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Introduction: Dogs are human companions and share environmental 
conditions with their owners. Epidemiological studies have shown that dogs 
seem to be good sentinel animals for the association of diseases and/or 
mortality provoked by chronic exposure to heavy metals (Cd, Pb).

Methods: In the present work, we analyze the registered death cases and 
population from the National Canine Registry from 2020 to 2022, involving a 
dog population of 582,564 and 17,507 deaths. The mortality rate in male and 
not-purebred dogs is higher than in female and purebred dogs, respectively. 
The mortality cases were cross-referenced with the environmental pollution 
data relating to the concentration of Cd and Pb detected, between 2012 and 
2022, in the various municipalities of the Liguria region. We then calculated 
SMR (Standardized Mortality Rate) throughout the region and found that 
mortality increases from the eastern to the western Ligurian coast.

Results and discussion: We observed that the most polluted areas present 
the highest SMRs (IRR  =  1.36, 95%CI: from 1.31 to 1.41). Considering dog ages, 
we found that mortality in young dogs is not affected by pollution, while 
mortality in old dogs (10–20 years old) is heavily affected by it (IRR  =  8.97, 
95%CI from 8.09 to 9.93). In conclusion, the data suggest the importance of 
canine health and biomonitor studies and provide a basis for future research 
involving both animal and human health.
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1 Introduction

Dogs have been domesticated for thousands of years and have become an integral part 
of human society, serving as companions, workers, and guardians and sharing 
environmental conditions with human beings. Some authors (1) have reported that the 
remaining life period of dog owners could realistically be calculated through knowledge 
of their dog’s life expectancy. To date, most canine death literature are based only on pets’ 
owners statements collected during surveys (2, 3) and dog adoption databases obtained 
from referral or first-opinion veterinary caseloads (4, 5) or insurance databases (6). Due 
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to collection difficulties, which often occur in animal registries, 
epidemiological studies involving animals are rare (7).1

Domestic animals share the same outdoor environment as 
humans and are therefore exposed to outdoor pollutants. Unlike 
humans, pets do not engage in occupational activities or lifestyle 
habits such as smoking or consuming alcohol, which could confound 
the interpretation of epidemiological findings. A case–control study 
was conducted in the “triangle of death” region near Naples, based on 
data obtained from the Cancer Registry of the Sanitary Local Unit 
Naples 4 (8), to investigate the link between pollution and mortality/
tumors. The study examined the incidence of tumors in two macro 
areas, one classified as “low risk” and the other as “high risk.” The 
authors found that animals living in the most polluted area had a 55% 
higher risk of developing tumors, particularly lymphoma, with a 72% 
higher risk. Another recent study conducted in Italy identified 
neoplastic disease as the fourth leading cause of death in dogs (9), 
raising the possibility that environmental exposure may play a role in 
canine mortality.

Environmental monitoring has traditionally been conducted 
using non-living matter, but recent advancements have led to the use 
of living organism samples, known as “biomonitors.” Among the 
most widely used living proxies, moss serves as a key biomonitoring 
matrix for the temporal assessment of trace element air pollution 
levels. Moss biomonitoring has been applied to air pollution studies 
in the Republic of Moldova as part of the International Cooperative 
Program on Effects of Air Pollution on Natural Vegetation and Crops 
(UNECE ICP Vegetation) (10–13). According to a report by the 
Ministry of Environment and Natural Resources (11, 14), the 
concentration of heavy metals in precipitation is correlated with their 
concentration detected in soil. Therefore, moss biomonitoring is 
considered the primary matrix for assessing the pollution level of 
trace elements in the air over time. Another common living proxy for 
environmental monitoring is sylvatic animals that consume mainly 
undergrowth matter and can bioaccumulate heavy metals in their 
target organs. In long-term studies, living organisms could provide a 
better understanding of environmental impacts over time by 
comparing environmental matrices. Analyses on living organisms 
can summarize all biological, chemical, physical factors monitored 
using environmental matrices and can give us an holistic overview of 
environmental changes (10–13). Thus, biomonitors provide a more 
comprehensive assessment of the ecosystem compared to monitoring 
based solely on environmental matrices. This peculiarity is pivotal in 
gradual and cumulative changes in the environment. A study 
conducted in six hunting areas in Viterbo (Italian Province) 
demonstrated that wild boars (WB) are more exposed to heavy metal 
contamination than farm animals due to their diet and habits, and 
they therefore represent a good environmental proxy. In WB, median 
values of heavy metals were slightly greater (0.125 mg kg−1) than in 
farm animal livers (0.112 mg kg−1) (15). This trend was confirmed by 
other risk-assessment studies that showed that health risks related to 
heavy metal exposure are greater for hunter populations than for the 
general populace (16). In addition, the reduction of habitats, climate 
change, and dietary habits has led to an increased presence of WB in 
recent years (17–20), and recreational hunting of WB and the 

1 https://www.ons.gov.uk

consumption of their meat further provides direct human contact 
with WB (20–22). Therefore, we  selected WB as an indicator of 
human exposure to pollutants, as already reported in the 
literature (20).

In this work, metal pollution information was obtained by wildlife 
biomonitors sampled within the Ligurian territories. Liguria is one of 
the smallest Italian regions (5,418 km2) and is bordered to the north by 
the Apennine Mountains and to the south by the Ligurian Sea. This 
unique geographical conformation entails the close proximity of rural 
areas and cities, along with a miscellany of pets and sylvatic animals, 
which, in turn, share the same environmental stressors. Thus, consistent 
with scientific literature (10–13), metals extracted from WB organs 
(liver and kidney) provide an overview of the metal exposure of pets 
and humans.

Environmental exposure to cadmium could be due to food and 
water heavy metal contamination (23). Global anthropogenic 
atmospheric cadmium emissions are primarily released from 
non-ferrous metal smelting, coal burning, and non-metallic mineral 
manufacturing and have increased from 1,679 tons to 2,246 tons 
during the last century (24). The increase in emissions has resulted in 
higher concentrations of cadmium in topsoil and vegetation, leading 
to increased human exposure (25). The health risks associated with 
cadmium are the outcome of a series of prolonged and continuous 
processes that link heavy metal emission sources to human exposure 
and accumulation, as described in previous studies as the “Cd transfer 
continuum” (24).

Cadmium is now recognized as a global public health hazard due 
to its persistent presence in the environment and its extended 
biological half-life (26). High intake of cadmium through the diet, 
similar to other heavy metals, can cause functional disturbances. Such 
effects are particularly severe in children, who absorb metals more 
efficiently than adults and are biologically and developmentally more 
sensitive to these effects (27).

As reported by other authors, Cd2+ leads to an immunosuppression 
status and negatively affects the immune function of monocyte-
derived macrophage (moMФ) cells, increasing susceptibility to 
infection (28).

Cadmium induces the synthesis of metallothionein, a 
cysteine-rich protein that can transport cadmium to target organs 
such as the kidneys and liver and binds to metabolites in tissues 
(29) causing cell damage (30). Cadmium also accumulates in the 
liver in its free form, where it reduces glutathione synthesis and 
promotes oxidative cell damage, leading to apoptosis and extensive 
hepatocellular necrosis (31, 32). The accumulation of cadmium 
can also interfere with vitamin D and calcium metabolism, 
resulting in bone demineralization, which ultimately leads to bone 
loss (33, 34). Furthermore, cadmium has been implicated in the 
pathogenesis of canine and human epilepsy or seizures (35) and 
chronic kidney disease (24, 36) and in the development of breast 
cancer (37).

Lead exposure has two main sources: food intake and coal 
combustion, with the latter being a significant source of lead 
exposure for children and domestic dogs (38). A recent study 
conducted in Australia demonstrated that during seasonal deer 
hunting, dogs are more exposed to heavy metals due to their 
consumption of game meat instead of common industrial feed 
(39). Hounds are typically fed low-quality meat cuts, also known 
as “trimmings,” which are closer to the bullet wound tract, 
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compared to the cuts consumed by human hunters (primarily loin/
backstraps and cuts from the hind legs) (40, 41). Once absorbed, it 
interferes with various biochemical reactions and cellular 
structures, causing gastrointestinal and neurological damage of 
varying degrees depending on the exposure duration and the 
species affected. Intoxication manifests as abdominal pain and 
diarrhea and can also lead to neurological damage, such as 
depression, ataxia, convulsions, and even death (42, 43). 
Furthermore, lead accumulation in the kidneys can cause proximal 
tubular nephropathy (42). Lead contamination in food has serious 
consequences for human health, and attention has recently been 
focused on lead toxicity in children (44, 45). Evidence suggests that 
cognitive development is impaired in children exposed to lead (46, 
47). Lead exposure in dogs can lead to other health problems, 
including neurodevelopmental impairment and anemia (48) and a 
recent study has reported that dogs with high hepatic lead 
concentrations exhibit microcytosis (49).

Previous research has established the need for the ongoing 
monitoring of heavy metal levels in food and the environment, with a 
particular focus on vulnerable populations, such as animals and 
humans (50). However, to the best of our knowledge, there has been 
limited exploration of the relationship between mortality in dogs and 
exposure to environmental pollution in existing literature. While some 
recent studies have examined heavy metal tolerance in animals (51) 
or identified common causes of death in dogs (9), none of these relate 
to the association between pollution data and the development of 
canine diseases.

Owing to the above, the aim of this study is to investigate whether 
there is an association between the mortality of dogs and 
environmental pollution by observing biomonitors of heavy metals in 
animals, such as WB, which are prevalent throughout the region and 
using the data from the National Canine Registry.

2 Materials and methods

2.1 Data collection and handling

2.1.1 Data were collected and handled by the 
partner institutions

Animal incidence data were derived from death cases and the 
population-based National Canine Registry. Individual information 
on dog breed, sex, neutered/spayed status, date of birth and death, and 
regional territorial unit code of the town of the owner’s residence were 
collected from 01 January 2020 to 31 December 2022. In this study, 
only Ligurian municipalities were studied. Some death information 
was censured and for this reason, individuals older than 20 years were 
reported as deaths by default. This censoring method is very common 
in animal registers (8, 9).

Environmental data were obtained from the Istituto 
Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta 
(IZS PLVA) database. Environmental data consisted of biomonitor 
data obtained by extracting the concentration of heavy metals (Cd 
and Pb) from target organs of WB between 2012 and 2022, which 
was conducted by the Chemical Unit of the Istituto Zooprofilattico 
Sperimentale del Piemonte, Liguria e Valle d’Aosta. All WB were 
passively and actively sampled and came from the 
Ligurian territory.

2.2 Chemical analysis of metals from WB 
organs

Tissue samples were homogenized and then transferred to a 
Teflon® microwave vessel and mixed with 65% nitric acid (Sigma-
Aldrich S.r.l., Milano, cat. V001338) and hydrogen peroxide 
(Merck Millipore, Germany, cat. 1.086.001.000). The samples were 
then digested using a laboratory microwave oven. The extract was 
filtered and diluted with ultrapure water. Determination of Cd2+ 
contents was carried out using the Analytical Yena 650 Plus Atomic 
Absorption Spectrometer with graphite furnace, at 228.8 nm, with 
a current of 4 mA. Quantification was obtained by the standard 
addition method, adding a certified standard solution purchased 
from Ultra Scientific to the matrix solution. The data were plotted 
as absorbance versus the amount of the standard added. The least 
squares line intersects the x-axis at the negative of the concentration 
of the sample. The quantification limit (LOQ) was equal to 
0.020 mg/kg. To test reagent purity and possible contamination, 
“blanks” were analyzed for each run using the procedure described 
as follows.

2.3 Data analysis

For the current study, age was obtained by subtracting the date of 
birth from the date of death and categorized into six age groups 
(4–5 years, 6–7 years, 8–9 years, 10–11 years, 12–13 years, 14 years and 
more), representing the entire population. For the sole purpose of 
performing the risk analysis, obtaining a more robust model, mortality 
rates were stratified by three age groups (4–5 years, 6–9 years, and 
10–20 years). Breeds were further classified in a dichotomous variable 
(purebred, not purebred).

A descriptive analysis of the data was carried out, taking into 
consideration calculated death age groups, sex, and owners’ city of 
residence for all 3 years of the study. Younger dogs (0–3 years old) were 
ignored as their exposure time was relatively short and there are 
various other factors responsible for animal death, such as 
hypothermia and birth weight (52, 53). The neutered/spayed status 
was not considered as no information on sterilization date 
was available.

The indirect standardized mortality ratio (SMR) was estimated as 
the ratio of observed deaths to expected deaths. Expected cases were 
estimated using regional rates stratified by sex (male/female), 
dichotomous breed variable (purebred, not purebred), 
and municipalities.

Environmental pollution was monitored considering cadmium 
and lead concentration separately. Descriptive maps were created 
classifying cadmium and lead concentrations according to the 
cadmium meat EU limit (Regulation (EC) No 853/2004 (54), 
Commission Regulation (EC) No 1881/2006 (55)).

To further understand the factors that contribute to dog 
mortality, we  developed a Poisson GLM (Generalized Linear 
Model) considering pollution level, sex, breed, death age group, 
and observation year as covariates. Models were estimated using 
the stepwise approach. Poisson is a statistical technique commonly 
used to model count data, such as mortality rates, and can account 
for the effects of multiple predictor variables. In our model, 
we included cadmium and lead concentrations (below or above the 

https://doi.org/10.3389/fvets.2023.1297311
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Giugliano et al. 10.3389/fvets.2023.1297311

Frontiers in Veterinary Science 04 frontiersin.org

EU limits) and we adjusted for confounding variables, namely, sex, 
breed, and age. All analyses were carried out using STATA 17.0 
(StataCorp, Texas, United States).

3 Results

3.1 Biomonitor dataset

Considering all samples processed from 2012 to 2022, the 
cadmium concentration average obtained was 0.53 ± 0.40 mg/kg 
and the lead average was 0.98 ± 0.21 mg/kg. Samples with a 
cadmium concentration higher than 0.50 mg/kg and lead higher 
than 0.10 mg/kg were considered contaminated (as reported in EC 
Reg. 1881/2006 for the liver of cattle, sheep, pigs, poultry, and 
horses) (55).

In the biomonitor dataset, more than 90% of the total Ligurian 
region was covered, meaning that our biomonitor dataset is significant 
in monitoring environmental pollution (Table S2, 
Supplementary material). Among all the municipalities where heavy 
metals were investigated, cadmium concentrations were above the EU 
limit for 72 municipalities and below the limit for 113. Regarding lead 
concentration, all municipalities presented concentrations above the 
EU limit. No heavy metal information was available for 
50 municipalities.

The level of pollution at the provincial level was then evaluated 
and the median cadmium and lead concentration for each Ligurian 
province was calculated considering the entire period between 2012 
and 2022. Cadmium mean in the Genova province was 0.38 mg/kg 
(95%CI: from 0.27 to 0.49), in Imperia, it was 0.38 mg/kg (95%CI: 
from 0.27 to 0.49), in La Spezia, it was 0.79 mg/kg (95%CI: from 0.60 
to 0.98), and in Savona, it was 0.64 mg/kg (95%CI: from 0.38 to 0.90). 
Regarding lead, the mean obtained in Genova was 0.33 mg/kg (95%CI: 
from 0.39 to 0.27), in Imperia, it was 0.35 mg/kg (95%CI: from 0.42 to 
0.28), in La Spezia, it was 0.71 mg/kg (95%CI: from 0.86 to 0.56), and 
in Savona, it was 0.12 mg/kg (95%CI: from 0.65 to 0.41). What 
emerges from the data is that municipalities within the La Spezia and 
Savona provinces represent the Ligurian areas with the highest 
cadmium concentrations (Figures 1A,B).

3.2 Individual data

The National Canine Registry database recorded 17,507 deaths 
from a total population of 582,564 in the Ligurian area from 2020 to 
2022. Gender distribution was equal (49% female dogs; 51% male 
dogs) and remained constant throughout the three years of the study 
period (Figures 2, 3).

Then, mortality rates were calculated for 2020, 2021, and 2022, 
stratified by sex, breed, and age group (Figure 4).

The mortality rate increases with age in male and female dogs and 
purebred and not-purebred dogs, as naturally expected.

However, the mortality rate in male and not-purebred dogs is 
higher than in female and purebred dogs, respectively. Raw regional 
mortality (deaths/1000) is 30.05 (95%CI: from 29.6 to 30.5). Stratified 
mortality rates are reported in Table 1. All standardized mortality rates 
(SMRs) for all Ligurian municipalities are reported in Table S1, 
Supplementary material.

Then, SMRs, stratified by sex and breed, were calculated and are 
presented in the heat map in Figure 5. As the map reveals, the highest 
SMR values are present in the western area of the region.

3.3 Risk factors: univariate and multivariate 
analysis

The graph (Figure 6) shows that the means of cadmium pollution 
extracted from WB and the dog mortality rates, expressed as per mil, 
have the same trends, they increase over time. In particular, cadmium 
concentration increased from 0.52 mg/kg in 2020 to 0.78 mg/kg in 
2022. The overall mortality rate increased from 24.6‰ (95%CI: from 
25.2 to 23.9) in 2020 to 36.1‰ (95%CI: from 35.5 to 37.0) in 2022. The 
female and male mortality rates also increased, from 17.7‰ (95%CI: 
from 14.1 to 21.3) in 2020 to 26.1‰ (95%CI: from 21.6 to 30.6) in 
2022 and from 19.5‰ (95%CI: from 15.2 to 23.8) in 2020 to 27.6‰ 
(95%CI: from 23.6 to 31.7) in 2022, respectively. The trends in dog 
breeds are observed to be  consistent with those in gender, with 
not-purebred breeds following the trend observed in male dogs and 
purebred breeds following the trend observed in female dogs. In the 
10–20 years age group, mortality increased from 42.3‰ (95%CI: from 
37.2 to 47.4) in 2020 to 67.3‰ (95%CI: from 60.5 to 74.2) in 2022.

Municipalities with higher mortality rates present significantly 
higher levels of cadmium, whereas no correlation between lead 
concentration and mortality was found. Passing from a low polluted 
area to a high polluted area, the mortality risk increases by 37% 
(95%CI: from 33 to 42%), while lead pollution does not present a risk 
factor. Male dogs have an 11% (95%CI: from 8 to 15%) higher risk of 
death than female dogs considering a multivariate model. 
Not-purebred dogs’ mortality risk is 26% (95%CI: from 22 to 30%) 
higher than purebred dogs in all models. In addition, mortality risk 
increases with age, at 64% (95%CI: from 46 to 83%) for the 6-9-years 
groups and 795% (95%CI: from 708 to 891%) for the oldest age group.

The two main causes of death for all Ligurian dogs are cancer and 
euthanasia. Among male dogs, skin tissues, the penis and testicles are 
the most affected by cancer, while, for female dogs, skin tissues and 
mammary glands are most affected, as reported in the 
Supplementary material (Figure S1 in Supplementary material). By 
cross-referencing the types of cancer with cadmium concentration, 
statistical elaboration shows that in most polluted areas, dogs are 68% 
(95%CI: from 60 to 74%) more likely to develop cancers in skin 
tissues, 96.4% (95%CI: from 94.5 to 97.6%) in the penis and testicles, 
and 86% (95%CI: from 82 to 89%) in mammary glands.

4 Discussion

Animal studies are a useful tool to ordinary life and to better and 
quickly understand human disease. In fact, dog mortality tables are 
used to estimate the typical remaining lifespan of adult dogs in canine 
adoption centers and to make decisions, in case of an adoption, on 
whether to link certain owners with certain dog breeds (1). In 
addition, in a One Health approach, animal studies provide another 
point of view in the study of human and environmental issues. 
Epidemiological studies conducted in humans and in the veterinary 
domain have shown that dogs are good sentinel animals for the study 
of the association of onset of diseases and/or mortality following 
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chronic exposure to heavy metals (Cd, Pb), especially in comparative 
oncology (28, 56, 57).

In our study, the data show that there is no difference in the 
patterns in all 3 years of the study period in the region investigated. 
Populations remain constant and equally distributed over the age 
groups. Death counts (Figures 2, 3) and mortality rates (Figure 4) 
increase with age, as naturally expected. These trends are common in 
female and male dogs and not-purebred and purebred dogs (Table 1).

Female dogs were found to have a lower mortality rate compared 
to male dogs; this result is in agreement with that reported by Teng 
et al. (1). However, the mortality difference between genders may 
be influenced by the neutering status of dogs. Neutering has a dual 
impact on the life expectancy of dogs. On the one hand, it is a 
protective measure against reproductive organ tumors, but on the 
other hand, it could also increase the risk of certain cancers, such as 

lymphoma and hemangiosarcoma, especially in females. On the 
recommendation of veterinary professionals, neutering of female dogs 
often occurs before or soon after the first estrus cycle, which is why it 
may occur earlier in females compared to males. Therefore, in order 
to gain a better understanding of the complex issue of the gender gap 
in lifespan, the neutering status and associated data play a key role and 
need to be collected in further dog registers.

Comparing Ligurian mortality to the mortality rates obtained 
from the Umbria Registry, our mortality rates are smaller, especially 
in not-purebred dogs (9). As the authors suggest (9), mastiff dogs, 
which are typically purebred, are often employed for hunting 
purposes. As such, larger dogs may be  more susceptible to 
environmental pollution compared to smaller “toy dogs” (which are 
often purebred) that are typically kept indoors or in less-exposed 
environments. A lifespan difference between small and molosser 

FIGURE 1

Heat map of Ligurian cities representing cadmium (A) and lead (B) concentrations. Legend: not sampled area (municipalities where no heavy metal 
data were available), low polluted area (cadmium <=0.50  mg/kg; lead <=0.10  mg/kg); polluted area (cadmium >0.50, lead >0.10).
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breeds has been demonstrated by two clinical studies (5, 58), but no 
significant difference was reported between different breeds within the 
same size category. So, assuming that the majority of not purebred 
dogs are of large size, as proposed by other authors (9), our findings 
are consistent with previous literature, suggesting that smaller dogs 
have a longer life expectancy. Nevertheless, a more comprehensive dog 
registry database that includes information on breed and size could 
facilitate further investigations into the differences in lifespan across 
various size categories of dogs.

Since in most of the Ligurian municipalities, the number of deaths 
was small and the variance was relatively small, we estimated SMRs 
using the indirect method, considering the regional mortality as a 
reference (59). All SMRs are reported in Table S1, in the 
Supplementary material.

To understand the relationship between environmental pollution 
and dog mortality, we have compared the mortality of dogs living in 
areas with different levels of heavy metal pollution. Considering that 
health issues and diseases arising from air pollution, especially the 
accumulation of metals, appear only after long time and require 
biological processes, we  opted to collect data on environmental 
pollution over 10 years and before the examined period for mortality 
assessments (44). Our data analysis revealed that dogs living in more 
cadmium-polluted areas had higher mortality rates than those living 
in less-polluted areas. The values of SMRs shown in Figure 5 are 

higher in the provinces of Savona and La Spezia, where higher 
concentrations of cadmium in WB were also found (Figure  1A). 
Municipalities with higher lead pollution are widespread throughout 
the region (Figure 1B). The higher pollution levels in Savona and La 
Spezia could be due to the presence of active thermoelectric power 
plants, military activity, intensive port activities, and LNG 
regasification terminals.

In univariate Poisson, there is a significant correlation between 
cadmium concentration and dog mortality, IRR = 1.37 (95%CI: from 
1.33 to 1.42). As observed by Franzoni et al. (28), this suggests that the 
animals are being chronically exposed to a heavy metal that can 
accumulate in target organs such as the liver and kidneys over time, 
potentially leading to the development of lethal pathologies and, in 
turn, higher mortality values. Nonetheless, since cadmium pollution 
is not the sole contributing factor to dog mortality, we performed a 
multivariate Poisson regression to predict dogs’ mortality, and this 
association remains significant in multivariate Poisson regression 
adjusted for sex, breed, and age.

According to Jianming Xu et al. (24), the primary sources of 
cadmium include non-ferrous metal smelting, coal consumption, 
biomass burning, non-metallic mineral manufacturing, and liquid 
fuel combustion. In 2019 and 2020, when pandemic restrictions were 
in place, industrial activities were reduced, resulting in lower 
cadmium emissions. Therefore, assuming that the cadmium 

FIGURE 2

Pyramid graph of the deaths (on the left) and the canine population (on the right) over the 3  years (2020–2021-2022) stratified by breed (purebred, not 
purebred) and age group (4–5  years, 6–7  years, 8–9  years, 10–11  years, 12–13  years, 14–20  years).

https://doi.org/10.3389/fvets.2023.1297311
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Giugliano et al. 10.3389/fvets.2023.1297311

Frontiers in Veterinary Science 07 frontiersin.org

bioaccumulated in 2020 represents the baseline level, the increase in 
the mean cadmium absorbed by WB (Figure 1A) is consistent with 
the actual scenario. However, the principal finding from the graph in 
Figure 4 is that the average mortality of dogs in the 10–20 years age 
group shows an upward trend, along with the increase in cadmium 
concentration, from 2020 to 2022. This could suggest that dogs 
exposed to cadmium contamination for at least 10 years may have 
receptors that are highly sensitive to cadmium stress, resulting in a 
slight deterioration of their health and ultimately leading to 
fatal events.

Some authors (60) think that even low concentrations of heavy 
metal ions taken in youth might become toxic with age and trigger 
degenerative diseases associated with protein misfolding. Once metal 
complex protein–cadmium is formed, the complex could affect both 
the native refolding pathway of chaperone-repaired (unfolded) 
aggregated proteins and also directly inactivate the chaperone 
machinery. Thus, elevated cellular metal concentrations would soon 
lead to cell death, overwhelming and neutralizing the protein quality-
control machinery (60–62). So, even low levels of heavy metals may 
be sufficient to induce cell death in aged cells, which have low levels 
of chaperones.

5 Conclusion

Our study has demonstrated, for the first time, that cadmium 
pollution is significantly correlated with a higher risk of mortality.

WB, as consolidated in scientific literature, are good 
environmental biomonitors and are therefore useful to monitor 
persistent pollutants in the habitats of ungulates (10–13, 17–20). 
Biomonitor data shows that 39% of the Ligurian municipalities 
investigated have cadmium concentrations above the EU limit 
(0.50 mg/kg), while all investigated municipalities have lead 
concentrations above the EU limit (0.10 mg/kg). Our findings 
indicate that WB are chronically exposed to cadmium (Figure 6), 
resulting in the accumulation of heavy metals in target organs over 
several years, as evidenced by a comparison of data from 2020 
and 2022.

We have also identified a difference in mortality risk between 
male and female dogs, with males at higher risk. Additionally, 
we have observed a 26% higher mortality risk for non-purebred 
dogs compared to purebred dogs in all models, and this could 
be affected by dog size, as reported by others (5, 9, 58). The data 
highlighted that metal pollution affects dogs’ health not in early 

FIGURE 3

Pyramid graph of the deaths (on the left) and the canine population (on the right) over the 3  years (2020–2021-2022) stratified by sex (female/male) 
and age group (4–5  years, 6–7  years, 8–9  years, 10–11  years, 12–13  years, 14–20  years).
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TABLE 1 Mortality rate (deaths/1000) stratified by breed and sex.

Breed Sex Deaths
(n)

Population
(n)

Mortality Rate
IC 95%

Not Purebred

Female 3,350 107,406
31.19

(95%CI: from 30.13 to 32.24)

Male 3,992 104,832
38.08

(95%CI: from 36.89 to 39.26)

Purebred

Female 4,615 176,447
26.15

(95%CI: from 25.4 to 26.9)

Male 5,550 193,879
28.62

(95%CI: from 27.87 to 29.37)

FIGURE 4

On the right: mortality rate stratified by sex (female/male) and age group (4–5  years, 6–7  years, 8–9  years, 10–11  years, 12–13  years, 14–20  years). On 
the left: mortality rate stratified by breed (purebred, not purebred) and age group (4–5  years, 6–7  years, 8–9  years, 10–11  years, 12–13  years, 
14–20  years).
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life but after at least 10 years of heavy metal accumulation. In 
cadmium-polluted municipalities, dogs are more likely to develop 
skin, penis, testicular, and mammary gland cancers compared 
with low-pollution areas. However, the data do not show a direct 
correlation between mortality and pollution. Further studies, 
including a more complex pollution panel, will facilitate a better 

understanding of the link between environmental pollution and 
pet mortality.

Using a Poisson regression model, we identified specific factors 
that contribute to dog mortality and provided insights into potential 
solutions for mitigating the impact of environmental pollution on 
animal and human health. The results show that risk factors include 

FIGURE 5

Heat map of Ligurian cities representing SMRs. Data were classified by quartiles (I, II, III, IV). Round brackets mean that value is not included in the 
range, while square brackets mean that value is included in the range.

FIGURE 6

On the right y-axis: trend of the average of the mortality rate (deaths/1000). On the left y-axis: trend of the cadmium concentration (mean) during 
2020–2022.
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cadmium pollution, gender, breed, and age. Lead pollution, which is 
widespread throughout the region with almost equal distribution, 
could not be considered as a significant parameter and it was therefore 
ignored in the multivariable models.

Close contact between rural and urban areas, which is very typical 
in Liguria, is a unique geographical conformation that leads to a 
miscellany of pets and sylvatic animals. In conclusion, this study 
highlights the importance of conducting health research on pets and 
using them as sentinels for human health. Our preliminary findings 
have substantial implications not only for the health and well-being of 
dogs but also for human health, providing a basis for future studies 
involving both animal and human health.
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