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Introduction: Rectal temperature (RT) is the reference standard for clinical 
evaluation of body temperature in mammals. However, the use of a rectal 
thermometer to measure temperature can cause stress and other problems, 
especially in cats. There is a need for clinical techniques that reduce both 
stress and defensive behavior as part of the provision of better medical care. 
Subcutaneous temperature-sensing identification microchips fulfil the current 
legal requirements and provide a reading of subcutaneous temperature (MT).

Methods: The clinical study tried to determine whether there is agreement 
between MT and RT in normal (n  =  58), hospitalized (n  =  26) and sedated/
anesthetized (n  =  36) cats. Three measurements were taken using both methods 
(MT and RT) in each cat. Correlation between MT and RT, and differences 
between MT and RT, were estimated for pairs of data-points from the same 
individual, and all data pairs in each group were considered overall.

Results: There was a strong positive correlation between MT and RT (r  =  0.7 to 1.0) 
(p  <  0.0005). The mean differences (d) were always negative and although statistically 
significant, these d values are likely of no biological importance. The overall d was 
-0.1°C in normal cats (p  <  0.0005), -0.1°C in hospitalized cats (p  =  0.001) and -0.1°C 
in sedated/anesthetized cats (p  =  0.001). The limits of agreement between MT and 
RT appear narrow enough for MT to be acceptable estimate of RT. The overall limits 
of agreement (95%) were -0.71°C and 0.53°C (in normal cats); -0.51°C and 0.34°C 
(in hospitalized cats) and -0.60°C and 0.42°C (in sedated/anesthetized cats).

Discussion: MT may provide a good alternative to RT measurement in cats. 
However, this study was mostly performed in animals that were normothermic. 
Therefore, further studies in larger groups of cats under different conditions are 
needed to compare trends and assess variation with time.
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Introduction

Body temperature differs both within and between individuals due to factors like age, sex, 
health status, physical activity, and stress levels (1–4). External factors, including ambient 
temperature, can also affect body temperature measurements. Temperature can be measured 
using different methodologies (e.g., rectal thermometer, auricular thermometer, axillary 
temperature measurement, infrared thermography, temperature-sensing microchip), which 
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may yield different measurements. Rectal thermometry may 
be affected by several factors like digestion, peristalsis, muscle tone, 
and physical activity (5). Changes in tympanic membrane temperature 
can be explained by fluctuations in the hypothalamic temperature, 
while there is a lag between changes in rectal temperatures and shifts 
in hypothalamic and tympanic membrane temperatures (6). 
Environmental conditions are considered influential factors when 
temperature-sensing microchips (7) and axillary temperature (8) are 
used. Infrared thermography is also strongly influenced by 
environmental and biological factors, including the anatomical 
regions chosen for measuring temperature on the basis of blood flow 
(9–12). Understanding the factors that can influence body temperature 
is needed to interpret temperature readings and use these in assessing 
health status.

The core body temperature is the temperature of the internal 
organs of the body. The best sites for estimating core body temperature 
are the pulmonary artery, using a catheter, or the esophagus (13). Core 
body temperature is not measured in general practice and is usually 
estimated by means of rectal temperature measurement (RT) (14). In 
fact, RT is considered as the reference standard for clinical evaluation 
of core body temperature in animals, since there appears to be good 
agreement between these measurements (15). In dogs, agreement 
between core temperature and rectal temperature was 94.28–
100.00% (16).

RT measurement is time consuming, stressful for animals and 
may lead to cross-contamination of gastrointestinal bacteria (17). 
Under some circumstances RT measurement can be very difficult, e.g., 
where individual temperature measurements need to be taken from a 
group of animals or under field conditions (7). It is also important to 
measure temperature correctly, e.g., when using a thermometer, to 
avoid inaccuracy or inconsistency. For example, the presence of feces 
in the rectum can interfere with the measurement of RT and presence 
of perianal or rectal diseases can make RT measurement difficult (16). 
RT measurement is very important for assessing feline health; however 
a wide range of reference intervals has been published for healthy cats 
(low end: 37.7–38.1°C, high end: 39.2–39.5°C) (18–20). This variation 
can be explained by the potential disparity of the conditions under 
which the measurements were taken; no details were given in the 
original references. However, Levy et al. (21) reported a range of RT 
in confined, healthy adult cats of between 36.7 and 38.9°C (lower than 
reported previously) when the ambient temperature was 20.3–
30.8°C. According to these results, RT was not significantly correlated 
with ambient temperature. In cats, fever has been variably defined as 
39.0–41.1°C (18–20).

Stress is considered as a factor influencing the recovery of 
veterinary patients. For this reason, clinical techniques reducing stress 
and defensive behavior are recommended, especially in cats (22). 
Stress-related defensive behavior might cause an increase in body 
temperature and heart and respiratory rates and/or can increase blood 
glucose concentrations (stress hyperglycemia), which could lead to 
erroneous diagnostic conclusions. When measurement of RT is 
required, then it might help if this is taken at the end of the physical 
examination, with the cat placed in a comfortable position, thus 
allowing the anus to be accessed easily without hyperextension of the 
tail. However, the use of less invasive methods of measuring 
temperature are recommended where possible. For more information, 
see the 2022 AAFP/ISFM Cat Friendly Veterinary Interaction 
Guidelines (23).

Previous studies in mice have shown the utility of temperature–
sensing microchips (24, 25). In Spain, dogs, cats, and ferrets must now 
be identified by a microchip, under the Protection of Animal Rights 
and Welfare Act 7/2023 that came into force on March 28 (26). Thus, 
temperature-sensing microchips fulfill the legal provisions for both 
the identification of the individual and enable the measurement of 
body temperature at the subcutaneous implantation site (27). No 
retraining is needed to enable veterinary teams to assess temperature 
measurements taken by these microchips, resulting in easier and safer 
management of small animals in veterinary clinics.

The skin or body surface temperature is thought to be several 
degrees below RT (28). This difference ranged from −2.1°C to 3.6°C 
(8) in cats and from −1.3°C to 0.5°C in dogs (29). In children, the 
mean difference RT - surface temperature was only 0.29°C (30). In 
contrast, subcutaneous temperature measured using a microchip 
(MT) did not differ significantly from RT in the common marmoset 
(31), rat and mouse (32) and goat (33). Thus, we hypothesized that 
there would be a good correlation between MT and RT, measured 
using a digital thermometer, in cats under different conditions 
(normal, hospitalized, and sedated/anesthetized). Therefore, 
we assessed the correlation and differences between using paired data 
obtained from each cat.

Materials and methods

Animals

A total of 120 cats were analyzed in 11 clinics (A-K). A power 
calculation was not performed to determine the sample size. All 
available animals that met the inclusion and exclusion criteria (see 
below) were included in the study. The inclusion criteria for veterinary 
clinics to participate in this study were specialization in feline 
medicine and varied geographical distribution, representing the 
different regions of Spain, including the Balearic and Canary Islands. 
Data were collected from February 2022 to September 2022, while the 
new Protection of Animal Rights and Welfare Act 7/2023, which has 
made microchipping mandatory for dogs, cats, and ferrets, was being 
discussed by the Spanish parliament (26).

This study complied with the ARRIVE guidelines (34) and EU 
Directive 2010/63/EU on the protection of animals used for scientific 
purposes (35). The Ethical Advisory Committee for Animal 
Experimentation of the University of Zaragoza confirmed that this 
work was excluded from the scope of application of RD53/2013, of 
February 1, which established the basic rules applicable for the 
protection of animals used in experimentation and other scientific 
purposes, including teaching (36). This committee also confirmed that 
the design of the study complied with the ethical and animal 
protection principles used in experimentation and other scientific 
purposes, including teaching, required by the University of Zaragoza. 
Ethical approval for the study was granted (PI11/23NE) on 31st March 
2023. The cat owners signed informed consent to include their cats in 
the study and use their data anonymously.

Cats that had previously had an identification microchip 
implanted were excluded from the study. None of the cats included in 
this study had a microchip implanted for identification previously and 
their owners freely decided they would receive a microchip that also 
provides real–time temperature-sensing.
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Three groups of cats were considered: normal, hospitalized and 
sedated or anesthetized. Normal cats were presented for their first 
veterinary consultation for vaccination (kittens) or for routine 
check-ups (adults) and appeared to be healthy. Hospitalized cats were 
under treatment or observation for at least 1 day for various reasons, 
including elective surgery (mainly ovariohysterectomy) or clinical 
conditions (e.g., vomiting, diarrhea, pancreatitis, upper respiratory 
tract disease, or chronic kidney disease). The group of cats undergoing 
sedation or anesthesia included both healthy cats requiring chemical 
restraint to avoid stressful situations and cats that needed surgical or 
medical treatment. Sedation or anesthesia was carried out in 
accordance with the protocol in the clinic where the cat was treated.

Experimental design

There were 58 normal cats (five different breeds and one crossbred 
cat), 26 hospitalized cats (four breeds) and 36 sedated cats (three 
breeds). The breed, sex, age and body weight of each cat was recorded. 
Table  1 shows the characteristics (breed, male frequency, age in 
months, body weight in kg, and clinic) of the cats included.

Procedure

A 1.5 mm × 10.7 mm, 0.04 g and 134.20 kHz radiofrequency 
identification device (microchip) that also provides real–time 
temperature monitoring (Thermochip® Mini, MSD Animal Health) 
was implanted subcutaneously at the midpoint of the left side of the 
neck. The reliability and accuracy (0.07 ± 0.12°C) of the measurements 

of the temperature-sensing microchip used in the present study have 
previously been shown at 0 to 40°C in a water bath equipped with an 
electrical thermometer (37). A pre-packaged sterile positive 
displacement syringe was used to implant the microchip without 
sedation. Subcutaneous temperature measurement and animal 
identification were read simultaneously using a hand-held scanner 
(SureSense®, MSD Animal Health). No adverse events related to 
implantation of the temperature-sensing microchip were reported 
during the study.

In order to minimize the impact of external environmental 
variables on measurements using the temperature-sensing microchip, 
the investigator had to ensure that at least 5 min elapsed between the 
arrival of the cat in the clinic and the first temperature measurement 
being taken. Since a direct comparison was being made between two 
methods, this ensured that the environmental conditions under which 
the temperature measurements were taken were the same for each RT 
and MT measurement.

Rectal temperature was measured using the COVETRUS digital 
rectal thermometer with flexible tip VE for veterinary use (Covetrus, 
Inc). The COVETRUS digital rectal thermometer meets established 
standards and is ISO 13485 certified. It has a measurement range from 
32.0 to 42.9°C, with a precision of ±0.1°C. This rectal thermometer is 
capable of providing results in just 10 s and issues an audible alarm to 
notify when the maximum temperature has been reached.

Both MT and RT measurements were carried out by the veterinary 
team of the participating clinics. In order to avoid factors that could 
alter the temperature measurement, the investigator had to ensure that 
the cat was not near to or in contact with sources of heat or cold, such 
as thermal blankets, water bags, air conditioning or heating system 
outlets, and stoves. Furthermore, the measurements had to be carried 

TABLE 1 Demographics of cats in the study.

Cats n Male frequency Age (months) Weight (kg) Breed Clinic

Median IQR Median IQR

Normal 58 32/58 (55.2%) 10.00 20.00 3.30 2.05 Abyssinian: 1/58 (1.7%) 

Birman:

1/58 (1.7%) European: 52/58 

(89.7%) Crossbreed:

1/58 (1.7%) Persian:

2/58 (3.4%) Siamese:

1/58 (1.7%)

A: 1/58 (1.8%); B: 4/58 

(6.9%); C:6/58 (10.3%); 

E:4/58 (6.9%); F: 6/58 

(10.3%); G: 6/58 (10.3%); 

H:7/58 (12.1%);

I: 6/58 (10.3%); J:12/58 

(20.8%); K: 6/58 (10.3%)

Hospitalized 26 15/26 (57.7%) 13.00 55.00 3.80 2.50 Domestic: 19/26 (73.1%) 

Long-haired European:

2/26 (7.7%)

Maine Coon: 2/26 (7.7%) 

Persian:

3/26 (11.5%)

B:1/26 (3.8%) G:8/26 

(30.8%)

H:11/26 (42.3%)

J: 6/26 (23.1%)

Sedated/

anesthetized

36 17/36 (47.2%) 10.00 8.30 3.35 0.95 Domestic: 34/36 (94.4%) 

Persian: 1/36 (2.8%); Russian 

blue: 1/36 (2.8%)

B: 2/36 (5.6%) D: 2/36 

(5.6%)

E: 2/36 (5.6%)

F: 3/36 (8.3%)

G: 6/36 (16.7%)

H: 7/36 (19.4%)

I: 2/36 (5.6%) J: 9/36 

(25.0%) K: 3/36 (8.3%)

n, number of individuals; IQR, interquartile range.
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out consecutively to keep the environmental conditions unchanged. 
All temperature measurements were in degrees Celsius rounded to the 
nearest single decimal place.

Paired measurements of temperature measurements (MT 
followed by RT) were taken on three successive occasions 
(measurements 1, 2, and 3) in each cat. In normal cats, the first and 
second measurements were taken about 2 weeks apart and the third 
measurement was about 3 weeks after the second one. In hospitalized 
cats, the three measurements were taken at three different times on 
the same day (morning, afternoon, and evening). For cats that were 
sedated or anesthetized, temperature was measured before, during and 
after sedation or anesthesia. Each of these paired measurements (MT 
and RT) was obtained only once on each occasion. To ensure that the 
handling of the animals was as homogeneous as possible in all 
collaborating clinics, temperature measurements were taken according 
to the 2022 AAFP/ISFM Cat Friendly Veterinary Interaction 
Guidelines (23).

Statistical analysis

Statistical analysis was carried out with IBM SPSS Statistics 26.0 
software (IBM Corp). The level of significance was set at 0.05. 
Median and interquartile range (IQR) were calculated for both age 
and body weight, due to the non-normal distribution of these 
variables, as assessed by the Shapiro–Wilk test for normality. The 
degree of association between MT and RT was evaluated using both 
Pearson correlation coefficient r and regression modelling 
(coefficient of determination R2, coefficients of regression b). For the 
paired measures (MT and RT), a paired t-test was used to assess 
whether the mean difference (d) between the pairs of measurements 
was zero or not, assuming a normal distribution of differences and 
with the limits of the 95% confidence interval (CI) set at d ± 1.96 SE 
(standard error of d).

A Bland–Altman plot (difference plot) was used to assess the 
agreement between the two different measures (MT and RT). The 
average bias is represented by the gap between the line parallel to 
x-axis corresponding to no difference and other parallel line 
corresponding to the mean difference value (d). The 95% limits of 
agreement were calculated using the mean (d) and the standard 
deviation (SD) of the differences between the paired measures, 
assuming normal distribution of differences 95% of differences will 
be between d-1.96 SD and d + 1.96 SD. These limits are represented by 
dotted lines. Trends in the differences between both temperatures 
(MT-RT) along the Bland–Altman plot (increasing mean temperature) 
were investigated using regression analysis. A mixed model approach 
was used to assess the effects of sex, age and body weight on the 
differences between MT and RT; these variables were included as fixed 
effects and the individual was considered as a random effect. For this 
approach, two age classes (0–12 months; ≥13 months) and two body 
weight classes (0–3.5 kg and ≥ 3.6 kg) were considered.

Results

In according to the range of reference intervals for healthy cats 
said in introduction (18–20), most of RT measurement could 
be considered as typical of normothermic animals. Of the total RT 

measurements, only 3.8, 16.7, and 20.0% (normal, hospitalized and 
sedated/anesthetized cats, respectively) were out these limits.

The relationships and differences between MT and RT, for normal, 
hospitalized and sedated or anesthetized cats, measurements 1, 2, and 
3 and overall (total number of measured pairs) are shown in Table 2. 
There was a strong, positive, and highly significant relationship 
between MT and RT in all three groups of cats (p < 0.0005). The 
coefficient of determination R2 can be interpreted as the proportion of 
the dependent variable (RT) that is predicted by a linear regression 
model where MT is the independent variable; R2ranged from 0.5 
(measurement 1, normal cats) to 0.9 (most measures in hospitalized 
and sedated/anesthetized cats). The coefficients of regression b were 
always positive and highly significant (p < 0.0005).

Mean differences between MT and RT were always negative. 
These mean differences were significantly different from 0 (p < 0.05) 
for measurement 1 and overall, in both normal and hospitalized cats, 
and for measurements 1, 2 and overall, in sedated cats. In normal cats, 
the overall average bias of MT compared to RT was −0.1°C (p < 0.0005; 
limits of 95% CI: −0.14°C and − 0.04°C). In hospitalized cats, the 
average bias was −0.1°C (p = 0.001; limits of 95% CI: −0.13°C and 
−0.04°C). The average bias in sedated or anesthetized cats was −0.1°C 
(p = 0.001; limits of 95% CI: −0.14°C and −0.04°C).

Figure 1 shows the Bland–Altman plots for all measurements 
(overall) from normal, hospitalized, and sedated cats (A, B, and C, 
respectively).

In normal cats, the 95% limits of agreement were − 0.71°C and 
0.53°C (Figure 1A). A negative trend was evidenced along the graphic 
(F = 4.794; p = 0.030): the differences between MT and RT decreased 
as the mean temperature increased (b = −0.1). There was no effect of 
sex (F = 2.531; p = 0.117), age (F = 1.514; p = 0.224) or body weight 
(F = 0.715; p = 0.401) on the differences between MT and RT. The 95% 
limits of agreement were −0.51 and 0.34°C for hospitalized cats 
(Figure 1B). Proportionality between the difference and the mean of 
the measurements was not detected (F = 0.107; p = 0.745). There was 
no effect of sex (F = 0.915; p = 0.349), age (F = 0.026; p = 0.874), or body 
weight (F = 2.676; p = 0.116) on the differences. For sedated or 
anesthetized cats, the 95% limits of agreement were −0.60 and 0.42°C 
(Figure 1C). As for hospitalized cats, there was no significant trend 
(F = 2.962; p = 0.088) and no effect of sex (F = 0.824; p = 0.371), age 
(F = 0.484; p = 0.492) or body weight (F = 0.006; p = 0.940).

Discussion

The study examined the use of a temperature-sensing microchip 
in normal, cats, hospitalized cats and sedated/anesthetized, aiming to 
assess its effectiveness in measuring body temperature. It is important 
to acknowledge certain limitations within this study. These limitations 
primarily arise from the low number of MT measurements due to the 
absence of a mandatory cat identification requirement in Spain until 
recently. To address these limitations, future research should focus on 
increasing the sample size to obtain more robust and representative 
data. The main limitation of this study was that the accuracy and 
reliability of the subcutaneously implanted temperature-sensing 
microchips was mostly performed in animals that were normothermic. 
In order to fully assess the clinical usefulness of these devices in cats 
further research is required to assess the accuracy and reliability when 
they have abnormal body temperatures, especially during febrile 

https://doi.org/10.3389/fvets.2023.1319722
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Goig et al. 10.3389/fvets.2023.1319722

Frontiers in Veterinary Science 05 frontiersin.org

TABLE 2 Comparison of MT and RT in cats.

Cats Parameter Measure 1 Measure 2 Measure 3 Overall

Normal n 58 54 45 157

r (p) 0.7 (<0.0005) 0.8 (<0.0005) 0.8 (<0.0005) 0.8 (<0.0005)

R2 0.5 0.7 0.6 0.6

b (p) 0.7 (<0.0005) 0.9 (<0.0005) 1.0 (<0.0005) 0.9 (<0.0005)

d ± SD −0.1 ± 0.33 −0.1 ± 0.32 0.0 ± 0.28 −0.1 ± 0.31

t-test p 0.005 0.054 0.222 <0.0005

Hospitalized n 26 26 26 78

r (p) 1.0 (<0.0005) 0.9 (<0.0005) 0.9(<0.0005) 0.9(<0.0005)

R2 0.9 0.9 0.9 0.9

b (p) 1.0 (<0.0005) 0.9 (<0.0005) 1.0 (<0.0005) 1.0 (<0.0005)

d ± SD −0.1 ± 0.19 0.0 ± 0.23 −0.1 ± 0.22 −0.1 ± 0.22

t-test p 0.001 0.398 0.125 0.001

Sedated/anesthetized n 34 36 35 105

r (p) 0.9 (<0.0005) 0.9 (<0.0005) 0.9 (<0.0005) 0.9 (<0.0005)

R2 0.9 0.7 0.9 0.9

b(p) 1.0 (<0.0005) 0.8 (<0.0005) 1.0 (p < 0.0005) 1.0 (p < 0.0005)

d ± SD −0.1 ± 0.16 −0.1 ± 0.32 0.0 ± 0.28 −0.1 ± 0.26

t-test P <0.0005 0.031 0.468 0.001

MT, microchip temperature; RT, rectal temperature; n, MT and RT paired measures; r, correlation coefficient for MT and RT paired measures; R2, coefficient of determination for MT and RT; 
b, coefficient of regression for MT and RT; d, Mean difference for MT and RT; SD, standard deviation; P, significance.

FIGURE 1

Bland–Altman plot demonstrating the relationship between MT (microchip temperature, °C) and RT (rectal temperature, °C) in cats (overall data). 
(A) Normal cats, (B) Hospitalized cats, (C) Sedated/anesthetized cats. The x-axis represents the mean of MT and RT (°C) for each pair of data. The y-axis 
represents the difference between MT and RT for each pair of data. The bias is represented by the gap between the x-axis, corresponding to zero 
differences, and the parallel continuous line to the x-axis at d (mean of differences between MT and RT). Dotted lines represent the 95% limits of 
agreement.
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conditions, but also when they develop hyperthermia from other 
causes, and when they are hypothermic.

Additionally, it is crucial to note that identification microchips are 
implanted subcutaneously, thus the measurement of MT (microchip 
temperature) was taken in close proximity to the skin surface of the 
cats, which may introduce variability in the results. Moreover, the 
generalizability of the findings may be limited by the fact that the 
performance of the temperature-sensing microchip was not evaluated 
under different environmental conditions. Efforts were made to 
minimize potential environmental influences on temperature 
readings. Collaborating clinics were provided with specific 
instructions on how to avoid external factors that could affect the 
measurements, such as contact with heat pads, hot water bottles, air 
conditioning, or other heat sources. Cats were also given an 
acclimatization period in a controlled clinic environment before the 
temperature measurements were taken, reducing the impact of 
outdoor conditions. To minimize stress in the cats, only a single paired 
measurement of MT and rectal temperature (RT) was obtained on 
each occasion. This approach was chosen to avoid subjecting the cats 
to multiple consecutive rectal measurements, which could potentially 
affect their stress levels and subsequently body temperature. While 
these limitations should be considered, the authors took necessary 
precautions to maintain the reliability and validity of the study 
findings. Further research with a larger sample size and evaluation of 
the performance of the temperature-sensing microchip performance 
under various environmental conditions would provide 
valuable insights.

Subcutaneously implanted temperature-sensing microchips may 
not always provide a reliable measurement of core body temperature, 
depending on ambient environmental conditions in animals housed 
outdoors. Temperature-sensing microchips were recognized as a 
practical method for estimating body temperature in beef cattle on 
pasture, but were less precise than RT measurement (38). Moreover, 
core temperature changes caused by the cold challenge did not 
correlate well with temperature-sensing microchip measurements 
(39). The site of temperature-sensing microchip implantation effects 
the closeness of agreement between and core and rectal temperature 
measurements in goats (40). Temperature-sensing microchips 
provided an approximate correlate of body temperature in groups of 
pigs, but were not a suitable tool for the measurement of temperature 
in individual animals in an infection model (41). Correlation and 
regression analysis are two statistical techniques that have been used 
frequently to study the relationship between two methods of 
temperature measurement (27, 42–45). Correlation analysis, which 
helps to measure the magnitude and direction of the degree of 
association between two variables (positive or negative correlation), is 
typically favored for clinical applications (42). Regression analysis 
provides a mathematical equation that describes the directional 
relationship (positive or negative) between two (or more) variables 
that can be used to predict whether the value of one variable can 
be based on the value of the other. In other words, both statistical 
methods evaluate the relationship between two sets of variables but 
not their agreement (46); where the correlation coefficient r is a 
measure of the strength of the relationship between the two variables 
and the coefficient of determination R2 represents the proportion of 
variance in the dependent variable (temperature measurement) that 
can be explained by the independent variable (measurement method) 

(47). Given that two methods for measuring the same variable 
(temperature) are inherently related, testing for statistical significance 
usually confirms this (48). Therefore, the significant and high values 
obtained for both r (correlation coefficient) and R2 (coefficient of 
determination) in the present study are not unexpected. This means 
that the significant and high values for both r and R2 obtained in the 
present work are not unexpected. In ferrets, the correlation between 
MT and RT (digital thermometer) was good; MT showed sufficient 
agreement with RT, providing a reliable alternative for measuring 
temperature (44). Similarly, our r values were always high and positive. 
However, it is important to note that the strength and direction of 
correlation will depend on various factors, such as the time of day, 
body position, and the health of the individual.

To assess the comparability between the two methods, differences 
must be  highlighted (48). Thus, Altman and Bland proposed an 
alternative analysis for the quantification of the agreement between 
two quantitative measurements, based on the mean difference d and 
the subsequent construction of limits of agreement (49, 50). The 
effectiveness of temperature-sensing microchips as a useful alternative 
method for measuring temperature was demonstrated using the mean 
differences between MT and RT in common marmoset (0.26°C ± 0.02; 
11) and rat and mouse (not significantly different from zero; 32). 
There were significant differences between RT and MT in horses and 
sheep, but not in goats (33). Close agreement between MT and RT has 
been reported for cats (51). Another study reported that MT yielded 
slightly lower temperatures readings than RT in pigs (52).

As stated previously, the reliability and accuracy of the 
measurements of the temperature-sensing microchip used in the 
present study was 0.07 ± 0.12°C. In our study, the mean differences 
between MT and RT (average biases) were always negative and there 
were no significant mean differences (d) for measurements 2 and 3 in 
the three groups of cats. Small sample size is a possible explanation for 
the lack of significant results. The overall mean differences (d) were all 
negative and significantly different from zero. A negative and 
statistically significant d value means that MT is usually lower than 
RT. As shown in Table 2, the overall d values were −0.1. In addition, 
every significant d value was below 0.5°C, an arbitrary cut-off point 
that has been assumed to be  an acceptable error in temperature 
readings in clinical settings in dogs and cats (29, 53–55). This means 
that, although statistically significant, these d values could 
be considered as biologically unimportant.

The mean difference d is an average estimation of bias, but 
individual data are important because individuals may respond in 
unique ways (27), even if animals with the same status (normal, 
hospitalized, sedated/anesthetized) are considered. The 95% limits of 
agreement should contain the difference between MT and RT for 95% 
of individual paired measures and therefore, enable better 
understanding of the differences for every pair of measurements. As 
shown in Figure 1, the dots representing the differences between MT 
and RT are spread evenly between the 95% limits of agreement, with 
only a few points outside of these limits, meaning that the bias could 
be positive or negative, depending on the temperature measurement. 
Thus MT, while close to RT, is not identical to it. It would be interesting 
to assess MT and RT temperature measurements over time under 
different conditions and compare these. Temperature measurements 
from different sites (such as RT and ear canal temperature) are related, 
tend to follow similar patterns under different conditions (such as at 
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rest and after exercise) but are not identical (56). Thus, it may 
be  possible that variations in MT could potentially serve as an 
indicator for predicting variations in RT but would have to 
be confirmed by frequent RT measurement, which is challenging. 
However, caution must be  taken when interpreting a single 
measurement of subcutaneous temperature using a temperature-
sensing microchip as it may be  influenced more by external 
temperature factors (e.g., a heat blanket) than RT measurements.

Although the aim of this work was not compare temperature in 
cats under different conditions (normal, hospitalized, sedated/
anesthetized), it is clear that differences in temperature between 
individuals are connected to their health status. Hyperthermia can 
be  produced in rats using neurotoxic agents, which affect central 
thermoregulation (57). Also, nociceptive stimuli can cause 
temperature changes, due to activation of the sympathetic 
adrenomedullary system [released catecholamines activate 
adrenoceptors in vascular smooth muscle, which alters blood flow, 
blood pressure, heart rate and respiratory rate and can alter both 
peripheral and core temperature (58)]. The Bland–Altman method 
alone cannot determine whether the 95% limits of agreement set are 
acceptable or not. Therefore, clinical or biological considerations must 
be  used to define acceptable limits (47). Limits for maximum 
acceptable differences should be determined a priori and may depend 
on the species and method of temperature measurement. In human 
studies, core temperature and RT measurements had an acceptable 
level of agreement of 0.1°C, with 95% limits of agreement within 
0.3°C (59) or 0.4°C (60). In veterinary literature, acceptable limits of 
agreement and degree of bias have not been universally agreed upon. 
For laboratory rabbits, acceptable limits of agreement for MT and RT 
were less than 2°C (61). In goats, temperature-sensing microchips 
implanted retroperitoneally had the closest agreement (mean 0.2°C 
lower) with RT (40). For dogs, around 0.5°C was considered an 
acceptable limit of agreement, as temperature differences greater than 
this could impact diagnostic and treatment decisions (54). Expert 
opinion based on a small sample of dogs (n = 16) also suggests that a 
maximal clinical tolerance of 0.5°C is acceptable (53). For cats, the 
predetermined cut-off for the calculated limits of agreement between 
RT and MT has been set at 0.83°C, based on acceptable differences 
between two methods of temperature measurement used in a FHV1 
(feline herpesvirus 1) study (51). Our 95% limits of agreement are 
within the 0.83°C proposed by Quimby et al. (51). Therefore, the 
agreement between MT and RT in our study appears to be acceptable. 
Significant trends in the difference between MT and RT mean that the 
differences are proportional to the magnitude of the temperature 
measurement. A significant negative trend was only found for normal 
cats; however, the b value was low, pointing to only a small decrease 
in the difference between MT and RT as the value of the measured 
temperatures increases. There was no effect of age and body weight.

Conclusion

Body temperature is an essential health parameter in cats that 
helps inform the clinical decisions made by practicing veterinarians. 
RT measurement is difficult or may even be impossible to perform 
and can lead to a high degree of stress. The use of temperature-
sensing microchips may provide a good alternative for the 

measurement of body temperature in cats. In veterinary practices, 
microchip temperature may provide an easy and time-saving way to 
assess temperature variations for hospitalized animals. Temperature-
sensing microchips allow both identification of the individual and 
assessment of body temperature. This type of microchip should 
make measuring temperature easy, fast, safe, and less stressful for 
both the cat and the veterinary team. This study pointed to that MT 
would be expected to be slightly below RT in cats. The average bias 
(d) was always negative, and these d values are considered not to 
be important biologically. In addition, the 95% limits of agreement 
were narrow enough to satisfy the acceptability conditions 
established previously for cats (0.83°C). However, the accuracy and 
reliability of the subcutaneously implanted temperature-sensing 
microchips was mostly performed in animals that were 
normothermic. Therefore, further studies in larger groups of cats 
under different conditions are needed to compare trends and assess 
variation with time.
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