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Introduction: In 2021, Thailand reported the highest incidence of lumpy skin

disease (LSD) outbreaks in Asia. In response to the widespread outbreaks in cattle

herds, the government’s livestock authorities initiated comprehensive intervention

measures, encompassing control strategies and a national vaccination program.

Yet, the e�cacy of these interventions remained unevaluated. This research sought

to assess the nationwide intervention’s impact on the incidence of new LSD cases

through causal impact analysis.

Methods: Data on weekly new LSD cases in Thailand from March to September

2021 was analyzed. The Bayesian structural time series (BSTS) analysis was

employed to evaluate the causal relationship between new LSD cases in the pre-

intervention phase (prior to the vaccination campaign) and the post-intervention

phase (following the vaccination campaign). The assessment involved two distinct

scenarios, each determined by the estimated e�ective intervention dates. In both

scenarios, a consistent decline in new LSD cases was observed after the mass

vaccination initiative, while other control measures such as the restriction of

animal movement, insect control, and the enhancement of the active surveillance

approach remained operational throughout the pre-intervention and the post-

intervention phases.

Results and discussion: According to the relative e�ect results obtained from

scenario A and B, it was observed that the incidence of LSD cases exhibited

reductions of 119% (95% Credible interval [CrI]: −121%, −38%) and 78% (95% CrI:

−126, −41%), respectively. The BSTS results underscored the significant influence

of these interventions, with a Bayesian one-sided tail-area probability of p < 0.05.

This model-based study provides insight into the application of BSTS in evaluating

the impact of nationwide LSD vaccination based on the national-level data. The

present study is groundbreaking in two respects: it is the first study to quantify the

causal e�ects of a mass vaccination intervention on the LSD outbreak in Thailand,

and it stands as the only endeavor of its kind in the Asian context. The insights

collected from this study hold potential value for policymakers in Thailand and

other countries at risk of LSD outbreaks.
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1 Introduction

Lumpy skin disease (LSD) is a significant transboundary disease

affecting the bovine population causing substantial economic losses

in cattle industries across countries (1). The disease is caused by the

lumpy skin disease virus (LSDV) belonging to the Capripoxvirus

genus, of the Poxviridae family (2). Its primary symptoms include

nodular lesions on the skin and mucous membranes, enlargement

of lymph nodes, and elevated body temperature (3, 4). Affected

cattle may experience weight loss, decreased milk production, and

deteriorated skin quality, all contributing to economic losses.While

the morbidity rate of LSD is moderate, its mortality rate remains

low (5). The disease primarily spreads through insect vectors (1)

but can be effectively controlled and prevented with vaccines (6–

8). The primary strategies for managing and eradicating LSD are

restricting animal movement and mass vaccination (5, 9). Given

its potential for swift spread and significant economic impact, the

World Organization for Animal Health (WAOH) classifies LSD as

a notifiable disease, necessitating reporting of its occurrences (5).

While LSD is endemic in Africa (2), it reached the Middle East

in 2012, Europe in 2015, and had outbreaks in Russia between

2017 and 2019. The disease further spread to the South and East

Asia between 2019–2020 (3, 10, 11). From 2020 onwards, several

Southeast Asian countries reported multiple LSD outbreaks (12–

14) with Thailand recording the highest incidence in 2021 (15, 16).

Thailand reported the first LSD outbreak in cattle farming

areas in the northeastern region in April 2021 (17). Within

a few months, the disease had spread nationwide (18–20). In

response, starting from mid-April 2021, authorities in charge

of livestock implemented various control measures including

regulating cattle movement, disinfecting affected areas, managing

insect vectors, treating affected animals, closing live cattle markets,

and instituting active surveillance to identify infected premises.

Local veterinarians and livestock officers across the country took on

the responsibility to control LSD outbreaks in their respective areas

to contain the swift dissemination of lumpy skin disease viruses

from outbreak areas to other regions (18, 21, 22). Additionally,

a public awareness campaign was initiated to spread information

about preventive measures (18). This campaign involved in-person

meetings between livestock authorities and farmers, along with an

online website that regularly updated the status of LSD outbreaks

in the country. Despite these efforts, there was a continuous

rise in new LSD cases at the national level (23). In June 2021,

the government initiated a mass vaccination campaign with the

primary goal of controlling nationwide LSD outbreaks (24, 25).

After the implementation of mass vaccination, the number of new

LSD cases appeared to continuously decrease (18). Nonetheless,

there has been no study conducted to assess the impact of

this implementation.

Interrupted time series (ITS) analysis is increasingly used to

evaluate the effectiveness of interventions, ranging from clinical

treatments to broad public health policies (26–29). This analytical

method is commonly employed to assess the effectiveness of large-

scale population healthcare interventions. For example, ITS has

been applied to evaluate large-scale health interventions initiated

by the Australian government (27). Similarly, ITS has been

instrumental in assessing the causal impact of lockdown measures

on COVID-19 in both China (30) and Brazil (31) as well as the

influence of social distancing on the COVID-19 epidemic in the

United States (32) and Europe (33). Notably, the term “causal

impact” is frequently mentioned in research publications that use

ITS analysis to determine the effects of specific interventions (34–

36).

Various methods of ITS have been proposed such as

ordinary least square regression, generalized least square, restricted

maximum likelihood, and autoregressive integrated moving

average (29, 37–40). Within a Bayesian framework, Bayesian

structural time series (BSTS) model is widely used. This

quasi-experimental model is designed to assess the impact

of an intervention by predicting a counterfactual time series,

which represents the anticipated outcome in the absence of

the intervention. The counterfactual is determined through an

evaluation of the time series data. Ultimately, the assessment of

impact involves comparing the observed time series during the

intervention period to the counterfactual scenario generated by the

model, thereby determining the difference (41–43). This approach

has been adopted in multiple studies (35, 43–45). A distinct

advantage of BSTS over alternative models is its counterfactual

approach, while other models predominantly aim to identify

overarching trend changes (46). Thus, this study attempted to

determine the impact of the mass vaccination intervention using

the BSTS method. In this regard, we estimated the number of new

LSD cases under the premise that no mass vaccination campaign

took place. These estimates were then compared with the actual

figures from scenarios where mass vaccinations were conducted.

While many studies in Asia provide valuable insights into the

epidemiology of LSD, there is a limited number of research focusing

on large-scale national efforts to control LSD outbreaks in this

region. Hence, this study aims to determine the effectiveness of

the vaccination campaign implemented to control LSD outbreaks

in Thailand using the BSTS approach.

2 Materials and methods

2.1 LSD outbreaks and intervention policy

In 2021, LSD outbreaks were reported in numerous areas

across Thailand by the livestock authorities of the Department

of Livestock Development (DLD). The outbreaks were confirmed

through clinical diagnosis and by testing samples from LSD-

affected animals using the PCR technique at the DLD laboratory, as

described in previous studies (17–19). Figure 1 illustrates the LSD

outbreak areas in Thailand, indicating a widespread occurrence

throughout the country. Additionally, the number of new LSD

cases from April to November 2021 is illustrated in Figure 2. For

additional details, the graph presenting the number of new LSD

cases on a daily basis is included in Supplementary Figure S1.

This study utilized the reporting of the number of LSD-affected

cattle from the national livestock system organized by DLD.

Initially, provincial livestock officers provided the reports, having

received information from district-level officers investigating LSD

outbreaks on farms. Subsequently, using the data collected by

these livestock officers, the total number of new LSD cases was

calculated. The dataset utilized in the present study includes the
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FIGURE 1

Outbreak areas of lumpy skin disease in Thailand in 2021 including the outbreaks from April to December (A), April to June (B), and July to December

(C).

FIGURE 2

Number of new LSD cases on a weekly basis. The light-yellow line depicts the period of the mass vaccination campaign. Based on two scenarios, the

blue line indicates the pre-intervention period, and the green line represents the post-intervention period.

number of new LSD cases on a weekly basis, spanning from April

to November 2021.

The mass vaccination campaign was implemented in June

2021. A total of 360,000 doses of live attenuated homologous

vaccines were administered to cattle in high-risk areas for LSD

outbreaks across the country (18). The effectiveness of the mass

vaccination campaign, initiated in early June, couldn’t be expected

to manifest instantly. Implementing such a nationwide campaign
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involves multiple considerations to determine its effective date.

Firstly, numerous administrative tasks, including paperwork,

vaccine transportation, and identification of target farmers, must

be completed to distribute the vast quantity of vaccine doses

throughout the country. Secondly, time was allocated for the

registration and verification of farm owners, as well as the

actual vaccination procedures in different regions. Thirdly, post-

vaccination, immediate immunity is not conferred to the cattle

(7, 47). Research indicates that antibodies typically emerge within

15 days and peak around 30 days after vaccination (5). Taking these

factors into consideration, we propose two start dates at which the

majority of the vaccinated cattle population would attain sufficient

immunity to the disease: 45 days (July 15) and 60 days (July 30)

post-June 1, identified as scenario A and scenario B. Under scenario

A, the pre-intervention period extended from April 1 to July 15,

while the pre-intervention period for scenario B covered April to

July 30. The post-intervention periods for scenario A and scenario

B were July 15 to November 31 and August 1 to November 31,

respectively (Figure 2).

It is crucial to note that control measures, such as restrictions

on animal movement, closure of live cattle markets, insect control,

disinfection on farms, active surveillance for LSD cases, and

heightened public awareness, have been consistently enforced since

April 1. These measures were applied throughout both the pre-

intervention and post-intervention periods.

2.2 Bayesian structural time series models

The Bayesian methodologies based on STSM, termed as BSTS

models has been proposed by Brodersen and Hauser (41). These

BSTS models are state-space models tailored for time series data,

which can be defined through a set of equations as described in

(41, 48, 49):

yt = zTt αt + εt (1)

αt+1 = Ttαt + Rtηt (2)

where εt ∼ N(0, σ 2
t ) and ηt ∼ N(0,Qt) are independent of all

unknown data. Equation 1 serves as the observation equation that

links the observed data yt to the latent state vector αt . Equation 2

acts as the state equation detailing the progression of the vector αt

over time. The term yt denotes the observed value, Zt represents a

d-dimensional output vector, and Tt is a d× d transition matrix. Rt
is a d×qmatrix, while εt signifies the observation error with a white

noise variance αt . The term ηt is a q-dimensional system error with

a q× q state-diffusion matrix Qt , where q ≤ d.

The BSTS approach is utilized to learn these parameters.

Subsequently, the Markov chain Monte Carlo (MCMC) technique

in conjunction with a Gibbs sampler, is used for posterior inference

(50). The causal effect is estimated by contrasting the counterfactual

(predicted) values with the actual LSD case numbers during the

post-intervention phase (49). A comprehensive description of the

statistical models and graphical procedures can be found in prior

studies (41, 51).

The R statistical software, with the “Causallmpact” package

(41), was utilized to determine the causal effect and assess the

statistical significance of the intervention using the BSTS approach.

The CausalImpact package provides an intuitive interface that

conceals the typical intricacies linked with Bayesian analysis such

as normalization, setting priors and estimation. It seamlessly

integrates with the bsts package for the actual model fitting process.

In the initial step, the BSTS model predicted the number of

new LSD cases under the assumption that the mass vaccination

campaign was not implemented (counterfactual). In the second

step, the evaluation of the difference between the predicted and

actual number of new LSD cases was conducted to quantify

the impact of the mass vaccination. Subsequently, point effects,

absolute effects, and relative effects, each accompanied by their 95%

credible intervals (CrIs), were derived by comparing the predicted

and actual death trends across 1,000 MCMC iterations, which is a

default value.

The results from the BSTS process in the “CausalImpact”

package analysis provide three graphical representations: original,

pointwise, and cumulative. The graph consists of actual observed

values and the predicted values during the post-intervention

period which represents the causal effect of the intervention. The

difference the predicted values to the actual values corresponding to

an impact of the intervention can be displayed per time-point and

cumulative using pointwise and cumulative graphs. Furthermore,

in the analysis, the BSTS model makes the assumption that the

relationship between interventions and the time series, which

was established during the pre-period, continues to be stable

throughout the post-period (50).

3 Results

For scenario A (Table 1), the post-intervention period saw an

average of 2,941 new LSD cases. In an event without intervention,

this number was projected to be 25,970. The difference between

the predicted and actual values amounts to −23,029 in terms

of absolute effect, indicating a 119% (95% CrI: −121%, −38%)

decrease in relative effect. Additionally, the cumulative count of

new LSD cases stood at 58,811, whereas without the intervention, it

was projected to be 519,401. This translates to a relative decrease

of 119%. The likelihood of this effect occurring by mere chance

is minimal, with a Bayesian one-sided tail-area probability of p =

0.04, indicating statistical significance.

For scenario B (Table 2), in the absence of mass vaccination, the

predicted number of cases was 24,273. The actual cases were only

2,085 cases, signifying a relative effect of the intervention, which

equates to a 78% (95% CrI:−126,−41%) decrease (p= 0.04).

Figures 3, 4 displays three panels that visually represent the

results. The first panel showcases both the actual data and

a counterfactual projection for the post-treatment phase. The

second panel highlights the pointwise causal effect, evident from

the difference between the observed data and the hypothetical

forecasts. The third panel captures the cumulative impact of

the intervention by aggregating the pointwise effects from the

second panel.

From both scenario A (Figure 3) and scenario B (Figure 4), it

is evident that the interventions influenced the number of new
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TABLE 1 Summary of actual, predicted, absolute and relative e�ects from

a Bayesian structural time series analysis based on scenario A.

Average Cumulative

Actual 2,941 58,811

Prediction (s.d.) 25,970 519,401

95% CrI [−31, 52,844] [−622, 1,056,873]

Absolute effect (s.d.) −23,029 −460,590

95% CrI [−50,000, 2972] [−600,000, 59,433]

Relative effect (s.d) −119% (689%) −119% (689%)

95% CrI [−121%,−38%] [−121%,−38%]

Posterior tail-area probability p: 0.04. Posterior prob. of a causal effect: 95.486%. s.d, standard

deviation; CrI, Credible interval.

TABLE 2 Summary of actual, predicted, absolute and relative e�ects from

a Bayesian structural time series analysis based on scenario B.

Average Cumulative

Actual 2,085 37,523

Prediction (s.d.) 24,273 (13,118) 436,915 (236,118)

95% CrI [−2,001, 52,880] [−36,019, 951,836]

Absolute effect (s.d.) −22,188 (13,118) −399,392 (236,118)

95% CrI [−50,795, 4,086] [−914,313, 73,542]

Relative effect (s.d.) −78% (331%) −78% (331%)

95% CrI [−126%,−41%] [−126%,−41%]

Posterior tail-area probability p: 0.04. Posterior prob. of a causal effect: 95.4%. s.d., standard

deviation; CrI, Credible interval.

LSD cases. The top panel anticipated a consistent number of new

LSD cases (represented by the dashed line) if no intervention

took place. However, the actual figures (depicted by the solid

line) reveal a decline in new LSD cases post-intervention. The

middle panel’s pointwise causal effect displays negative values,

representing the divergence between the actual numbers and

the counterfactual predictions. The cumulative influence of the

intervention is delineated in the bottom panel.

4 Discussion

The introduction of control measures and a mass vaccination

policy in Thailand represented a significant effort to curb the

LSD epidemic. Through a causal impact analysis employing the

BSTS methodology, this study underscores the efficacy of these

interventions in reducing the number of LSD cases in Thailand.

Following the confirmation of the initial LSD outbreak in April

(17), a series of control measures were rolled out to limit the

spread of the disease. However, between May and June, there was a

consistent rise in new LSD cases (18). This surge could be attributed

to the vulnerability of naive herds lacking immunity to the disease,

given that the LSD vaccine had never been used in Thailand before

the discovery of the first LSD outbreak. The rapid spread of LSD

could also be linked to challenges in controlling insect vectors

(19, 20) and unauthorized animal movements (18).

In the context of an LSD outbreak, the most effective

control measure involves widespread cattle immunization coupled

with restrictions on animal movement (2). Predominantly,

commercially available vaccines for LSD are live attenuated

formulations derived from LSDV strains, sheep pox virus (SPPV),

or goat pox virus (GTPV) (6, 16). Specifically, live attenuated LSDV

vaccines, commonly referred to as Neethling vaccines, have been

widely used in cattle across various countries. It is acknowledged

that these vaccines exhibit notable efficacy, providing robust

protection for cattle against virulent field LSDV strains (6).

In line with the government control strategy, mass vaccination

of live attenuated homologous LSD vaccines was conducted

in multiple areas across Thailand. The mass vaccination was

implemented following the ring vaccination strategy, with a focus

on administering LSD vaccines to control outbreaks, especially

in high-risk areas. This typically included neighboring regions

within a 5–50 km radius of the LSD outbreak areas (18, 25). The

effectiveness of mass vaccination efforts was notably evident when

comparing actual values to projection values from the BSTS model,

assuming no vaccination. The observed decrease in the number of

cases by more than 75%, as predicted by the two scenarios, serves as

compelling evidence of the success of mass vaccination initiatives.

It is important to note that our findings align with prior studies

highlighting the efficacy of mass vaccination in controlling LSD

outbreaks. In South-Eastern Europe, a regional mass vaccination

campaign using a homologous LSD vaccine covered over 1.8

million bovines, proving instrumental in managing LSD in that

region (9). Similarly, the deployment of Neethling vaccines was

recognized as an effective measure against LSD in Israel in 2012

(52) and in the Balkans from 2015 to 2017 (53).

A noteworthy control measure implemented by DLD was the

establishment of a reporting system for LSD outbreaks. Local

livestock authorities, including district and provincial livestock

offices, actively participated by providing daily updates on the

situation. Once these reports are reviewed and verified, DLD

consolidates the data and publishes it on its website for public

access. This online resource offers biweekly and monthly overviews

of the LSD outbreak status in Thailand (https://sites.google.com/

view/dldlsd/home). Through this mechanism, farmers and other

stakeholders are consistently updated on the nation’s LSD situation.

Moreover, the proactive involvement of local livestock authorities

is crucial in managing the LSD outbreak. They diligently identify

LSD cases in herds by purposefully visiting farms in their respective

localities (18, 54).

Following the nationwide mass vaccination, there was a

noticeable decline in new LSD cases in Thailand toward the end

of 2021 (22). However, some LSD cases were still reported in

2022 (55). One plausible reason for the persistence of a few

new LSD cases could be the non-vaccination of certain cattle,

such as the young ones or those in specific herds during the

campaign. Additionally, farmers might have faced challenges in

procuring vaccines for newborn animals post-campaign. Therefore,

we advocate for the continuation of the vaccination process to

ensure sustained immunity against LSD in Thai cattle. Given

the limited research on the longevity of cattle immunity against

LSD post-vaccination in Thailand, annual vaccination might be

a prudent approach. This could be funded either by farmers

and stakeholders directly or through government subsidies. It’s
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FIGURE 3

Graphical representation based on a causal impact analysis pertaining to the implementation of a nationwide mass vaccination campaign aimed to

control the outbreak of lumpy skin disease, as per scenario A. The graph includes the original data, pointwise and cumulative e�ects of the

intervention.

FIGURE 4

Graphical representation based on the causal impact analysis pertaining to the implementation of nationwide mass vaccination campaign to control

the outbreak of lumpy skin disease, as per scenario B. The graph includes the original data, pointwise and cumulative e�ects of the intervention.

imperative to achieve comprehensive vaccination coverage, and

farmers should be motivated to persist with the vaccination

regimen for multiple years. This should be overseen by livestock

authorities and policymakers to prevent a decline in vaccination

practices, as witnessed in Israel, which could potentially lead to a

resurgence in LSD outbreaks (56). Strengthening LSD surveillance
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in cattle herds is also crucial. Livestock authorities should guide

farmers on vigilant monitoring for new LSD cases within their

herds. In the event of a suspected case, immediate notification to

livestock authorities is essential, emphasizing the need for a swift

response from these authorities to the farmers’ concerns.

This study utilized univariate time series data for BSTS analysis,

aligning with methodologies employed in previous studies (40, 43).

In this approach, individual characteristics, such as the breed

and age of animals, were not integrated into the BSTS models.

Therefore, it is important to note that the estimations produced

by the BSTS models in this study were solely contingent on the

number of new LSD cases presented in the form of time series

data. Furthermore, the interpretation of the results, which implies

a decrease in the number of new LSD cases during the post-

intervention period, should not be exclusively attributed to the

mass vaccination campaign. Rather, it should be viewed as reflective

of the impact of themass vaccination campaign, taking into account

the sustained implementation of other control measures both

before and after the vaccination campaign.

This study comes with certain limitations. The reported

number of LSD cases may underestimation of the actual count

due to under-reporting issue. This could arise from herd owners

not reporting outbreaks, occurrences in remote areas beyond

regular surveillance, or certain LSD cases developing after the

survey period. However, the impact of this limitation may not

be significant, given the proactive approach in detecting LSD

outbreaks by livestock authorities and the high level of cooperation

from farmers. Furthermore, some farmers might purchase vaccines

from private sectors and vaccinate their cattle independently.While

the number of farmers engaging in this practice may not be high

compared to those receiving government-provided vaccines at no

cost, it is a situation that should be addressed.

5 Conclusion

This study represents the first application of the BSTS

methodology to evaluate the impact of a government-led mass

vaccination campaign against the LSD epidemic, drawing from

national-level data. The methodologies employed in this research

offer a deeper understanding of how established statistical tools

can be used to determine the causal effects of intervention policies

on large-scale LSD outbreaks. The findings from this investigation

highlight the efficacy of the intervention strategy in mitigating

LSD outbreaks. Notably, Thailand stands out as the only Asian

country to have implemented a nationwide mass vaccination with

extensive coverage. Consequently, the strategies adopted by Thai

livestock authorities and stakeholders concerning mass vaccination

and control measures could serve as valuable references for other

countries at risk to a widespread LSD epidemic.
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