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Current vaccination protocols raise concerns about the e�cacy of
immunization. There is evidence that changes in the gut microbiota can
impact immune response. The formation of the gut microbiota in newborns
plays a crucial role in immunity. Probiotic bacteria and prebiotics present
important health-promoting and immunomodulatory properties. Thus, we
hypothesize that pro and prebiotic supplementation can improve the e�cacy
of vaccination in newborns. In this protocol, newborn mice were used and
treated with a single-dose rabies vaccine combined with Nuxcell Neo® (2
g/animal/week) for 3 weeks. Samples were collected on days 7, 14, and 21 after
vaccination for analysis of cytokines and concentration of circulating antibodies.
Our results show an increased concentration of antibodies in animals vaccinated
against rabies and simultaneously treated with Nuxcell Neo® on days 14 and 21
when compared to the group receiving only the vaccine. In the cytokine levels
analysis, it was possible to observe that there weren’t relevant and significant
changes between the groups, which demonstrates that the health of the animal
remains stable. The results of our study confirm the promising impact of the use
of Nuxcell Neo® on the immune response after vaccination.
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Introduction

Vaccination protocols have been an important topic of discussion among veterinarians
in recent years, mainly due to concerns about the effectiveness of immunization and
its durability. Currently, several types of vaccines are commercially available, but their
efficiency is often questioned. Several important questions have typically been addressed
when developing vaccines for animals, including whether or not the vaccine is efficacious
and cost-effective (1). Immunization is the most important measure to reduce mortality
and morbidity from different infectious diseases (2). However, some vaccines are often
less effective than expected, as described in a recent review (3). It is known that several
factors can interfere with the ideal post-vaccine response, including the age and health
condition of the animal, the route of application, malnutrition, compromised immune
system, or intestinal dysbiosis (3, 4). There is evidence that dysbiosis can influence vaccine
responses (5). The maternal microbiota has been shown to prepare postnatal innate
immune development in mice (6). Furthermore, concerning the neonatal immune system,
the developing microbiota plays a key role, and dysregulation of the microbiota can lead to
a significant impact on systemic immunity (7).
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Thus, the intestinal microbiota plays a crucial role in the
regulation and development of the immune system; therefore,
its composition can affect how individuals respond to vaccines
(8, 9). Some results have shown that vaccine effectiveness is low,
possibly due to intestinal dysbiosis (8, 9). It is through various
mechanisms that the microbiota interacts with the host. It is from
microbial colonization during birth that the cross-talks between
intestinal bacteria and the host’s immune system are initiated (10).
This interaction promotes immune homeostasis, the gut epithelial
barrier, and protection against pathogenic colonization (11) and
inhibits inflammatory reactions (12).

Diet, or nutrition, is one of the main relevant factors in the
composition and modulation of the intestinal microbiota. Lack
of balance, also known as dysbiosis, leads to different immune
disorders (13). Therefore, it is well-reported that the composition
of the microbiota affects the effectiveness of interventions related
to the immune system, such as vaccination, or even HIV (human
immunodeficiency virus infection) (14, 15), cancer immunotherapy
(16–18), and different autoimmune diseases (19–25).

By definition, probiotics are living, commensal microorganisms
that have positive benefits for the host. Probiotics are generally
included in the diet or supplementation and have a positive impact
on the immune response, thus reducing infections (26, 27). A
recent meta-analysis that included studies with 1,979 adults showed
that prebiotics and/or probiotics promoted immunogenicity
by influencing seroconversion/seroprotection rates in patients
vaccinated against influenza (28). Intervention with probiotic
supplements, even during the weaning period of animals, can
also demonstrate a more pronounced impact on immune system
responses (29). Immunization when performed in newborns is
characterized by providing an initial preparation for the immune
system, making it more efficient and allowing the possibility of
ensuring an excellent basis for future responses (30).

Based on these findings, probiotic and prebiotic
supplementation becomes a safe and attractive way to enhance
the efficacy of pet vaccines, improving the immune response and
enhancing vaccination in newborns through intestinal balance.

Material and methods

Animals

In the present study, 15-day-old Swiss mice of both sexes
weighing 10–15 g were used. The animals were housed with their
parents in a room with a constant temperature of 22 ± 1◦C, with
water and food ad libitum, and subjected to a 12 h light/dark cycle
(from 07:00 a.m. to 07:00 p.m.).

Each experimental group consisted of 10 animals and was
obtained from the Universidade do Extremo Sul Catarinense
(UNESC). No anesthetics were required during the experimental
procedure, as it was minimally invasive. No animal died during
the experimental protocol. At the end of the study, the animals
were euthanized using a lethal intraperitoneal dose of pentobarbital
(50 mg/kg).

All methods described were performed in accordance with the
relevant guidelines and regulations, including ARRIVE guidelines
and the American Veterinary Medical Association (AVMA)

Guidelines. All procedures were approved by the UNESC Animal
Care and Experimentation Committee (Protocol 16/2022).

Nuxcell Neo®

Nuxcell Neo R© was provided by Biosyn Animal Health. Nuxcell
Neo R© consists of folic acid, nicotinic acid, pantothenic acid,
antioxidant additive, arginine, copper, choline, phenylalanine,
iron, fructooligosaccharides (FOS), histidine, inositol, iodine,
Lactobacillus casei CCT 7859, manganese, nucleotides, potassium,
Saccharomyces cerevisiae ATCC 18824, selenium, zinc, and
vitamins A, B1, B12, B2, B6, and D3.

Experimental design

Initially, the animals were randomly separated into nine
distinct groups (10 mice/group): Control (three groups); Vaccine
(three groups); and Vaccine + Nuxcell Neo R© (three groups),
and the euthanasia was performed on days 7, 14, and 21
after vaccination.

The protocol of the rabies vaccine involved a single dose for the
vaccine and vaccine + Nuxcell Neo R© groups, an inactivated rabies
vaccine (Labovet) was administered subcutaneously on the 1st day
before treatment.

After the rabies vaccine protocol, treatment with Nuxcell
Neo R© was started, with a single dose per week (2 g/animal/week),
administered on the 6th, 13th, or 20th day via gavage. Serum
samples were collected, via the retroorbital route, for analysis,
including inflammation [pro and anti-inflammatory cytokines] and
the concentration of available circulating antibodies (Figure 1).

Immunological assays

Titration curves were generated to determine the most
appropriate antibody dilution and antigen concentration to be
used in the enzyme-linked immunosorbent assay (ELISA). To
achieve this, high-binding assay plates (Costar, Corning) were
coated with the 25 µl/well inactivated rabies vaccine (Labovet),
diluted in coating buffer pH 9.6 (50mM carbonate buffer), and
incubated for 16 h at 4◦C. Afterward, the plates were washed
twice with phosphate buffer saline (PBS) containing 0.05% Tween
20 (PBS-T) and blocked with 200 µl/well of BSA 5% (Bovine
Serum Albumin Protein) with PBST at 37◦C for 1 h. After
the incubation time, the wells were washed three times, and
the serum samples from immunized mice collected throughout
the experiment were diluted 1:100 in BSA 0.5% in PBST and
then applied at 100 µl per well incubated at 37◦C for 1 h.
Next, the wells were washed three times with PBST and then
incubated with 100 µl/well of anti-mouse-peroxidase antibody
(Sigma-Aldrich, Saint Louis, MO, USA), diluted 1:20000 in
0.5% BSA in PBST at 37◦C for 1 h. Subsequently, the wells
were washed again with PBST. After incubation, colorimetric
detection was performed with 0.05% hydrogen peroxide added
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FIGURE 1

Experimental design.

FIGURE 2

Antibody detection by ELISA assay. Data are expressed as mean + SD, compared to the control group (one-way ANOVA, followed by post-hoc

Tukey). n = 10/group. (*) Significant di�erence in relation to the control group (p = 0.0016); (**) significant di�erence in relation to the vaccine group
(p = 0.0017).

before pipetting with 100 µl/well. The reaction was incubated
for 30min and stopped with 2M sulfuric acid. The optical
density (OD490) was determined by SpectraMax M3 plate
spectrophotometer (Molecular Devices, San Jose, CA, USA).

Cytokine levels

Blood samples were collected and centrifuged at 2800 RCF
for 5min. The concentration of cytokines IL-6 (DY506), IL-1β
(DY501), and IL-10 (R1000) was determined by ELISA using a
commercial kit (R & D System), and a microplate reader, according
to the manufacturer’s protocol.

Briefly, high-binding assay plates (Costar, Corning) were coated
with capture antibody, diluted in coating buffer pH 9.6 (50mM
carbonate buffer), and incubated for 16 h at 4◦C. Afterward, the
plates were washed twice with phosphate buffer saline (PBS)
containing 0.05% Tween 20 (PBS-T) and blocked with 200 µl/well
of BSA 5% (Bovine Serum Albumin Protein) in with PBST at 37◦C
for 1 h. After the incubation time, the wells were washed three
times, and the serum samples from immunized mice collected
throughout the experiment were diluted 1:100 in BSA 0.5% in
PBST and then applied at 100 µl/well incubated at 37◦C for 1 h.
Next, the wells were washed three times with PBST and then
incubated with 100 µl/well of anti-mouse-peroxidase antibody
(Sigma-Aldrich, Saint Louis, MO, USA), diluted 1:20000 in 0.5%
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BSA in PBST at 37◦C for 1 h. Subsequently, the wells were washed
again with PBST. After incubation, colorimetric detection was
performed with 0.05% hydrogen peroxide added before pipetting
with 100 µl/well. The reaction was incubated for 30min and
stopped with 2M sulfuric acid. The optical density (OD490)
was determined by SpectraMax M3 plate spectrophotometer
(Molecular Devices, San Jose, CA, USA). The unit of measure used
was pg/ml.

Statistical data analyses

All data are expressed as mean ± standard deviation (SD), and
all statistical analyses of the data were performed using GraphPad
Prism version 5.0 (San Diego, CA, USA). The statistical significance
of differences between groups was assessed using one-way ANOVA,
followed by post-hoc Tukey. Values of p < 0.05 were considered
statistically significant.

Results

To assess the effect of Nuxcell Neo R© on the vaccination
response and its immunomodulatory role, the concentration of
serum antibodies after the rabies vaccine was measured and the
cytokine levels were analyzed, since the oscillation of pro- and
anti-inflammatory cytokines demonstrates the health status of the
animals and, in addition, dysbiosis of the intestinal microbiome
causes local inflammation.

Figure 2 shows the result of antibody detection levels after the
rabies vaccine and after treatment with Nuxcell Neo R©. At 7 days,
there is no change in levels between the groups (F = 1.33; p =

0.276), which is expected, since the peak of antibody production
is 14 days after vaccination and, therefore, an increase in antibody
detection is observed at 14 (F = 3.42; p = 0.0016) and 21 days
(F = 4.45; p = 0.0017) in the vaccinated group, with an even more
significant increase in the group that received supplementation
with Nuxcell Neo R© when compared to the vaccinated group.

Figure 3 shows the levels of cytokines assessed. The results
show that there are no relevant and significant changes between
the groups [IL-6 (F = 0.60; p = 0.55); IL-1 (F = 1.14; p = 0.32)],
which demonstrates that the animal’s health remains stable, without
oscillations during the 21 days of follow-up in both groups. This
is justifiable since there was no inflammatory insult. Additionally,
there was a significant reduction in IL-10 levels at 7 days (F =

6.70; p = 0.03), but given the normal levels of pro-inflammatory
cytokines, this data was not considered detrimental to the study. In
addition, there was normalization in the following time points.

Discussion

The gut microbiota plays a fundamental role in systemic
immunity. It is very important in newborns, where the formation
of microbiota is essential to prepare the immune system for the
high levels of microbes that successively colonize the intestine
(12). An imbalance in the intestinal microbiota can cause health
disorders and an increase in the incidence of infectious diseases

(23). Different aspects of gut development determine the newborn’s
capacity to tolerate the microbiota, including salts, nutrient, and
water transport; and barrier function (13). For this reason, gut
microbiota can impact the function and development of vaccine
efficacy and humoral immunity (9). The effectiveness of vaccines
depends on different factors, one of the most influential being the
intestinal microbiota (8). Interactions between gut bacteria and the
immune system begin immediately after birth, directly influencing
the immune response and, thus, protecting against pathogens (31).

When there are changes in the composition of the gut
microbiota, it can lead to several immune disorders, thereby
impairing the proper response to immunization (31). Metabolic
diseases such as diabetes can alter the gut microbiome and
disrupt gut bacterial equilibrium (32). The gut microbiota impacts
the effectiveness of various immune system-related interventions,
including HIV prevention (15), cancer immunotherapy (16),
and dysregulation in gut microbial composition associated with
autoantibody production and autoimmune diseases (21). Other
factors, including physical activity, mental health, and obesity can
also affect the composition of gut microbiota (33).

Considering the parameters analyzed in this study, there
was a significant increase in circulating antibodies in the
Nuxcell Neo R© group, while on the other hand, there was
no change in cytokine levels, which is justifiable since there
was no presence of insult (Figure 4). Several studies have been
designed to evaluate the relationship between immune responses,
intestinal microbiota, and vaccine efficiency (7, 9, 31, 34).
There is widespread recognition that the gut microbiota can
affect the function and development of humoral immunity and
vaccine efficacy (35, 36). Our obtained results confirm that
the intestinal microbiota affects the effectiveness of the vaccine.
The literature has shown that knockouts (TLR5), germ-free
mice vaccinated against influenza and treated with antibiotics,
exhibited low levels of antigen-specific cells, and low IgG
concentrations were observed 1 week after vaccination (34).
Interestingly, gut microbiota restoration controls the vaccine-
specific IgG response (34). Thus, microbial manipulation efforts,
especially before 6 months of age, using probiotics and/or
altering the diet, can be effective for an optimal vaccine response
(37). Our study is in line with the literature and shows that
supplementation with Nuxcell Neo R© was effective in terms of
vaccine response when compared to the group that did not
receive supplementation.

For example, infants who received the intramuscular vaccine
for tetanus-hepatitis B, oral polio vaccine (OPV), and Bacillus
Calmette-Guérin (BCG) vaccine showed detectable levels of
B. longum and specific T-cell, IgG, and IgA responses to
poliomyelitis. In contrast, a higher abundance of Pseudomonadales
and Enterobacteriales was associated with lower IgG levels and
cellular responses (8, 38). Another study in infants who received
BCG, tetanus toxoid, OPV, and hepatitis B corroborates previous
results that the abundance of Bifidobacterium and Lactobacillus in
early childhood can enhance the protective effects of vaccines by
increasing immunological memory (9). Another previous human
study (39) using supplementation with Lactobacillus rhamnosus

and Bifidobacterium longum in children also showed an increased
vaccine-specific IgG response. Huda et al. (9) concluded that
Bifidobacterium and Lactobacillus colonization at the time of

Frontiers in Veterinary Science 04 frontiersin.org

https://doi.org/10.3389/fvets.2024.1248811
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Jesus et al. 10.3389/fvets.2024.1248811

FIGURE 3

IL-6 (A), IL-1β (B), and IL-10 (C) levels were evaluated by enzyme-linked immune absorbent assay (ELISA). n = 10/group. Data are presented as mean
± standard deviation (SD), where: **(p = 0.03) vs. control group (one-way ANOVA followed by Tukey post-hoc test). IL, interleukin.

vaccination is associated with sustained vaccine-specific memory
T cell and antibody responses at both systemic and mucosal levels.

Finally, Lactobacillus and Saccharomyces are the strains that
provide significant health benefits for both animal and human
health, playing a role in metabolic modulation, prevention
of infection, and reduction of allergic symptoms (40, 41).
Consumption of Lactobacillus, Saccharomyces, and Bifidobacterium
in newborns showed an increase in IFN- γ and secretion cells
(42). In addition, when combined, these strains resulted in better
antibody responses after Hepatitis B vaccination (39).

Conclusion

Our results show an increase in vaccine-induced antibody
levels in animals treated with Nuxcell Neo R© compared to
untreated animals, confirming the positive effect of Nuxcell

Neo R© on the humoral adaptive immune response. Besides
this, there are no relevant changes in cytokine levels, which
demonstrates that the animal’s health remains stable, without
oscillations during the 21 days of follow-up in both groups.
From the perspective of our study, the relationship between
gut microbiota and immune response influenced by probiotic
immunomodulation of vaccine efficacy could be explored for other
immunization protocols.

Limitations

It is important to emphasize that Nuxcell Neo R©

is a multivitamin compound and this composition
does not only contain probiotic strains, but it is also
necessary to take into account that the formulation
was developed with the aim of restoring the intestinal
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FIGURE 4

A significant increase occurs at the circulant antibody concentrations in Nuxcell Neo® treatment 14 days post-vaccine and this remains up to at least
21 days; on the other hand, there was no variation in inflammatory evaluation. Nuxcell Neo® enhances vaccine e�ectiveness.

microbiota and increasing the immune response
when administered.
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