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Understanding how genetic variants alter phenotypes is an essential aspect of 
genetic research. Copy number variations (CNVs), a type of prevalent genetic 
variation in the genome, have been the subject of extensive study for decades. 
Numerous CNVs have been identified and linked to specific phenotypes and 
diseases in horses. However, few studies utilizing whole-genome sequencing to 
detect CNVs in large horse populations have been conducted. Here, we performed 
whole-genome sequencing on a large cohort of 97 horses from 16 horse 
populations using Illumina Hiseq panels to detect common and breed-specific CNV 
regions (CNVRs) genome-wide. This is the largest number of breeds and individuals 
utilized in a whole genome sequencing-based horse CNV study, employing racing, 
sport, local, primitive, draft, and pony breeds from around the world. We identified 
5,053 to 44,681 breed CNVRs in each of the 16 horse breeds, with median lengths 
ranging from 1.9 kb to 8 kb. Furthermore, using Vst statistics we  analyzed the 
population differentiation of autosomal CNVRs in three diverse horse populations 
(Thoroughbred, Yakutian, and Przewalski’s horse). Functional annotations were 
performed on CNVR-overlapping genes and revealed that population-differentiated 
candidate genes (CTSL, RAB11FIP3, and CTIF) may be  involved in selection and 
adaptation. Our pilot study has provided the horse genetic research community 
with a large and valuable CNVR dataset and has identified many potential horse 
breeding targets that require further validation and in-depth investigation.
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1 Introduction

Understanding how genetic variations affect phenotypes is an essential topic in genetic 
research. Copy number variations (CNVs), a form of common genetic variation in the 
genome, have attracted a great deal of research attention for decades. It is generally 
accepted to classify CNVs as duplication or deletion, depending on whether the number 
of copies increases or decreases, and to define CNVs as having a length greater than 1 
kilobase (kb) to several megabase (Mb) (1, 2). In contrast to single nucleotide 
polymorphisms (SNPs), which are changes of a single base pair, CNVs often result in larger 
genetic effects than SNPs, such as alterations in gene dosage, gene structure, regulatory 
region, and expression. CNVs may therefore be significant contributors to variations in 
phenotypes and adaptations through evolution in horses during domestication and 
artificial selection (3–5).
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In farm animals, a large amount of CNVs have been identified and 
linked to certain phenotypes (6). For decades, array comparative 
genomic hybridization (aCGH) microarrays and SNP chips have been 
the most prevalent techniques for detecting CNVs. Using whole-
genome sequencing, unique and rare CNVs in populations can 
be captured more precisely and comprehensively due to technological 
advances in sequencing (7). In recent years, horse CNV research has 
also progressed. The graying of a horse’s coat, for instance, is caused 
by a CNV duplication on the intron of the STX17 gene, which makes 
gray horses susceptible to melanoma (8). The CNVs in Y chromosome-
linked genes were evaluated for their association with aberrant sexual 
development and sterility in stallions (9), and a 200 kb CNV 
homozygous deletion on horse chromosome 29 was thought to 
be associated with equine sex development disorders (10). CNVs in 
the MHC region on chromosome 20 were suggested to be associated 
with insect bite hypersensitivity in the Friesian horse population (11). 
Several CNV-overlapping candidate genes were discovered to 
be associated with thermal adaptation in Jinjiang horses (12). Recent 
CNV survey studies utilized European horse breeds (13), Criollo 
Argentino horses (14), South Korean horse breeds (15), and purebred 
Spanish horses (16). However, all of these studies mentioned above 
were conducted either using PCRs, microarrays, or SNP chips and to 
our best knowledge, only a few studies were conducted using whole-
genome sequencing to detect CNVs in horse populations (17, 18).

In this study, we performed whole-genome sequencing on a large 
cohort of 97 horses from 16 horse populations to detect common and 
breed-specific CNV regions (CNVRs) across the entire genome. This 
is the largest number of breeds and individuals utilized in a whole 
genome sequencing-based horse CNV study, employing horse breeds 
with distinct breed characteristics such as racing, sport, local, 
primitive, draft, and pony breeds from all over the world. Using the 
Vst statistics, we  also analyzed the population differentiation in 
autosomal CNVRs in our three key horse populations (Thoroughbred 
is an intensively artificially selected horse breed, especially for racing 
performance; Yakutian is a local horse breed free to roam the Siberian 
Far East; and Przewalski’s horse is a primitive horse represented the 
sister lineage of modern domestic horses) for every breed pair. CNVR-
overlapping genes were functionally annotated and putative genes for 
selection and adaptation were suggested. Our pilot study has provided 
the horse genetic research community with a large and valuable 
CNVR dataset and has identified many potential horse breeding 
targets that require further validation and in-depth investigation.

2 Materials and methods

2.1 Whole-genome sequencing data 
overview and quality control

In this study, we  collected 35 horse fresh blood samples and 
extracted DNA samples using the standard phenol-chloroform method. 
we performed high-coverage (average 25.55 × depth) whole-genome 
sequencing on 35 horses using Illumina HiSeq  4,000 sequencer 
(Illumina, Inc., San Diego, CA, United States) for 150 bp paired-end 
reads with the 350 bp short-insert libraries according to the 
manufacturer’s protocol. We  also retrieved dozens of horse whole-
genome sequencing datasets from public databases. In total, our dataset 
consisted of 97 horses of 16 horse breeds from around the world, each 

with its distinctive characteristics, including endurance breeds: Arabian 
(AB) and Akhal-Teke (AT), light draft horses: Franches-Montagnes 
(MON) and Friesian (FS), local breeds: Mongolian (MG), Jeju (JEJU), 
and Yakutian (YAK), pony breeds: Debao (DB) and Shetland pony (ST), 
primitive wild horse: Przewalski’s horse (PRZ), racing breeds: American 
Quarter horse (QT), Standardbred (STD), and Thoroughbred (TB), and 
sports breeds: Andalusian (AL), Criollo (CR) and Hanoverian (HAN). 
As described in our previous studies (19, 20), in brief, raw sequencing 
reads first underwent quality control using FastQC software,1 and then 
clean reads were aligned to the horse reference genome (EquCab3.0) 
using BWA (21).

2.2 Detection of CNVs and CNVRs

For each horse individual, CNVs were defined using CNVnator (22) 
with the bin size set to 100 bp based on the sequencing depth and filtered 
out the lengths less than 1 kb. Only CNVs obtained in two or more 
individuals in each population were retained, and CNVs that were located 
on unplaced scaffolds were removed. The overlapping CNVs with a 50% 
reciprocal overlap rate were merged into population CNVRs in 16 horse 
populations. The types of CNVRs were classified as duplication (Dup), 
deletion (Del) and mixed (within the same CNVR, some breeds have 
Dups while others have Dels) based on their copy numbers.

2.3 Comparison with published CNVRs

To validate the reliability and novelty of our study, the positions 
of detected CNVRs were compared with 11 published horse CNV 
studies (12, 13, 15, 16, 23–29) based on the EquCab3.0 
reference genome.

2.4 Genomic selection signals based on 
CNVRs

The Vst statistic was used to access the population differential 
extent based on CNVRs between horse breeds. The Vst was calculated 
using the following equation: Vst Vt Vs Vt= −( ) /  (30). The Vt denotes 
the total variance of copy number variations between the two 
populations. The Vs represents the mean variance of copy number 
variations within the population which is weighted by the 
corresponding population size. The pairwise Vst of CNVRs located on 
autosomes was calculated between TB, YAK, and PRZ. The top 1% of 
CNVR-based genomic selective signals were considered putative 
population-differentiated CNVRs.

2.5 Functional annotation and enrichment 
analysis of CNVRs

The CNVRs were annotated using ANNOVAR (31) according to 
their physical locations on the horse genome and classified as intergenic, 

1 http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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intronic, exonic, downstream, upstream, splicing site, 3’UTR, and 
5’UTR. The CNVRs were further annotated by searching the horse QTL 
database (The Animal QTLdb (32), https://www.animalgenome.org/
cgi-bin/QTLdb/EC/index, accessed on 20 July 2023).

Genes whose gene bodies overlapped with candidate CNVRs were 
referred to as CNVR-overlapping genes. The Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) functional 
enrichment analysis of CNVR-overlapping genes were performed 
using DAVID (33) (https://david.ncifcrf.gov/tools.jsp last accessed on 
12 August 2023).

3 Results

3.1 Detection of horse CNVRs

In total, 6195.88 Gb clean data from whole-genome sequencing of 
97 horses were analyzed. The average sequencing depth was 25.55× 
and the coverage rate of at least 4× was 93.28% ensuring the reliability 
of CNV detection (Supplementary Table S1). CNVs were first called 
for each horse (Supplementary Table S2), and the overlapping CNVs 
from the same population were then merged into breed CNVRs. 
We identified 5,053 to 44,681 breed CNVRs in each of the 16 horse 
breeds with median lengths from 1.9 kb to 8 kb (Table 1). The TB had 
the highest number of CNVRs accounting for 13.78% of the total 
genome length, while JEJU had the least number of CNVRs 
accounting for 6.21% of the total genome length. We found 2,036 
common CNVR-harboring genes shared by 16 horse breeds. Those 
common CNVR-harboring genes were mainly involved in immune 
response (GO:0019882, ecb05150, GO:0002504, GO:0002503, 
GO:0019886, ecb05340), metabolism (ecb04940, ecb01100) and 
neurotransmission (GO:0007268, GO:0050804, ecb04080, ecb04724, 

GO:0098887) (Supplementary Table S3). We  further searched for 
CNVR-harboring genes specific to each breed in the expectation of 
understanding whether CNVs might shape breed characteristics. 
We obtained gene function enrichment results from 6 horse breeds, 
and no results were obtained from the remaining 10 breeds due to too 
few breed-specific CNVR-harboring genes (Supplementary Table S4 
and Supplementary Figure S1). The TB-specific CNVR-harboring 
genes were involved in lipid metabolism and proteoglycan 
biosynthesis. The YAK-specific CNVR-harboring genes were involved 
in complement and coagulation cascades and one-carbon metabolic 
processes. The QT-specific CNVR-harboring genes were mainly 
involved in primary immunodeficiency and neuroactive ligand-
receptor interaction. The PRZ-specific CNVR-harboring genes were 
involved in immune response and cytokine–cytokine receptor 
interactions. The MG-specific CNVR-harboring genes were involved 
in the detection of chemical stimuli involved in the sensory perception 
of bitter taste and the inflammatory response. The JEJU-specific 
CNVR-harboring genes were involved in the positive regulation of 
osteoblast differentiation.

By merging the overlapping CNVs in all 16 horse breeds, we obtained 
43,838 population CNVRs including 517 duplications, 12,275 deletions, 
and 31,046 mixed events (Supplementary Table S5). The distribution of 
CNVRs by length was uneven throughout the horse genome (Figure 1) 
with a median length of 9.3 kb. The largest number of CNVRs with 
lengths of 10 kb–20 kb accounted for 18.13%. The second and third most 
abundant CNVRs were 2 kb–4 kb and 4 kb–6 kb in length, accounting for 
14.21 and 12.18%, respectively. The number of CNVRs longer than 
0.4 Mb is rare accounting for only 1.24%. Population CNVRs were further 
annotated according to their position on the horse genome as intergenic, 
exonic, intronic, upstream, downstream, 3’UTR, and 5’UTR. There were 
35.8% of CNVRs located intergenic, 35.9% of CNVRs located exonic, and 
15.9% of CNVRs located intronic (Supplementary Figure S2).

TABLE 1 The general statistic of copy number variation regions (CNVRs) of 16 horse breeds.

Breed 
Abbr.

Sample (n) CNVR (n) Duplication 
(n)

Deletion (n) Mixed 
(n)

Median 
length 

(bp)

Total 
Length 

(bp)

CNVR 
Coverage 

(%)a

AB 5 7,208 4,540 7,804 1,041 3,000 91,830,026 3.81%

AL 4 6,932 4,412 5,546 695 3,700 91,910,526 3.82%

AT 5 7,435 4,577 8,009 1,133 2,800 91,746,812 3.81%

CR 2 6,369 2,996 4,357 362 4,500 88,872,468 3.69%

DB 5 8,939 5,888 8,200 1,508 3,300 92,993,095 3.86%

FS 5 7,601 4,579 8,430 987 2,900 85,405,012 3.55%

HAN 4 6,302 3,708 6,329 851 3,500 95,100,747 3.95%

JEJU 2 5,053 2,369 2,545 338 8,000 149,649,478 6.21%

MG 5 10,330 5,875 8,523 2,393 3,700 115,915,549 4.81%

MON 5 17,136 4,438 33,666 1,381 1,900 122,939,957 5.10%

PRZ 10 6,770 3,657 7,478 1,330 3,700 83,850,677 3.48%

QT 7 22,079 8,480 24,902 8,873 2,402 151,000,707 6.27%

ST 3 17,730 8,033 20,025 5,140 2,400 136,584,714 5.67%

STD 4 12,953 4,723 12,301 2,598 2,601 121,737,989 5.05%

TB 22 44,681 37,809 57,957 12,740 3,200 331,917,190 13.78%

YAK 9 9,407 7,355 10,371 2,301 3,301 115,508,128 4.79%

aCNVR coverage in the horse genome was calculated using the total length of CNVRs divided by the horse genome length for each horse breed.
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3.2 Comparison with published reports and 
horse quantitative trait loci database

We compared the population CNVRs obtained from 97 horses, 
with the results of 11 published studies of horse CNVs, and found 
1,973 CNVRs overlapped with the results of the published studies 
(Supplementary Table S6). To further reveal the relatedness of CNVRs 
to horse traits, the obtained CNVRs were searched in the horse QTL 
database. We found that 5,692 CNVRs overlapped with 58 horse QTL 
traits (Supplementary Table S7). The top 5 categories of horse QTLs 
that overlapped with CNVRs were osteochondrosis and 
osteochondrosis dissecans (1,311 CNVRs), recurrent airway 
obstruction (989 CNVRs), navicular bone morphology (617 CNVRs), 
recurrent exertional rhabdomyolysis (378 CNVRs), and equine 
sarcoids (300 CNVRs).

3.3 CNVR-based population differentiation

Using Vst statistics, we examined the CNVR-based population 
differentiation among three key horse populations. The pairwise Vst 
was calculated between TB and YAK, TB and PRZ, and YAK and 
PRZ. The top 1% value of Vst was determined as a threshold value for 
the three comparisons based on the empirical distribution and the 
top 1% values of Vst were about 0.504 (TB vs. YAK), 0.511 (TB vs. 
PRZ), and 0.496 (YAK vs. PRZ). The number of CNVRs within the 1% 

highest Vst values was 243 in the TB vs. YAK pair, 280 in the TB vs. 
PRZ pair, and 247 in the YAK vs. PRZ pair. As shown in Figure 2 and 
Supplementary Table S8, the different CNVRs among the populations 
were unevenly distributed on the horse chromosome.

Between TB and YAK, 401 CNVR-overlapping genes showed 
significant differentiation and were mainly involved in olfactory 
transduction (ecb04740), fc gamma R-mediated phagocytosis 
(ecb04666), osteoclast differentiation (ecb04380), positive regulation 
of mitochondrial fusion (GO:0010636), negative regulation of gene 
expression (GO:0010629) and protein phosphorylation (GO:0001933). 
Between TB and PRZ, 370 CNVR-overlapping genes showed 
significant divergence and were mainly involved in defense/immunity 
response (GO:0006952, GO:0051673, GO:0019731, GO:0071222, and 
GO:0002227), hyaluronan metabolic process (GO:0030212) and 
intracellular protein transport (GO:0006886). Between YAK and PRZ, 
338 CNVR-overlapping genes showed significant population 
differentiation and were mainly involved in signal transduction 
(GO:0007165) and the hippo signaling pathway (ecb04390) 
(Supplementary Table S9).

It was worth noting that only three CNVR-overlapping annotated 
genes were presented in both the TB vs. YAK and TB vs. PRZ 
comparisons, and these genes may be associated with TB’s athletic 
ability (Supplementary Figure S3). The types of CNVR within three 
genes were deletions in the exonic region. Peroxiredoxin-like 2A 
(PRXL2A) regulates osteoclast differentiation (34, 35). The CNVR 
within PRXL2A was a deletion type in TB, YAK, and PRZ with a 

FIGURE 1

The distribution of CNVRs by length throughout the horse genome. Yellow, red, and blue represent deletion (Del), duplication (Dup), and Mixed (Del 
and Dup), respectively.
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length of 47,699 bp and was located in the exonic region on ECA1 
from 89,585,201 to 89,632,900 bp. Phosphoinositide-3-kinase 
regulatory subunit 2 (PIK3R2) is involved in cellular glucose 
homeostasis (36). The CNVR within PIK3R2 was not detected in PRZ, 
whereas a deletion type was detected in TB and YAK with a length of 
235,299 bp and was located in the exonic region on ECA21 from 
3,337,101 to 3,572,400 bp. Death-associated protein kinase 1 (DAPK1) 
is associated with myocardial injury (37). The CNVR within DAPK1 
was a deletion type with a length of 24,999 bp and was located in the 
exonic region on ECA23 from 2,866,801 to 2,891,800 bp. Those 

deletions of gene exons may result in truncated proteins, with loss of 
protein functions.

4 Discussion

Horses domesticated around 5,500 years ago, have played a crucial 
role in human society (38). Due to variations in social structure and 
geography, over 600 distinct horse breeds have been developed to 
meet the diverse needs of humans (39). The release of the horse 

FIGURE 2

Manhattan plots of genome-wide pairwise Vst for CNVRs in three comparisons (A) TB vs. YAK (B) TB vs. PRZ (C) YAK vs. PRZ among autosomal 
chromosomes. The dotted line represents the top 1% Vst threshold.
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reference genome (40, 41) has accelerated investigations into the 
genetic mechanisms underlying complex traits in horses. To date, 
many studies have focusing on the discovery of CNVs in horses, but 
the vast majority of these studies have employed SNP chips or 
microarrays, resulting in a lower resolution of detected CNVs (42).

In the present study, we  used the high-depth whole-genome 
sequencing data of 97 horse individuals from 16 global horse breeds 
to detect CNVs with a minimum resolution of 100 bp. We identified 
43,838 population CNVRs, of which 70.8% were classified as mixed 
type, demonstrating the high prevalence and polymorphic nature of 
CNV in horse populations. About 35.8% of CNVRs were located in 
intergenic regions, demonstrating the regulatory potential of CNVs. 
By comparing our results to more than a dozen published studies on 
horse CNV, we found that about 95% of the CNVRs were found for 
the first time in our study. This indicated that resequencing the entire 
genome at high depth using a large number of individuals and breeds 
can detect breed-specific CNVRs more frequently.

Olfactory receptors (ORs) belong to G protein-coupled receptors 
(GPCRs), which are predominantly expressed in nasal epithelial cells 
(43, 44). In addition to recognizing various odors to assist in feeding 
(45), ORs are widely distributed in other non-olfactory tissues (e.g., 
testis, liver, heart, and kidney) (46–49) and germ cells (sperm and 
oocytes) (50, 51) and play important roles in glucose and lipid 
metabolism (52), reproduction (51), and pathogen recognition (53). 
In our results, 330 OR genes harbored with population CNVRs 
accounted for 30% of all OR genes on the horse genome (54) 
suggesting potential gene targets for selection.

By comparing population CNVRs to the horse QTL database, 58 
equine QTLs were discovered to overlap with CNVRs. The top 
categories of horse QTLs that overlapped with CNVRs were 
osteochondrosis and osteochondrosis dissecans. Several CNVRs 
harboring genes, such as B cell receptor-associated protein 29 (BCAP29) 
and Wnt family member 9A (WNT9A), are located in osteochondrosis 
QTL regions. BCAP29 is associated with osteoblast differentiation (55, 
56). The CNVR within BCAP29 was a deletion type with a length of 
16,399 bp and was located in the exonic region on horse chromosome 4 
(ECA4) from 7,561,901 to 7,578,300 bp. WNT9A plays a key role in 
embryonic skeletal joint development (57, 58) and mice deficient in 
Wnt9a are susceptible to sporadic osteoarthritis as they age (59). The 
CNVR within WNT9A was also a deletion type with a length of 
59,199 bp and was located in the exonic region on ECA14 from 
94,378,801 to 94,438,000 bp. These identified CNVR-overlapping genes 
provided candidate markers for future horse breeding.

Selective sweep analysis can reveal potential genomic regions that 
have been subjected to artificial and natural selection during 
domestication and acclimation. By conducting pairwise Vst statistics, 
we  further screened for significantly different CNVRs among TB, 
YAK, and PRZ horse populations. The three horse breeds were 
selected based on their distinguishing characteristics (TB: racing 
horse; YAK: local horse; PRZ: primitive horse) and sufficient numbers 
of individuals of each breed in our data set. In TB, YAK, and PRZ, only 
three CNVR-overlapping protein-coding genes (cathepsin L, CTSL; 
RAB11 family interacting protein 3, RAB11FIP3; and cap binding 
complex dependent translation initiation factor, CTIF) showed 
significant pairwise differences in all three comparisons 
simultaneously. CTSL encodes a lysosomal cysteine proteinase with a 
crucial function in intracellular protein catabolism and is involved in 
antigen processing (60), bone remodeling (61), and cardiac 
morphology (62). RAB11FIP3 is a member of the Rab GTPase family 

and regulates intracellular transport vesicle formation, targeting, and 
fusion (63). It is also involved in regulating T-cell activation (64). CTIF 
is a component of the translation initiation complex involved in 
protein translation (65) and an SNP within the CTIF gene is associated 
with hearing loss (66). These CNVR-overlapping genes with inter-
population copy number differentials suggested that CNVs may shape 
the genetic background of different horse breeds.

5 Conclusion

In this study, we made a comprehensive analysis using high-depth 
whole-genome sequencing technology of 97 horses belonging to 16 global 
horse breeds. We  defined common and breed-specific CNVRs and 
further analyzed the possible functions of CNVR-overlapping genes using 
enrichment analysis and QTL database searches. Based on pairwise Vst 
statistics, we  examined the CNVR-based population differentiation 
among three key horse populations and revealed potential genomic 
regions that might be under selection. Our pilot study provided a large 
and valuable CNVR data set for the horse genetic research community 
and suggested many candidate targets for horse breeding.
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