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1 Introduction

Veterinary vaccines represent a remarkable stride in enhancing animal survival and
welfare. However, their benefits were not uniformly accessible to all species from the
outset. In 1979 and 1998, avian and bovine species emerged as pioneers of immunization,
particularly targeting Pasteurella multocida and Bacillus antracis respectively (1, 2). In
contrast, fish gained immunization in 1949 against Aeromonas salmonicida. Commercial
vaccines against Yersinia ruckeri and Aliivibrio salmonicida were not available for fish until
1976 (3–5).

While the prevention of specific pathogens in terrestrial and aquatic animals occurred at
different times (6), its achievement uniformly facilitated intensive breeding for productive
purposes. Consequently, the value of these species as a source of food and income increased
for millions of people worldwide. The ability to pre-empt numerous infectious diseases not
only bolstered profitability but also fostered safe food trade, mitigated animal suffering,
reduced zoonotic infection transmission, minimized antibiotic usage, and most importantly,
avoided large-scale famines across all instances (7, 8).

Currently, maintaining or expanding on these successes poses a significant challenge for
the global biopharmaceutical industry. Meeting the high demand for vaccines tailored to
the specificities of each pathogen and species requires robust production systems capable
of producing in a stable and high yielding manner (9, 10). There are several technological
platforms (traditional or modern) available for this purpose, as well as different options
for obtaining effective, stable, and safe vaccines (2). The World Organization for Animal
Health (WOAH) establishes international standards for vaccines in theManual of diagnostic
tests and vaccines for terrestrial and aquatic animals (mammals, birds, bees, and fish). The
indications issued are written by international experts and then sent for review by scientific
peers and for comments by all WOAH member countries, thus achieving consensus at the
time of their adoption (11).

However, these recommendations are not sufficient to develop new vaccines; they
need to be expanded with updated information on the scientific and technological
advances obtained in vaccinology for each animal species. Unfortunately, this knowledge,
being dispersed in different fields of science is not always visible to producers, which
is why it is difficult for them to make the best decisions with a minimal risks of
failure, quickly enter the market, and optimally take advantage of all available resources.
Based on these facts, an investigation was conducted with the aim of comparing
global trends in the manufacture and marketing of avian, bovine, and fish vaccines.
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2 Methods

2.1 Source of data

A nonexperimental, observational, qualitative investigation
with a descriptive scope was conducted from June to December
2022. As there was no animal involvement, ethical committee
approval was not required for the analysis.

The primary source of information consisted of publicly
available technical documents available on the official websites
of the different veterinary biopharmaceutical companies. Only
texts containing specifications of the avian, bovine, and fish
vaccines marketed during 2022 (type of formulation, production
technology, infectious agent, and adjuvant) were considered,
whereas news and comments were excluded from the study.

2.2 Method of data collection

A comprehensive manual search was conducted to identify
international veterinary biopharmaceutical companies engaged in
the manufacturing of commercial vaccines for poultry, cattle, and
fish. Companies whose headquarters were geographically located
in America (United States of America, Mexico, Argentina, Chile,
Colombia, Peru, Ecuador, and Uruguay), Asia (India, Russia,
China, and Viet Nam), Africa (Egypt and Kenya), and Europe
(Germany, Spain, France, theNetherlands, and the Czech Republic)
were selected.

Initially, 29 veterinary biopharmaceutical entities were
identified, with 11 ultimately included in the study (Centro
Diagnóstico Veterinario S.A., ELANCO Animal Health,
Laboratorios HIPRA, S.A., MEVAC, MSD Animal Health,
S.L., Razi Vaccine & Serum Research Institute, Tecnovax Sanidad
Animal, Vaxxinova International BV, Veterquímica, Virbac and
Zoetis), totaling 587 commercial formulations. The quality of
the technical information in each formulation was critically and
independently assessed by two reviewers, and discrepancies were
resolved through the consensus of the entire team.

2.2.1 Inclusion criteria
The inclusion of each company was based on adherence

to the following criteria: conducting independent research,
development, and commercialization of their own vaccines,
alongside maintaining an official website offering technical
information about their products in english or spanish.

2.2.2 Exclusion criteria
Companies that did not hold ownership of the marketed

formulations, omitted detailed information on the components
used, particularly adjuvants, and did not include at least one species
in their official vaccine catalog were excluded from the study.

2.3 Variables

The characterization of each commercial formulation
was based on the following variables and their categories:
animal species (fish, cattle, and poultry), vaccine production
technology: traditional and modern, vaccine type (inactivated,
live, recombinant, subunit, DNA, and mutant strain), pathogen
(bacteria, virus, mixed (bacteria+virus) and parasites), formulation
(monovalent and polyvalent) and adjuvant (aluminum salts,
saponin, mineral oil, other oils, and polymers).

3 Data analysis

To ensure systematic organization and control, the technical
information of the 587 formulations provided by the 11
participating companies was registered and coded on a Microsoft
Excel (2019) sheet. Descriptive statistics, including absolute
and relative frequencies, were employed to characterize the
comprehensive range of variables. Subsequently, groups of
formulations with similar profiles were identified, and the existing
associations between their attributes were assessed via multiple
correspondence analyses using the R software version 4.3.1
(Bell Laboratories, USA). The variables selected to determine
potential associations included animal species, vaccine production
technology, formulation, pathogen and adjuvant.

4 Characteristics of the poultry, cattle,
and aquaculture vaccines market

To characterize the international market for vaccines used
in the prevention of veterinary infectious diseases in poultry,
cattle and fish during the year 2022, technical information
from 587 formulations developed, produced and marketed by
11 biopharmaceutical companies was used. According to the
geographical location of each of these entities, the American region
was the best represented with six companies (Centro Diagnóstico
Veterinario S.A., ELANCO Animal Health, MSD Animal Health,
Tecnovax Sanidad Animal, Veterquímica and Zoetis), followed
in decreasing order by Europe with three (Laboratorios HIPRA,
S.A., Vaxxinova International BV and Virbac), Asia with one
(Razi Vaccine & Serum Research Institute), and Africa with
one (MEVAC). The distribution by countries showed that the
United States of America was the leader with three, followed
by Argentina with two, while other participating countries such
as Chile, Spain, the Netherlands, France, Iran, and Egypt were
represented in each case by one organization.

4.1 Animal species

The first distinctive feature of the formulations included
in the database (https://data.mendeley.com/datasets/4b26xzs5jj/1)
was the dominance of avian and bovine vaccines, accounting for
42.59% (250/587) and 35.43% (208/587), respectively. Fish had
the last position in the sector, accounting for 21.98% (129/587)
of available commercial vaccines from 2021 to 2022. This value
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represents 1.94 and 1.62 times fewer commercial vaccines for
poultry and cattle, respectively.

The of avian and bovine vaccines was expected, as both
productive species play a vital role in the global food industry by
supplying eggs, meat, milk, skins, and derivatives to millions of
people (8, 12). Other factors contributing to its dominance include
the need for more efficient animal protein production to meet
rising global demands and an increase in markets seeking to reduce
chemical residues in food (13, 14).

The significant and rising contribution of fish, particularly the
Salmo salar species, to the global supply of high-quality protein for
human consumption (15–17) seemingly did not have a sufficient
effect on the use of preventive vaccines. The disproportion between
birds, bovines, and fish species could be explained by multiple
factors, such as the historical delay in using these formulations in
clinical practice (18), limitations in understanding the pathogen–
host relationships, and the variability of their habitats (19). Other
important barriers that must be considered are the low yields
and high costs of immunogens (5), the great diversity of rearing
systems, and multiple farmed species with different vulnerabilities
to infectious diseases (15, 20).

With the interest of the aquaculture industry in the
immunoprevention of infectious diseases, the observed unfavorable
situation may change in the coming years. The need to prevent
the spread of pathogens to wild populations and reduce antibiotic
use and resistance are among the motivating factors that could
influence the future of these vaccines (19, 21, 22). These urgent
public health concerns, combined with the economic pressure
exerted by the frequent outbreaks of infectious diseases associated
with intensive aquaculture methods, the transfer of fish and eggs
between continents, and the monoculture of fish at very high
densities (19), will encourage the process of investigation and
implementation of fish vaccines, particularly the autogenous
ones (23).

4.2 Characteristics of commercial vaccines

From another perspective, it was possible to identify a marked
polarization in the use of technological platforms to manufacture
commercial veterinary vaccines. The dominant vaccine types on
the market were inactivated (58.9%, 346/587) and live (37.6%,
221/587), followed by recombinant vaccines (1.7%, 10/587),
genetically modified virus vaccines (0.9%, 5/587), subunit vaccines
(0.5%, 3/587), and DNA vaccines (0.2%, 1/587). It was also
observed that the leading animal species in the market were birds
(42.7%, 250/587), then cattle (35.4%, 208/587) and finally fish
(21.9%, 129/587).

The traditional production methods are strongly associated
with 96.59% (567/587) of formulations intended for the three forms
of animal rearing. Out of these, 41.23% (242/587) are designed for
avian immunization. Multiple correspondence analyses between
the production technology, pathogen (formulation based on
bacteria, virus and their mixed) and animal species variables
identified new characteristics from the commercial point of
view (Figure 1). In particular, a strong association was found

between inactivated vaccine–bacteria–fish (80.62%, 104/129) and
live attenuated vaccine–virus–poultry (53.60%, 134/250).

The commercial dominance of vaccines of bacterial origin
and those manufactured traditionally (live and inactivated) was
expected. On the one hand, it corresponds to the long history
of using traditional vaccines to control infectious diseases in the
main livestock farms worldwide as well as to their favorable
cost/benefit ratio (24). On the other hand, it occurs at a difficult
time when international reports on antibiotic-resistant bacteria
are increasing and therapeutic alternatives to combat them are
depleting (14, 25). The ability of certain countries to produce their
own traditional vaccines using circulating local strains (23, 26),
as well as the low costs of developing and manufacturing them,
contribute to this strategic alliance, ensuring the profitability of
local producers (7, 27). In general, all are viable solutions to protect
herds against a diversity of autochthonous pathogenic strains. It
also implies, in practice, eliminating excessive costs associated with
the long transportation of vaccines, self-sufficiency, technological
sovereignty, low sales prices per dose, and the possibility of
exporting to neighboring countries (23, 28).

The scarcity of modern vaccines in the catalogs of the
companies included in the study (3.24%, 19/587), indicates that
much of the new scientific knowledge remains in the exploratory
field, with few vaccines becoming marketable products. However,
the parity in their quantity across animal species reflects that
computer, genomic, and immunological breakthroughs occur in
all directions, opening up new opportunities that benefit all
species in a similar way (29, 30). While these vaccines’ greatest
advantages are antigen purification, the ability to prevent the
carrier state in vaccinated animals, and the ability to differentiate
between vaccinated and infected animals (10), their role in
health management across the three species is unclear. They still
face similar challenges as previous generation vaccines, such as
dependence on the cold chain, uncertainty in predicting their
potency in the field, and the need for booster doses (31–33).
According to the available data, the main challenge faced by these
formulations is the quest for new adjuvants that enhance the poor
immunogenicity of their antigens, cause minimal reactogenicity,
and can be administered orally/nasally (34).

The international market landscape for veterinary vaccines
was further elucidated by identifying groups of formulations
with both similar and opposite profiles (Figure 2). Polyvalent
vaccines constituted the largest area in the grouping ellipse,
representing 63.20% (371/587) of the formulations, especially in
cattle (76.92%, 160/208) and poultry (56.00%, 140/250) vaccines.
Fish continues in the last position, representing 55.04% (71/129) of
the commercial polyvalent vaccines available during 2022. On the
contrary, monovalent formulations were the least representative
and constituted 36.80% (216/587) of the compiled data.

The strong interest of pharmaceutical companies in marketing
vaccines with multiple viral or bacterial antigens in all species stems
from the health needs of poultry, cattle, and aquaculture species.
There are undeniable benefits to avoiding numerous diseases per
dose, facilitating rapid compliance with the vaccination schedule,
and increasing immunization coverage. These formulations have
in common the reduction of the application, transport, and
storage costs of the biologicals, as well as the reduction of stress
generated in animals during vaccination handling. However, its
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FIGURE 1

Representation of the associations between the variables vaccine type, pathogens and animal species in formulations marketed during 2022.

main limitations include the possibility of antigen interference,
uncertainty in determining the ideal time of administration, and
difficulty in assigning responsibilities for adverse reactions. From
an industrial standpoint, this segment of the market is more
expensive, requires more logistics for its production, and presents
challenges in developing appropriate immunological assays to
determine efficacy (35, 36).

The inclusion of multiple bacterial antigens and sometimes
mixed with viral antigens in traditional and modern commercial
fish formulations (44.96%, 58/129), reflects the significant role
these pathogens play in the massive mortalities and economic
losses observed in the aquaculture sector (20, 23). Moreover, it
confirms the continuous scientific and technological advances in
pathogenesis, microbial genomics, and models to evaluate efficacy,
which are all focused on mitigating the negative effect of these
pathogens on aquaculture (5, 37).

4.3 Adjuvants

The analysis of the associative structure among the
categories: adjuvants, vaccine production technology, vaccine type
(inactivated, recombinant, subunit, and DNA), pathogen [bacteria,
virus, mixed (bacteria+virus), and parasites], formulations
and animal species was equally interesting and required the
processing of 61.33% (360/587) of the available data. The

significant closeness of the following categories was demonstrated:
aluminum compounds–bovine (25.00%, 52/208) and mineral
oil–fish (53.49%, 69/129). This proximity indicator, along with
their positions far from the center point, allows us to infer that
there is a strong relationship in all cases. The negative associations
between bovine vaccines–mineral oil (3.36%, 7/208), as well as
between avian vaccines–aluminum compounds (1.60%, 4/250),
were also relevant.

The preference for aluminum compounds in bovine vaccines
and mineral oil in fish vaccines demonstrates that global veterinary
vaccine manufacturers prioritize low-cost co-stimulatants, ease of
acquisition, and confidence in their safety and efficacy (38). This
tendency is due to the low average sales prices of veterinary vaccines
on the global market, which generate income 30 times lower than
human vaccines. Such a situation necessitates the implementation
of adjuvant business strategies with fewer resources, despite the
complexity and variety of the hosts and pathogens (10, 39). This
should not be interpreted as a lack of interest in the development of
new adjuvants by the veterinary biopharmaceutical industry, rather,
it is an important consideration for researchers if they intend to
generalize the new molecules in the veterinary market (40).

Aluminum hydroxide and mineral oil (liquid paraffin) are
not ideal adjuvants. However, they play important roles from
an industrial standpoint, reducing the amount of antigen per
formulation and prolonging antigen presentation to the immune
system through the formation of deposits. Both have the same
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FIGURE 2

Representation of associations between the variables formulation, vaccine type, pathogen and animal species in formulations marketed during 2022.

drawbacks that come with their use, such as adverse reactions
(inflammation) localized or not at the injection site (41). Thus, the
main issue when using them in veterinary vaccines is balancing
their respective adjuvants and reactogenicities.

While aluminum compounds have over 70 years of clinical use
in both animals and humans, known mechanisms of action, the
ability to combine different antigens, an acceptable degree of safety
and stability, a known chemical structure, easy preparation, and a
low production cost, they are considered the reference for other
adjuvants under development (42–44). Based on these data, the
predominance of aluminum hydroxide in vaccine formulations for
cattle (41, 45) but not for birds is evident where low antibody titers
have been reported, even when dealing with inactivated vaccines
against extracellular pathogens such as Pasteurella multocida (46).

In particular, mineral oil and non-mineral oil adjuvants have
been shown to have an excellent capacity to prolong antigen release
at the injection site and to generate sustained and robust responses
in fish, both humoral and proinflammatory, as well as being an
excellent platform for obtaining polyvalent and mixed vaccines
(47). These abilities are important when formulating vaccines with
antigens of weak immunogenicity (48, 49), but they might cause
undesirable side effects such as tissue inflammation, melanization
and adhesions between internal organs or between the organs and
the peritoneal wall, necrosis and reduced growth (47, 50).

In summary, despite the absence of data from some
veterinary biopharmaceutical companies such as the Japanese
(DS Pharma Animal Health Co., Ltd., Nisseiken Co., Ltd.
and Nippon Zenyaku Kogyo Co., Ltd.), a traditional and

widespread manufacturing approach dominates on a global scale
for commercial vaccines targeting poultry, cattle, and aquaculture.
Traditional adjuvants (aluminum–based mineral salts and mineral
oil), particularly aluminum hydroxide, have commercial hegemony
despite the existence of attractive co-stimulatory molecules in the
immune system.
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