the upper left of each
panel.

high rates of detection in WB in winter further supports our

finding of a low rate of transmission from DP to WB. In contrast,

detections in DP were highest in summer, which follows the highest

season of detections in WB and supports the higher frequency

of transmission from WB to DP. It has been hypothesized that

summer peaks in DP are driven by indirect transmission from the

surrounding environment (through movements of contaminated

feed, bedding, equipment during intensive field work) (39) while

winter-spring peaks in WB are driven by seasonal factors, such

as longer carcass persistence and birth pulses that introduce

susceptible individuals.

The sampling design made it difficult to estimate the relative

frequency of transmission from WB to DP and the reverse.

One gap is that locations of negative WB samples are imprecise

- georeferenced to the commune instead of GPS coordinates

of collection. GPS coordinates for negative WB samples would

allow for more precise estimates of the distance between DP and

WB samples. It is important to understand the spatial sampling

design for all samples for quantifying risk. Secondly, for DP

premises with ASF outbreaks, it was uncommon for WB samples

to be collected within 5 km, making it challenging to assess the

potential role of WB in seeding DP outbreaks. Epidemiological

investigations that coordinate veterinary and wildlife agencies in

surveillance sampling around DP premises will help to better

understand potential transmission routes between WB and DP.

Relatedly, a mechanism for capturing husbandry practices or

biosecurity actions around premises would provide additional

information for inferring transmission routes. These gaps in

surveillance design are not due to a lack of WB presence near

DP. For example, there were > 16,121 grid-cell-by-week data

points and 34,642 grid-cell-by-season data points that had at

least one DP and one WB sample. Thus, it appears there is

opportunity to conduct targeted surveillance in WB and DP

populations around positive cases. Another valuable approach

could be to conduct targeted risk-based surveillance where higher

numbers of DP and WB samples would be collected on and

around premises where outbreaks have a higher likelihood of

occurring based on historical data or other risk assessments

conducted at a fine spatial resolution (e.g., premises-level and

within 5 km of premises). These surveillance approaches could

be paired with other important metadata (i.e., husbandry and

biosecurity practices).

A challenging gap to address is the poor understanding of long-

range movements in both DP and WB populations. Our analysis

does not address long-range connectivity in either WB, DP, or their

interface. Most WB movement and contact is thought to be close

(45) but there may be some longer distance WB movements (57)

or other mechanisms (fomites, contaminated meat products) that

spread ASF over longer distances in WB (42). However, DP may

be moved over longer distances more regularly. Data describing

Frontiers in Veterinary Science 09 frontiersin.org

https://doi.org/10.3389/fvets.2023.1295127
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Pepin et al. 10.3389/fvets.2023.1295127

these movements are important for quantifying the role of WB in

outbreaks in DP and potential for the reverse.
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