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The present study aimed to employ machine learning algorithms based on 
sensor behavior data for (1) early-onset detection of digital dermatitis (DD) 
and (2) DD prediction in dairy cows. Our machine learning model, which was 
based on the Tree-Based Pipeline Optimization Tool (TPOT) automatic machine 
learning method, for DD detection on day 0 of the appearance of the clinical 
signs has reached an accuracy of 79% on the test set, while the model for the 
prediction of DD 2  days prior to the appearance of the first clinical signs, which 
was a combination of K-means and TPOT, has reached an accuracy of 64%. The 
proposed machine learning models have the potential to help achieve a real-time 
automated tool for monitoring and diagnosing DD in lactating dairy cows based 
on sensor data in conventional dairy barn environments. Our results suggest that 
alterations in behavioral patterns can be used as inputs in an early warning system 
for herd management in order to detect variances in the health and wellbeing of 
individual cows.
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1 Introduction

Digital dermatitis (DD) is one of the most prevalent infectious diseases in dairy cows 
worldwide, being responsible for substantial economic losses due to impaired production and 
reproduction, higher risks of culling, and treatment costs while having detrimental effects on 
animal welfare (1–3).

DD in cattle is regarded as a complex disease influenced by multiple microbes. While its 
exact pathogenesis is still not fully understood (4, 5), foot lesions are often associated with 
various phylotypes of Treponemes. Consequently, the Treponema genus is considered the 
primary causal agent (6). Other bacteria species such as Porphyromonas, Fusobacterium, and 
Dichelobacter are believed to act synergistically (7–9). DD in cattle manifests in the form of 
ulcerative or growth-like skin lesions, primarily located digitally and on the coronary band of 
the hoof. The hind legs are affected in over 90% of cases (10), and this condition is typically 
associated with lameness. It can also coexist with other issues such as foot rot, sole ulcers, sole 
hemorrhages, and white line disease.
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The highly contagious nature and reduced treatment responses of 
DD (11–13) were shown to result in increased prevalence of up to 91% 
at the herd level while affecting up to 41% of the animals (14–16). 
Diagnosis for DD is based on the visual inspection of the feet using 
the Mortellaro-stage (M-stage) scoring system described and modified 
by Berry et al. (17), where lesion type and size are differentiated.

Although the etiopathogenesis of bovine DD is not well 
understood (18), in recent years, several studies have been conducted 
to identify risk factors associated with the occurrence of DD in dairy 
cattle. At the individual animal level, the main risk factors for 
developing DD were found to be breed, milk yield, parity, lactation 
stage, presence of metabolic diseases, interindividual differences in the 
immune response, and animal behavior (3, 19, 20), while the main risk 
factors at the farm level are represented by the housing system, 
flooring type, plan of nutrition, general farm biosecurity, and 
preventive practices used to mitigate bovine digital dermatitis (21, 22).

With the recent advent of precision livestock farming (PLF), an 
increasing body of research addresses machine learning approaches 
for the early detection of cattle diseases (23–27). Furthermore, several 
studies have already successfully applied computer vision for detecting 
and classifying DD in cattle (28–30). As a result, sensor-based 
behavior monitoring technologies are promising, more affordable, and 
operationally simpler alternatives for disease monitoring and 
diagnostics. Currently, a wide range of commercially validated systems 
are available (31), which monitor behaviors such as feeding, 
ruminating, activity, and lying. Some of these behavioral patterns have 
been directly linked to DD in cattle, with ill animals spending more 
time lying down than their healthy counterparts and devoting less 
time to feeding and rumination (32, 33). However, to the best of our 
knowledge, the use of machine learning for the detection of DD from 
behavioral sensor data has not yet been explored in cattle.

The present study aimed to employ machine learning algorithms 
based on sensor behavior data for (1) early-onset detection of DD and 
(2) DD prediction, with the ultimate goal of setting up early warning 
tools for DD prediction. These warning tools would then enable 
farmers and veterinarians to better monitor and manage DD in 
commercial settings, resulting in a decrease in DD prevalence and 
severity while improving animal welfare.

2 Materials and methods

2.1 Animal management and data 
collection

All procedures involving animals used in the current study were 
approved by the Washington State University Institutional Animal 
Care and Use Committee (IACUC), with the approval code 
ASAF#6770. The data collection process occurred over 60 consecutive 
days at the Washington State University Knott Dairy Center (KDC) in 
Pullman, Washington, USA (GPS: 46.6937°N, 117.2423°W).

The experimental cattle facility at the KDC experimental farm 
houses 180 Holstein pedigreed purebred cows, with lactating animals 
being housed in a free-stall barn with individual cubicles, using 
composted manure as bedding. Cows are milked twice per day using a 
6×6 ‘herring-bone’ milking parlor, have ad libitum access to two water 
troughs, and are fed a total mixed ration twice per day. The KDC farm 
practices zero-grazing for lactating cows (indoor housing year-round), 

with movement alleys and the outside paddock having concrete flooring. 
During the dry period, the cows are housed in deep-bedded packs with 
access to grazing areas. Each cow at the KDC experimental farm was 
fitted with a CowManager® (CowManager B.V., Harmelen, Netherlands) 
ear tag that continuously records animal behavior, rumination, and ear 
temperature 24 h per day. The measurements of interest in this study were 
activity (non-active, active, and highly active), eating time, rumination 
time, and ear temperature. All behavioral data were calculated as the 
proportion of time each cow spent exhibiting each behavioral pattern 
and computed in hours devoted to that behavior per 24 h.

The CowManager® sensor is a molded microchip that has been 
adapted into a cattle ear identification tag (Supertag; Dalton ID Ltd., 
Oxfordshire, UK). A three-dimensional accelerometer within the 
sensor continuously registers the activities of the cow, with the raw 
data being sent through a wireless connection via routers to a central 
computer. The raw sensor data are continuously collected, and each 
minute is classified into one of the four measurement categories: 
“ruminating,” “eating,” “resting,” and/or “active,” with a proprietary 
model of the sensor. Data obtained are subsequently expressed as 
minutes of behavior per hour as well as hours per day and were 
retrieved through a web-based application. The ear temperature was 
presented as the average/day and expressed in °C. The sensor used has 
been previously validated to effectively monitor the behavior of free-
stall housed dairy cattle (34).

Cattle were enrolled in the study if they met two criteria: (1) no 
lesions for at least 7 days prior to the first observation of an active 
lesion and (2) had at least 2 consecutive days of DD lesion observed. 
During the study, 21 cows that were between the 1st and 5th lactation 
periods developed DD. Each cow that developed a DD episode was 
then matched with a healthy counterpart that had the same parity, 
reproduction status (open/pregnant), and lactation period (early/mid/
late). Lactation periods were classified as early (< 100 days in milk 
[DIM]), mid (101–199 DIM) or late (> 199 DIM). Therefore, the final 
dataset included 21 cows with DD and 21 healthy cows. As a 
prevention method for DD, an acidified copper-, sulfate-, and zinc 
footbath solution was placed at the exit of the milking parlor. The 
footbath solution was replaced twice a week, following the 
recommendations of a hoof specialist. The observer for this study was 
trained by a hoof specialist to evaluate digital dermatitis (DD) lesions. 
All hoofs were visually assessed during the first milking in the 
morning inside the milking parlor, looking exclusively at the hind feet. 
To date, there has been no golden standard for making observations 
to determine if a cow has DD. In most on-farm cases, cows are 
observed for lameness, and those with signs of lameness are further 
evaluated for hoof disorders. The DD lesion scoring system 
implemented in this study follows the widely used M-stage scoring 
system (35). When observed, lesions were categorized as active (red 
and painful with hair on lesions) or digressing (no hair or little hair, 
no pain, and scabbing on lesions). Lesion size was categorized as either 
small (<0.635 cm), medium (0.635–3.81 cm), or large (>3.81 cm) based 
on the lesion diameter. The same observer recorded the DD status and 
lesion size daily during the trial to avoid interobserver biases.

2.2 Machine learning models

The data used in this study are of time series type, which is a 
sequence of data points measured at successive points in time spaced 
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at uniform time intervals. All measurements were continuous and 
aggregated to time frames of a single day. We analyzed 2,520 entries 
in total (i.e., the daily data about a cow) as part of our dataset. Namely, 
we analyzed the data, which are the product of 7 days over 6 features, 
collected for 60 cows. Due to the challenging nature of the problem, 
we took a two-step approach to tasks of increasing difficulty. The first 
task was detection, namely whether the cow has DD or not on day 0, 
looking at data from all days prior to day 0 (−7 days). The second, and 
a more challenging task, was the prediction/forecasting of DD 
episodes, especially classifying whether the cow will have DD or not 
on day 0 based on data x days before day 0 (where the optimal value 
of x needs to be determined).

2.3 Detection machine learning model

The first task we address is providing a machine learning classifier 
of whether a specific cow has DD or not on day 0. In this section, 
we  describe the training process of the machine learning model. 
We first divided the dataset into training and testing cohorts such that 
the training cohort contained 80% of the dataset, while the remaining 
20% belonged to the test cohort. Importantly, we  ensured the 
distribution of the target feature in both the training and test cohorts 
using the Monte Carlo method, taking the best random split out of 
n = 100 attempts. The training cohort was then used to train the 
model, and the testing cohort was used to evaluate its performance. 
Importantly, samples from the same individual were either included 
in the training or testing cohort in order to avoid potential data 
leakage between the two. Moreover, to make sure the results were 
robust, we further divided the training cohort using the k-fold cross-
validation method (36) with k = 5. Using the training cohort, we then 
used the Tree-Based Pipeline Optimization Tool (TPOT) automatic 
machine learning library method (37). Formally, given a dataset 
D∈Rr,c with c∈N features and r∈N samples, we utilized TPOT, which 
uses a GA-based approach, to generate and test ML pipelines based on 
the popular scikit-learn library (38). Formally, we  run the TPOT 
classifier search method to obtain an ML pipeline that aims to 
optimize the classifier’s mean accuracy over the k-folds (39). Once the 
pipeline was obtained, we  further aimed to improve the model’s 
performance over the training cohort using the grid-search 
hyperparameters method (40) such that the hyperparameter value 
ranges were chosen manually (41). Finally, the obtained model was 
evaluated using the testing cohort. This model development process 
was similar in nature to other recent studies in sensory data of dairy 
cattle (42); however, rather than manually testing multiple ML models, 
we used the automatic machine learning approach, which performed 
this task more efficiently in terms of time.

2.4 Prediction machine learning model

Two important concepts in the context of time series forecasting 
are ‘lag’ and ‘window’. A ‘lag’ in time series prediction is a way of 
referencing past data points, e.g., a lag of 1 would mean the previous 
data point, a lag of 2 would mean the data point two periods back, and 
so forth. A (rolling) ‘window’ refers to a fixed-size subset of a time 
series dataset. The aim was to take a portion of the data of a particular 
length (window size) and move those data across the time series. 

Having a window allowed us to create aggregated features such as 
moving averages, sums, and standard deviations. The question, then, 
becomes, what lag and what window size would yield better 
performance of the model for prediction? Obviously, with lag 0, we are 
back to the prediction problem. Going to lags 1, 2, and 3 will decrease 
our accuracy, but it will also mean that we  are able to make the 
prediction sooner. We thus had a time series task with some lag l∈N 
and a window size w∈N. In this representation, the disease occurrence 
prediction takes a binary classification form. However, naturally, the 
number of negative samples is much larger than the number of 
possible samples, as these occur once for each cow, by definition. 
Hence, to balance the data, we undersampled the negatively labeled 
samples using the K-means method (43) such that the number of 
clusters equals the number of positive samples. Building on these 
grounds, we repeat the same computational process as the one used to 
obtain the disease detection classifier. In addition, to investigate the 
influence of the lag and window size parameters, the disease 
occurrence predictor was obtained for all possible combinations of 
these parameters. To control the balancing method, we also used the 
class weight fixing method, where the number of samples is kept the 
same but the weight of each label is different to count for the 
differences in the labels’ group sizes. Both models were implemented 
using the Python programming language (version 3.8.1) (44) and set 
at a value of p of ≤0.05 to be statistically significant.

3 Results

3.1 Digital dermatitis detection on day 0

For a preliminary exploration, we  computed the Pearson 
correlation matrix (45) between the sensor’s data and the target 
variable (presence/absence of DD in the cow). Figure 1 presents the 
matrix. As can be noticed, most of the values were less than 0.3, which 
strongly indicates that the inputted space was mostly linearly 
independent (46). Hence, a non-linear-based model should 
be investigated for the proposed challenge.

To this end, we  investigated the pairwise relationship of the 
inputted features and their relationship with the target feature, as 
presented in Figure 2, such that the red (square) markers indicate DD 
sick cows while the green (circle) markers indicate healthy cows. The 
lines indicate the kernel density estimate of each pairwise distribution. 
In more pairwise plots as well as the features’ histograms, it can 
be visibly observed that there is no clear separation between the target 
feature sets.

Based on the above, for disease detection, we  obtained an 
ensemble model that combines a random forest model (47, 48) and a 
k-nearest neighbors algorithm (49), which received a second-order 
polynomial extension of the inputted features after min–max 
normalization (50). For this model, we obtained an accuracy of 81.2% 
for the training set with 5-fold cross-validation. More importantly, for 
the testing set, we  obtained an accuracy of 79.2%. These results 
indicate that the proposed model was well-fitting, due to the relatively 
small difference between the mean performance over the training and 
testing sets. Nonetheless, the standard deviation of 4.6% indicated that 
the model might be somewhat non-data stable (51). Considering the 
standard deviation with a probability of 95% CIs, we estimated that 
the proposed model would have an accuracy of at least 72%.
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To learn which features contribute the most to the model’s 
classification capabilities, we computed the model’s features by removing 
one feature at a time, evaluating how this influences the model’s accuracy, 
and normalizing these results once all values were obtained. We repeated 
this process on the entire dataset with a 5-fold cross-validation. Figure 3 
shows the results of this analysis, where it can be observed that ‘activity’ 
is the most important feature, followed by the ‘not-active’ feature.

In a complementary manner, Figure 4 presents the feature that is 
important using the SHapley Additive exPlanations (SHAP) value, 
which connects optimal credit allocation with local explanations using 
the classic Shapley values from game theory. Specifically, it shows how 
the value of each feature corresponds to the model’s prediction. One 
can notice that higher values of ear temperature and non-activity are 
associated with a higher probability of DD occurrence.

3.2 Digital dermatitis prediction prior to 
day 0

To find the optimal parameters for window and lag, Figure  5 
shows a sensitivity analysis of the model’s accuracy, which was 
computed for the test set as a function of the lag and window size of 
the prediction. We  can see that, for example, 2 days prior to the 
appearance of the first clinical signs, we have an accuracy of 64% by 

looking at a window from 3 days ago. One day prior to day 0, the 
accuracy increases to 71% (with a window of 3 days). It is important 
to point out that a 50% accuracy of a binary prediction, such as the 
one presented in this case, indicates a random choice, thus taking into 
account that a larger window or looking more days ahead yields low 
performance, indicating that the model failed to learn any significant 
pattern and, as a result, more or less guessing the result with some 
minor (false) bias obtained from slightly overfitting of the training set. 
In addition, the results are comparable as we downsampled the train 
and test set sizes to be identical for all cases such that the train and test 
sets include 98 and 28 samples, respectively.

4 Discussion

In this study, we  present a machine learning model for DD 
detection on the first day for the appearance of clinical signs with an 
accuracy of 79% and a model for the prediction of DD 2 days prior to 
the appearance of the first clinical signs with an accuracy of 64%. The 
accuracy attained for the detection of DD was higher in our study 
when compared to reports by Cernek et  al. (28), which applied 
computer vision approaches for detecting DD in cattle.

In the current study, activity was found to be the most important 
sensor feature for DD detection. Similarly, Tsai et al. (52) reported that 

FIGURE 1

Pearson’s coloration matrix between the input features for the disease detection model.
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activity and, most importantly, changes in time devoted to walking 
represent valid indicators for disease detection in cattle. The same 
authors outline that the current use of PLF needs an improvement in 
detection accuracy at the farm level. Our results are also in line with 
the findings by Soriani et al. (53), who reported changes in lying time 
for cows affected by lameness. Contrary to our findings, these authors 
found a significant decrease in the time devoted to ruminating during 
the first days of subclinical diseases or health disorders.

Barker et al. (54) validated the combined use of an animal neck-
mounted sensor with a location device to classify cattle behavior, with 
feeding behavior patterns being used for lameness detection. 
Interestingly, feeding behavior has not played a significant role in DD 
detection or prediction in our case. This can be  explained by the 
differences in sensor devices, as well as differences in the machine 
learning models used, and deserves further exploration.

Regarding temperature variations, Harris-Bridge et al. (55) found 
a significant temperature rise at the foot level in dairy cows with DD 
using infrared thermography, with similar results reported by 
Pirkkalainen et al. (56) for rectal temperature in DD vs. healthy cows, 
with authors attributing the temperature rises to the effects of 
inflammation at the foot level. However, such temperature fluctuations 
have not been observed in our study, most likely due to the sensor 
being placed in the animal’s ear, and thus, the assumed temperature 
rise in cows with DD might have occurred only in the plantar region.

The results of our study highlight the potential applications of 
behavioral sensor data extracted from commercially available sensors 
for the prediction of digital dermatitis. Current findings are in 
accordance with those reported by Benaissa et al. (57), which found that 
cattle sensor behavior data are strongly linked to the animals’ health and 
welfare. Furthermore, Hosseininoorbin et  al. (58) found that both 

FIGURE 2

Pair plot between the features of the model, divided by the target features such that the red (square) markers indicate DD sick cows while the green 
(circle) markers indicate healthy cows. The lines indicate the kernel density estimate of each pairwise distribution.
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lameness and infectious diseases can be detected via the use of cattle 
behavior. However, further studies are needed to expand this 
exploration, focusing on studying the forecasting parameters of lag and 
window revealed in this study. The use of other, more complex sensor 
systems that provide more fine-grained behavioral data can potentially 
increase the performance of the machine learning models presented here.

The main drawback for the lack of adoption of sensor data 
combined with other PLF systems in commercial settings is the 
additional cost to be incurred for the farms. It is important to note that 
farmers are more likely to adopt a PLF system if the system provides 

useful information they can use to make informed decisions. The 
activity monitoring device used in the current study is currently used 
by farmers to identify potentially unhealthy animals; however, the 
system is not able to differentiate between different types of sickness. 
One of our intentions for this study is to demonstrate how activity 
monitoring device data can be used to identify cows with DD. If the 
system could incorporate this type of alert for cows with DD, the 
system would have added value and may be more widely adopted. 
Overcoming bottlenecks such as user adoption could result in better 
monitoring of the herd by improving estrous and early disease 

FIGURE 3

Disease detection model’s feature importance measures the relative information gained from each feature. The results are shown as the 
mean  ±  standard deviation of 5-fold cross-validation performed on the entire dataset.

FIGURE 4

Disease detection model’s feature importance is measured by the SHapley Additive exPlanations (SHAP) value of each feature.
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detection, which would then translate into improved overall farm 
efficiency. For instance, in a study that coupled accelerometer and GPS 
location data, Cabezas et al. (59) found a high accuracy of 93% for 
classifying four dairy cattle behavioral patterns. The grouping of these 
two sensors was also used to track the social interactions between 
cows and social behavior, which was significantly linked to both health 
and animal welfare (60). These aspects are of high importance, given 
that Proudfoot et  al. (61) reported their observation of sick cows 
isolating themselves and avoiding both allogrooming and agonistic 
interactions with herd-mates, mainly throughout the use of less 
frequented cubicles located at the far ends of the barn and away from 
resources such as feeding alleys and water troughs.

This study is not without limitations. First, the number of 
developed DD cases during the trial-period and that qualified for 
enrolment in the study-herd could be increased, hopefully leading to 
higher performance for both detection and prediction models. 
Therefore, for our future studies, we plan to include more farms with 
different barn designs and test the machine learning models in more 
diverse farming settings. Furthermore, the currently commercially 
available behavior sensors are focused on monitoring a rather limited 
number of behavioral patterns, providing data mainly on feeding, 
ruminating, and activity time budgets. The detection of behaviors that 
are less frequent or are being expressed during shorter periods of time, 
such as social interactions, the resting position of the animal, or 
drinking bouts and rates, and even changes in the behavioral circadian 
rhythm could be altered during a disease episode; however, to date, 
the validation of sensors to monitor such behaviors remains a 
challenge. To overcome these shortcomings, several authors 

recommend the integrated use of additional PLF tools, such as image 
analysis-based systems, pressure sensors, radio-frequency 
identification, and ultra-wideband technology (62–64); thus, progress 
on this front is expected.

5 Conclusion

In conclusion, a machine learning model that is capable of 
predicting and detecting bovine digital dermatitis in cows housed 
under free-stall conditions based on behavior sensor data has been 
proposed and tested in this exploratory study. The model for DD 
detection on day 0 of the appearance of the clinical signs has reached 
an accuracy of 79%, while the model for the prediction of DD 2 days 
prior to the appearance of the first clinical signs has reached an 
accuracy of 64%. The proposed machine learning models might help 
to achieve a real-time automated tool for monitoring and diagnosing 
DD in lactating dairy cows based on behavior sensor data in 
conventional dairy barn environments. Our results suggest that 
alterations in behavioral patterns at individual levels can be used as 
inputs in an early warning system for herd management in order to 
detect variances in the health and wellbeing of individual cows.
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FIGURE 5

Heatmap of the models’ accuracy on the test set (presented in percentage) as a function of their lag and window size. Notably, a 50% accuracy of a 
binary prediction indicates a random choice; thus, all results below shows that the model failed to learn any significant pattern.

https://doi.org/10.3389/fvets.2023.1295430
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Magana et al. 10.3389/fvets.2023.1295430

Frontiers in Veterinary Science 08 frontiersin.org

Ethics statement

All procedures used in the current study were approved by the 
Washington State University Institutional Animal Care and Use 
Committee (IACUC), approval code ASAF#6770. The studies were 
conducted in accordance with the local legislation and institutional 
requirements. Written informed consent was obtained from the 
owners for the participation of their animals in this study.

Author contributions

JM: Formal analysis, Investigation, Writing – original draft. DG: 
Data curation, Formal analysis, Funding acquisition, Investigation, 
Resources, Writing – review & editing. YM: Data curation, Formal 
analysis, Methodology, Validation, Investigation, Writing – original 
draft. TL: Data curation, Formal analysis, Investigation, Methodology, 
Software, Writing – original draft. AZ: Data curation, Formal analysis, 
Investigation, Methodology, Software, Validation, Writing – review & 
editing. AA-P: Conceptualization, Methodology, Project 
administration, Resources, Supervision, Validation, Writing – review 
& editing.

Funding

The author(s) declare financial support was received for the 
research, authorship, and/or publication of this article. This study was 

supported by a grant from the Ministry of Research, Innovation, and 
Digitization, CNCS – UEFISCDI, project number PN-III-P1-
1.1-TE-2021-0027, within PNCDI III.

Acknowledgments

During the trial’s implementation, DG received support to join 
Washington State University through a Romanian – U.S. Fulbright 
Visiting Scholar grant. We thank the Washington State University 
Knott Dairy Center staff for providing assistance during 
data collection.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
 1. Palmer MA, O'Connell NE. Digital dermatitis in dairy cows: a review of risk factors 

and potential sources of between-animal variation in susceptibility. Animals. (2015) 
5:512–35. doi: 10.3390/ani5030369

 2. Plummer PJ, Krull A. Clinical perspectives of digital dermatitis in dairy and beef 
cattle. Vet Clin North Am  Food Anim Pract. (2017) 33:165–81. doi: 10.1016/j.
cvfa.2017.02.002

 3. Weber J, Becker J, Syring C, Welham Ruiters M, Locher I, Bayer M, et al. Farm-level 
risk factors for digital dermatitis in dairy cows in mountainous regions. J Dairy Sci. 
(2023) 106:1341–50. doi: 10.3168/jds.2022-22243

 4. Wilson-Welder JH, Alt DP, Nally JE. The etiology of digital dermatitis in ruminants: 
recent perspectives. Vet Med. (2015) 6:155–64. doi: 10.2147/VMRR.S62072

 5. Evans NJ, Murray RD, Carter SD. Bovine digital dermatitis: current concepts from 
laboratory to farm. Vet J. (2016) 211:3–13. doi: 10.1016/j.tvjl.2015.10.028

 6. Alsaaod M, Locher I, Jores J, Grimm P, Brodard I, Steiner A, et al. Detection of 
specific Treponema species and Dichelobacter nodosus from digital dermatitis 
(Mortellaro’s disease) lesions in Swiss cattle. Schweiz Arch Tierheilkd. (2019) 161:207–15. 
doi: 10.17236/sat00201

 7. Rasmussen M, Capion N, Klitgaard K. Bovine digital dermatitis: possible 
pathogenic consortium consisting of Dichelobacter nodosus and multiple Treponema 
species. Vet Microbiol. (2012) 160:151–61. doi: 10.1016/j.vetmic.2012.05.018

 8. Knappe-Poindecker M, Gilhuus M, Jensen TK, Klitgaard K, Larssen RB, Fjeldaas 
T. Interdigital dermatitis, heel horn erosion, and digital dermatitis in 14 Norwegian 
dairy herds. J Dairy Sci. (2013) 96:7617–29. doi: 10.3168/jds.2013-6717

 9. Wilson-Welder JH, Alt DP, Nally JE. Digital dermatitis in cattle: current bacterial 
and immunological findings. Animals. (2015) 5:1114–35. doi: 10.3390/ani5040400

 10. Solano L, Barkema HW, Mason S, Pajor EA, LeBlanc SJ, Orsel K. Prevalence and 
distribution of foot lesions in dairy cattle in Alberta. Canada J Dairy Sci. (2016) 
99:6828–41. doi: 10.3168/jds.2016-10941

 11. Orsel K, Plummer P, Shearer J, De Buck J, Carter SD, Guatteo R, et al. Missing 
pieces of the puzzle to effectively control digital dermatitis. Transbound Emerg Dis. 
(2018) 65:186–98. doi: 10.1111/tbed.12729

 12. Corlevic AT, Beggs DS. Host factors impacting the development and transmission of 
bovine digital dermatitis. Ruminants. (2022) 2:90–100. doi: 10.3390/ruminants2010005

 13. Capion N, Larsson EK, Nielsen OL. A clinical and histopathological comparison of 
the effectiveness of salicylic acid to a compound of inorganic acids for the treatment of 
digital dermatitis in cattle. J Dairy Sci. (2018) 101:1325–33. doi: 10.3168/jds.2017-13622

 14. Relun A, Lehebel A, Chesnin A, Guatteo R, Bareille N. Association between digital 
dermatitis lesions and test-day milk yield of Holstein cows from 41 French dairy farms. 
J Dairy Sci. (2013) 96:2190–200. doi: 10.3168/jds.2012-5934

 15. Jury A, Syring C, Becker J, Locher I, Strauss G, Ruiters M, et al. Prevalence of claw 
disorders in Swiss cattle farms. Schweiz Arch Tierheilkd. (2021) 164:779–90. doi: 
10.17236/sat00327

 16. Kofler J, Suntinger M, Mayerhofer M, Linke K, Maurer L, Hund A, et al. Benchmarking 
based on regularly recorded claw health data of Austrian dairy cattle for implementation in 
the cattle data network. Animals. (2022) 12:808. doi: 10.3390/ani12070808

 17. Berry SL, Read DH, Famula TR, Mongini A, Dopfer D. Long-term observations 
on the dynamics of bovine digital dermatitis lesions on a California dairy after topical 
treatment with lincomycin HCl. Vet J. (2012) 193:654–8. doi: 10.1016/j.tvjl.2012.06.048

 18. Vanhoudt A, Orsel K, Nielen M, van Werven T. An observational study on the 
management of digital dermatitis through a repeated risk assessment on 19 Dutch dairy 
herds. J Dairy Sci. (2021) 104:947–56. doi: 10.3168/jds.2020-18730

 19. Holzhauer M, Hardenberg C, Bartels CJ, Frankena K. Herd- and cow-level 
prevalence of digital dermatitis in the Netherlandsand associated risk factors. J Dairy 
Sci. (2006) 89:580–8. doi: 10.3168/jds.S0022-0302(06)72121-X

 20. Schopke K, Gomez A, Dunbar KA, Swalve HH, Dopfer D. Investigating the genetic 
background of bovine digital dermatitis using improved definitions of clinical status. J 
Dairy Sci. (2015) 98:8164–74. doi: 10.3168/jds.2015-9485

 21. Oliveira VHS, Sorensen JT, Thomsen PT. Associations between biosecurity 
practices and bovine digital dermatitis in Danish dairy herds. J Dairy Sci. (2017) 
100:8398–408. doi: 10.3168/jds.2017-12815

 22. Yang DA, Gates MC, Muller KR, Laven R. Bayesian analysis of herd-level risk 
factors for bovine digital dermatitis in New Zealand dairy herds. BMC Vet Res. (2019) 
15:125. doi: 10.1186/s12917-019-1871-3

 23. Van Hertem T, Maltz E, Antler A, Romanini CEB, Viazzi S, Bahr C, et al. Lameness 
detection based on multivariate continuous sensing of milk yield, rumination, and neck 
activity. J Dairy Sci. (2013) 96:4286–98. doi: 10.3168/jds.2012-6188

https://doi.org/10.3389/fvets.2023.1295430
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://doi.org/10.3390/ani5030369
https://doi.org/10.1016/j.cvfa.2017.02.002
https://doi.org/10.1016/j.cvfa.2017.02.002
https://doi.org/10.3168/jds.2022-22243
https://doi.org/10.2147/VMRR.S62072
https://doi.org/10.1016/j.tvjl.2015.10.028
https://doi.org/10.17236/sat00201
https://doi.org/10.1016/j.vetmic.2012.05.018
https://doi.org/10.3168/jds.2013-6717
https://doi.org/10.3390/ani5040400
https://doi.org/10.3168/jds.2016-10941
https://doi.org/10.1111/tbed.12729
https://doi.org/10.3390/ruminants2010005
https://doi.org/10.3168/jds.2017-13622
https://doi.org/10.3168/jds.2012-5934
https://doi.org/10.17236/sat00327
https://doi.org/10.3390/ani12070808
https://doi.org/10.1016/j.tvjl.2012.06.048
https://doi.org/10.3168/jds.2020-18730
https://doi.org/10.3168/jds.S0022-0302(06)72121-X
https://doi.org/10.3168/jds.2015-9485
https://doi.org/10.3168/jds.2017-12815
https://doi.org/10.1186/s12917-019-1871-3
https://doi.org/10.3168/jds.2012-6188


Magana et al. 10.3389/fvets.2023.1295430

Frontiers in Veterinary Science 09 frontiersin.org

 24. Arcidiacono C, Porto SMC, Mancino M, Cascone G. Development of a threshold-
based classifier for real-time recognition of cow feeding and standing behavioural 
activities from accelerometer data Comput. Electron Agric. (2017) 134:124–34. doi: 
10.1016/j.compag.2017.01.021

 25. Taneja M, Byabazaire J, Jalodia N, Davy A, Olariu C, Malone P. Machine learning 
based fog computing assisted data-driven approach for early lameness detection in dairy 
cattle. Comput Electron Agric. (2020) 171:105286. doi: 10.1016/j.compag.2020.105286

 26. Neethirajan S. The role of sensors, big data and machine learning in modern 
animal farming. Sens Bio-Sens Res. (2020) 29:100367. doi: 10.1016/j.sbsr.2020.100367

 27. Casella E, Cantor MC, Setser MMW, Silvestri S, Costa JHC. A machine learning 
and optimization framework for the early diagnosis of bovine respiratory disease. IEEE 
Access. (2023) 11:71164–79. doi: 10.1109/ACCESS.2023.3291348

 28. Cernek P, Bollig N, Anklam K, Dopfer D. Hot topic: detecting digital dermatitis 
with computer vision. J Dairy Sci. (2020) 103:9110–5. doi: 10.3168/jds.2019-17478

 29. Kang X, Zhang XD, Liu G. Accurate detection of lameness in dairy cattle with 
computer vision: a new and individualized detection strategy based on the analysis of 
the supporting phase. J Dairy Sci. (2020) 103:10628–38. doi: 10.3168/jds.2020-18288

 30. Vanhoudt A, Jacobs C, Caron M, Barkema HW, Nielen M, van Werven T, et al. 
Broad-spectrum infrared thermography for detection of M2 digital dermatitis lesions 
on hind feet of standing dairy cattle. PLoS One. (2023) 18:e0280098. doi: 10.1371/
journal.pone.0280098

 31. Borchers MR, Chang YM, Tsai IC, Wadsworth BA, Bewley JM. A validation of 
technologies monitoring dairy cow feeding, ruminating, and lying behaviors. J Dairy 
Sci. (2016) 99:7458–66. doi: 10.3168/jds.2015-10843

 32. Pavlenko A, Bergsten C, Ekesbo I, Kaart T, Aland A, Lidfors L. Influence of digital 
dermatitis and sole ulcer on dairy cow behaviour and milk production. Animal. (2011) 
5:1259–69. doi: 10.1017/S1751731111000255

 33. Thomas AD, Orsel K, Cortes JA, Pajor EA. Impact of digital dermatitis on feedlot cattle 
behaviour. Appl Anim Behav Sci. (2021) 244:105468. doi: 10.1016/j.applanim.2021.105468

 34. Bikker JP, van Laar H, Rump P, Doorenbos J, van Meurs K, Griffioen GM, et al. 
Technical note: evaluation of an ear-attached movement sensor to record cow feeding 
behavior and activity. J Dairy Sci. (2014) 97:2974–9. doi: 10.3168/jds.2013-7560

 35. Dopfer D, Koopmans A, Meijer FA, Schukken YH, Szakall I, Klee W, et al. 
Histological and bacteriological evaluation of digital dermatitis in cattle, with special 
reference to spirochaetes and Campylobacter faecalis. Vet Rec. (1997) 140:620–3. doi: 
10.1136/vr.140.24.620

 36. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and 
model selection. IJCAI. (1995) 14:1137–45.

 37. Olson RS, Moore JH. TPOT: a tree-based pipeline optimization tool for automating 
machine learning In: Hutter F, Kotthoff L and Vanschoren J. Eds. Workshop on automatic 
machine learning PMLR. (Proceedings of the 2016 Workshop on Automatic Machine 
Learning, AutoML 2016, co-located with 33rd International Conference on Machine 
Learning (ICML 2016) New York City, NY, USA) (2016). 66–74. Available at: https://
dblp.org/rec/conf/icml/2016automl.html

 38. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-
learn: machine learning in Python. Machine Learning Res. (2011) 12:2825–30.

 39. Lazebnik T, Fleischer T, Yaniv-Rosenfeld A. Benchmarking biologically-inspired 
automatic machine learning for economic tasks. Sustainability. (2023) 15:11232. doi: 
10.3390/su151411232

 40. Liu R, Liu E, Yang J, Li M, Wang F. Optimizing the hyper-parameters for SVM by 
combining evolution strategies with a grid search In: Huang DS, Li K, Irwin GW and  
Eds. Intelligent control and automation: International conference on intelligent computing, 
ICIC Kunming. Berlin: Springer (2006). 712–21.

 41. Lazebnik T, Somech A, Weinberg AI. SubStrat: a subset-based optimization 
strategy for faster AutoML. Proc VLDB Endowment. (2022) 16:772–80. doi: 
10.14778/3574245.3574261

 42. Vidal G, Sharpnack J, Pinedo P, Tsai IC, Lee AR, Martinez-Lopez B. Impact of 
sensor data pre-processing strategies and selection of machine learning algorithm on 
the prediction of metritis events in dairy cattle. Prev Vet Med. (2023) 215:105903. doi: 
10.1016/j.prevetmed.2023.105903

 43. Likas A, Vlassis N, Verbeek JJ. The global k-means clustering algorithm. Pattern 
Recogn. (2003) 36:451–61. doi: 10.1016/S0031-3203(02)00060-2

 44. Srinath KR. Python–the fastest growing programming language. Int Res J Eng 
Technol. (2017) 4:354–7.

 45. Havlicek LL, Peterson NL. Robustness of the Pearson correlation against violations 
of assumptions. Percept Mot Skills. (1976) 43:1319–34. doi: 10.2466/pms.1976.43.3f.1319

 46. Shami L, Lazebnik T. Implementing machine learning methods in estimating the 
size of the non-observed economy. Comput Econ. (2023). 1–18. doi: 10.1007/
s10614-023-10369-4

 47. Rokach L. Decision Forest: twenty years of research. Information Fusion. (2016) 
27:111–25. doi: 10.1016/j.inffus.2015.06.005

 48. Belgiu M, Dragut L. Random forest in remote sensing: a review of applications and 
future directions. ISPRS J. (2016) 114:24–31. doi: 10.1016/j.isprsjprs.2016.01.011

 49. Jiang L, Cai Z, Wang D, Jiang S. Survey of improving k-nearest-neighbor for 
classification. In fourth international conference on fuzzy systems and knowledge 
discovery. IEEE. (2007) 1:679–83. doi: 10.1109/FSKD.2007.552

 50. Patro S, Sahu KK. Normalization: a preprocessing stage. arXiv. (2015). doi: 
10.48550/arXiv.1503.06462

 51. Kalousis A, Prados J, Hilario M. Stability of feature selection algorithms, Fifth IEEE 
international conference on data mining, Houston, TX, USA (2005), pp.8.

 52. Tsai IC, Mayo LM, Jones BW, Stone AE, Janse SA, Bewley JM. Precision dairy 
monitoring technologies use in disease detection: differences in behavioral and 
physiological variables measured with precision dairy monitoring technologies between 
cows with or without metritis, hyperketonemia, and hypocalcemia. Livestock Sci. (2021) 
244:104334. doi: 10.1016/j.livsci.2020.104334

 53. Soriani N, Trevisi E, Calamari L. Relationships between rumination time, 
metabolic conditions, and health status in dairy cows during the transition period. J 
Anim Sci. (2012) 90:4544–54. doi: 10.2527/jas.2011-5064

 54. Barker ZE, Vazquez Diosdado JA, Codling EA, Bell NJ, Hodges HR, Croft DP, et al. 
Use of novel sensors combining local positioning and acceleration to measure feeding 
behavior differences associated with lameness in dairy cattle. J Dairy Sci. (2018) 
101:6310–21. doi: 10.3168/jds.2016-12172

 55. Harris-Bridge G, Young L, Handel I, Farish M, Mason C, Mitchell MA, et al. The 
use of infrared thermography for detecting digital dermatitis in dairy cattle: what is the 
best measure of temperature and foot location to use? Vet J. (2018) 237:26–33. doi: 
10.1016/j.tvjl.2018.05.008

 56. Pirkkalainen H, Talvio I, Kujala-Wirth M, Soveri T, Orro T. Acute phase response 
of sole ulcer, white line disease and digital dermatitis in dairy cows. Vet Anim Sci. (2022) 
17:100253. doi: 10.1016/j.vas.2022.100253

 57. Benaissa S, Tuyttens FAM, Plets D, Martens L, Vandaele L, Joseph W, et al. 
Improved cattle behaviour monitoring by combining ultra-wideband location and 
accelerometer data. Animal. (2023) 17:100730. doi: 10.1016/j.animal.2023.100730

 58. Hosseininoorbin S, Layeghy S, Kusy B, Jurdak R, Bishop-Hurley GJ, Greenwood 
PL, et al. Deep learning-based cattle behaviour classification using joint time-frequency 
data representation. Comput Electr Agric. (2021) 187:106241. doi: 10.1016/j.
compag.2021.106241

 59. Cabezas J, Yubero R, Visitacion B, Navarro-Garcia J, Algar MJ, Cano EL, et al. 
Analysis of accelerometer and GPS data for cattle behaviour identification and 
anomalous events detection. Entropy. (2022) 24:336. doi: 10.3390/e24030336

 60. Gibbons JM, Lawrence AB, Haskell MJ. Measuring sociability in dairy cows. Appl 
Anim Behav Sci. (2010) 122:84–91. doi: 10.1016/j.applanim.2009.11.011

 61. Proudfoot KL, Jensen MB, Weary DM, von Keyserlingk MAG. Dairy cows seek 
isolation at calving and when ill. J Dairy Sci. (2014) 97:2731–9. doi: 10.3168/
jds.2013-7274

 62. Ruuska S, Kajava S, Mughal M, Zehner N, Mononen J. Validation of a pressure 
sensor-based system for measuring eating, rumination and drinking behaviour of dairy 
cattle. Appl Anim Behav Sci. (2016) 174:19–23. doi: 10.1016/j.applanim.2015.11.005

 63. Achour B, Belkadi M, Filali I, Laghrouche M, Lahdir M. Image analysis for 
individual identification and feeding behaviour monitoring of dairy cows based on 
convolutional neural networks (CNN). Biosyst Eng. (2020) 198:31–49. doi: 10.1016/j.
biosystemseng.2020.07.019

 64. Ren K, Bernes G, Hetta M, Karlsson J. Tracking and analysing social interactions 
in dairy cattle with real-time locating system and machine learning. J Syst Archit. (2021) 
116:102139. doi: 10.1016/j.sysarc.2021.102139

https://doi.org/10.3389/fvets.2023.1295430
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://doi.org/10.1016/j.compag.2017.01.021
https://doi.org/10.1016/j.compag.2020.105286
https://doi.org/10.1016/j.sbsr.2020.100367
https://doi.org/10.1109/ACCESS.2023.3291348
https://doi.org/10.3168/jds.2019-17478
https://doi.org/10.3168/jds.2020-18288
https://doi.org/10.1371/journal.pone.0280098
https://doi.org/10.1371/journal.pone.0280098
https://doi.org/10.3168/jds.2015-10843
https://doi.org/10.1017/S1751731111000255
https://doi.org/10.1016/j.applanim.2021.105468
https://doi.org/10.3168/jds.2013-7560
https://doi.org/10.1136/vr.140.24.620
https://dblp.org/rec/conf/icml/2016automl.html
https://dblp.org/rec/conf/icml/2016automl.html
https://doi.org/10.3390/su151411232
https://doi.org/10.14778/3574245.3574261
https://doi.org/10.1016/j.prevetmed.2023.105903
https://doi.org/10.1016/S0031-3203(02)00060-2
https://doi.org/10.2466/pms.1976.43.3f.1319
https://doi.org/10.1007/s10614-023-10369-4
https://doi.org/10.1007/s10614-023-10369-4
https://doi.org/10.1016/j.inffus.2015.06.005
https://doi.org/10.1016/j.isprsjprs.2016.01.011
https://doi.org/10.1109/FSKD.2007.552
https://doi.org/10.48550/arXiv.1503.06462
https://doi.org/10.1016/j.livsci.2020.104334
https://doi.org/10.2527/jas.2011-5064
https://doi.org/10.3168/jds.2016-12172
https://doi.org/10.1016/j.tvjl.2018.05.008
https://doi.org/10.1016/j.vas.2022.100253
https://doi.org/10.1016/j.animal.2023.100730
https://doi.org/10.1016/j.compag.2021.106241
https://doi.org/10.1016/j.compag.2021.106241
https://doi.org/10.3390/e24030336
https://doi.org/10.1016/j.applanim.2009.11.011
https://doi.org/10.3168/jds.2013-7274
https://doi.org/10.3168/jds.2013-7274
https://doi.org/10.1016/j.applanim.2015.11.005
https://doi.org/10.1016/j.biosystemseng.2020.07.019
https://doi.org/10.1016/j.biosystemseng.2020.07.019
https://doi.org/10.1016/j.sysarc.2021.102139

	Machine learning approaches to predict and detect early-onset of digital dermatitis in dairy cows using sensor data
	1 Introduction
	2 Materials and methods
	2.1 Animal management and data collection
	2.2 Machine learning models
	2.3 Detection machine learning model
	2.4 Prediction machine learning model

	3 Results
	3.1 Digital dermatitis detection on day 0
	3.2 Digital dermatitis prediction prior to day 0

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions

	 References

